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Abstract—Elastic auto-scaling in cloud platforms has primarily
used horizontal scaling by assigning application instances to dis-
tributed resources. Owing to rapid advances in hardware, cloud
providers are now seeking vertical elasticity before attempting
horizontal scaling to provide elastic auto-scaling for applicati-
ons. Vertical elasticity solutions must, however, be cognizant of
performance interference that stems from multi-tenant collocated
applications since interference significantly impacts application
quality-of-service (QoS) properties, such as latency. The problem
becomes more pronounced for latency-sensitive applications that
demand strict QoS properties. Further exacerbating the problem
are variations in workloads, which make it hard to determine
the right kinds of timely resource adaptations for latency-
sensitive applications. To address these challenges and overcome
limitations in existing offline approaches, we present an online,
data-driven approach which utilizes Gaussian Processes-based
machine learning techniques to build runtime predictive models
of the performance of the system under different levels of interfe-
rence. The predictive online models are then used in dynamically
adapting to the workload variability by vertically auto-scaling
co-located applications such that performance interference is
minimized and QoS properties of latency-sensitive applications
are met.

Index Terms—Cloud Computing; Data Center; Multi-tenancy;
Workload variability; Latency Sensitive; Performance interfe-
rence; Vertical elasticity; Virtualization; Linux Containers; Doc-
ker; Online predictive models.

I. INTRODUCTION

Elastic auto-scaling is a hallmark resource management
property of cloud computing which to date has focused mostly
on horizontal scaling of resources wherein applications are
designed to exploit distributed resources by scaling them
across multiple servers using multiple instances of the appli-
cation. However, spawning new virtual machines on-demand
for horizontal scaling requires initialization periods that can
last several minutes and the spawned instances must adhere
to the cloud provider-defined instance types. This may lead
to quality of service (QoS) violations (and hence violation of
service level objectives – SLOs) in applications. To avoid QoS
violations and to account for workload variations, cloud-hosted
latency-sensitive applications, such as online gaming, cogni-
tive assistance, and online video streaming, are often assigned
more horizontal resources than they need [1]. Unfortunately,
maintaining a pool of pre-spawned resources and application
instances often will waste resources.

Considering the recent and emerging advances in hardware
including the ever growing capacity of servers and the advent

of rack-scale computing [2], vertical elasticity has become a
promising area for dynamic scaling of applications and also
a first choice for elastic scaling before horizontal scaling
is attempted [3]. Vertical elasticity is the ability to dyna-
mically resize applications residing in containers or virtual
machines [4], [5]. It not only allows fine-grained assignment
of resources to the application but also enables traditional
applications that were not designed for purposes of horizontal
scaling, to scale vertically according to its changing resource
demands stemming from workload changes.

Vertical elasticity for latency-sensitive applications is often
realized by co-locating them with batch applications such
that they have some slack available to scale up or down on-
demand and the resources are not wasted because the batch
applications can utilize the remaining resources. Cloud service
providers use virtual machine or container technologies to
host multiple applications on a single physical server. Each
latency-sensitive application has its own configuration and
dynamically allocated resources that fulfill its application-
specific demands and requirements.

Despite these trends, performance interference [6] between
the co-located applications is known to adversely impact QoS
properties and SLOs of applications [7]. Dynamic service de-
mands and workload profiles further amplify the challenges for
cloud service providers in (de)allocating resources on demand
to satisfy SLOs while minimizing the cost [8]. This problem
becomes even harder to address for latency-sensitive, cloud-
hosted applications, which we focus on in our work. There-
fore, any solution to address these challenges necessitates an
approach that accounts for the workload variability and the
performance interference due to co-location of applications.

To that end, we present a data-driven and predictive vertical
auto-scaling framework which models the runtime behavior
and characteristics of the cloud infrastructure, and controls the
resource allocation adaptively at runtime for different classes
of co-located workloads. Concretely, our approach uses a
multi-step process where we first apply Gaussian Processes
(GP) [9]-based machine learning algorithm to learn the appli-
cation workload pattern which is used to forecast the dynamic
workload. Next, we use K-Means [10] to cluster the system
level metrics that reflect different performance interference
levels of co-located workloads. Finally, we apply another GP
model to learn the online performance of the latency-sensitive
application using the measured data, which in turn provides



real-time predictive analysis of the application performance.
Our framework uses Docker container-based application de-
ployment and control infrastructure that leverages the online
predictive model in order to overcome run-time variations in
workload and account for performance interference. We also
periodically update the models in online fashion such that the
dynamics of the target application workload and co-located
applications are reflected in our predictions.

The rest of the paper is organized as follows: Section II
compares our work with related research; Section III presents
details of our approach; Section IV presents experimental eva-
luations; and finally Section V provides concluding remarks
alluding to future work.

II. RELATED WORK

We surveyed literature that focus on resource allocation stra-
tegies in cloud computing along the dimensions of workload
prediction, performance interference, and vertical elasticity,
all of which are key pillars of our research. We provide a
sampling of prior work along these dimensions and compare
and contrast our work with them.
Related research based on Workload Prediction:

To model different classes of workloads and applications,
the Dejavu [11] framework computes and maps the wor-
kload signature to resource allocation decisions, and then
periodically clusters the workload signature using K-means
algorithm storing known workload patterns in the cache for
rapid resource allocation. Likewise, [12] proposes an adaptive
controller using Kalman filtering for dynamic allocation of
CPU resources based on the fluctuating workloads without any
prior information. In our prior work [13], we proposed a wor-
kload prediction model using autoregressive moving average
method (ARMA). These works are based on linear models
for QoS modeling; in contrast, cloud dynamics often illustrate
nonlinear characteristics and incur significant uncertainty.

In [14], a non-linear, predictive controller is proposed to
forecast workload using a support vector machine regression
model. In contrast, our work uses a Gaussian Process (GP)-
based model because it has relatively small number of hyper
parameters so that the learning process can be achieved
efficiently in an online fashion. Although some efforts [15],
[16] use Gaussian processes to model and predict the query or
workload performance for database appliances, they do not in-
corporate performance interference in their model. While most
of the strategies for performance and resource management
are rule-based and have static or dynamic threshold-based
triggers [4], our system uses a proactive approach using GPs
to learn parameters dynamically and perform timely resource
adjustments for latency-sensitive applications.
Related research based on Vertical Elasticity:

Vertical elasticity adds more flexibility since it eliminates
the overhead in booting up a new machine while guaranteeing
that the state of the application will not be lost [4]. Several
approaches are proposed to scale the CPU resources [3], [17].
Kalyvianaki et al. [5] proposed a Kalman filter-based feedback

controller to dynamically adjust the CPU allocations of multi-
tier virtualized servers based on past utilization. A vertical
auto-scaler [18] is proposed to allocate CPU cores dynamically
for CPU-intensive applications to meet their SLOs in the
context of varying workloads. The authors offer a linear
prediction model on top of the Xen Hypervisor to plug more
CPU cores (hot-plugging) and tune virtual CPU power to
provide the vertical scaling control. Controlling of CPU shares
of a container based on the Completely Fair Scheduler is
proposed in [19]. Vertical autoscaling techniques based on
a discrete-time feedback controller for Containerized Cloud
Applications are proposed in ELASTICDOCKER [4] that uses
an approach to scale up and down both CPU and memory of
Docker container based on resource demand. However, their
decision triggering approach is reactive. In contrast, we use a
more efficient Gaussian-based proactive method to trigger the
scaling of resources.
Related research based on Performance Interference:

Prior research shows that model-based strategies are a
promising approach which allow the cloud providers to predict
the performance of running VMs or containers and to make
efficient optimization decisions. DeepDive [20] is proposed
to identify and manage performance interference between co-
located VMs on the same physical environment. Q-Clouds [7]
is a QoS framework which utilizes a feedback mechanism to
model the interference interaction.

DejaVu [11] creates an interference index by comparing
the estimated and actual performance. Based on matching the
trained profile, it then provisions resources to meet application
SLOs. Paragon [6] also classifies applications for interference
and predicts which application will probably interfere co-
located application performance for heterogeneous hardware
based on collaborative filtering techniques. Unlike our appro-
ach, these efforts do not prioritize latency-sensitive applicati-
ons due to interference from their co-located applications.

Bubble-flux [21] produces interference estimation by con-
sidering co-located applications on servers by continuously
monitoring the QoS of latency-sensitive application and con-
trolling the execution of batch jobs accordingly based on pro-
filing. Heracles [22], which is a feedback controller, reduces
performance interference by enabling the safe co-location of
latency-sensitive applications and best-effort tasks while gua-
ranteeing the QoS for the latency-critical application. Unlike
these efforts, our GP-based model predicts the future latency
in online fashion, and tunes the parameters on each iteration.

Our prior work [23] designed a performance interference-
aware resource management framework that benchmarks the
applications hosted on VMs. The server’s performance inter-
ference level is then estimated using neural network-based
regression techniques. However, hardware heterogeneity and
every application’s performance is not considered in the mo-
del. In another prior work [24], we benchmarked a latency-
sensitive application with co-located applications on different
hardware and develop its interference profile. The performance
of the new application is predicted based on its interference
profile which is obtained using estimators of an existing



application for the same hardware specifications. A safe co-
location strategy is decided by looking up the profile, however,
we did not consider dynamic vertical scaling. In the current
paper, we determine the vertical scaling strategy based on our
online GP prediction model.

III. SYSTEM DESIGN FOR PROACTIVE VERTICAL
ELASTICITY

This section provides details of our solution for interference-
aware vertical elasticity to support SLOs of latency-sensitive
applications that are co-located with batch applications.

A. System Model

We target cloud data centers comprising multiple servers
that host both latency-sensitive and batch-processing applica-
tions. The latency-sensitive applications have higher priority
and need assurance of their SLOs while the provider also needs
to ensure the remaining resources are utilized by the co-located
batch processing applications such that there is minimal to no
resource wastage. Docker is a container platform for appli-
cation hosting with a growing user base with cloud service
providers providing their own Docker deployment services,
such as Amazon EC2 Container Service, Azure Container Ser-
vice and Google Container Engine. We target cloud platforms
hosting Docker containers natively. However, our solution can
apply to any virtualized platform that allows rapid resource
reconfigurability that is needed for vertical elasticity.

B. Problem Statement and Solution Approach

Cloud providers support multi tenancy by deploying appli-
cations in virtual machines or containers in order to provide
a certain level of isolation. Moreover, to assure bounded
latencies, cloud-hosted latency-sensitive applications are often
assigned dedicated cores with the use of CPU core pin-
ning [25], [26] which is the ability to run a specific virtual CPU
on a specific physical core, thereby increasing cache utilization
and reducing processor switches. Despite all these strategies,
multi tenancy still leads to performance interference causing
degradation in performance for latency-sensitive applications
which can be particularly severe in the case of tail latency [27],
i.e., 90th, 95th, 99th or similar percentile latency values.
This is due to the presence of non-partitionable or difficult-
to-partition resources such as caches, prefetchers, memory
controllers, translation look-aside buffers (TLBs), and disks
among others. The workloads for each such resource are
referred to as sources of interference (SoIs) [6]. A SoI helps in
identifying the interference that an application can tolerate for
that resource before SLO violation occurs. Exacerbating the
problem is the fact that different applications incur different
levels of sensitivity to co-located workloads [28]. Figure 1
depicts an exemplar where the performance of a web search
application is shown deteriorating significantly because of
the presence of varying interference workload, even when
they do not share the CPU cores. We observe that the 90th
percentile latency is more than 51% worse when performance
interference is present.
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Fig. 1. CDF of Response Time for CloudSuite WebSearch with 6 Cores

Addressing these concerns warrants a solution that accounts
for performance degradation due to interference and the wor-
kload variations so that SLO violations can be minimized
while also minimizing cost to the cloud provider. Advances
in container technologies such as Docker offer promise in
allowing us the control and allocation of resources to rapidly
adapt to workload variations and co-location interference.
Prior efforts, such as Heracles [22], account for performance
interference while also rapidly scaling the application for
workload variations. They use feedback controllers where the
best effort batch jobs are disabled if the demand from the
latency-sensitive applications increases. However, the disabled
jobs are still kept in memory thereby limiting the available
resources for latency sensitive applications. To overcome this
limitation, one can either checkpoint or migrate the co-located
batch applications and restore them once the demand from
latency sensitive application reduces. However, checkpointing
and migration can take long durations, especially for memory-
intensive applications where a large amount of state needs to
be saved. Moreover, during this phase any additional resource
allocation will not result in better performance. Reactive
approaches also require very high rate of performance metric
collection in order to react quickly to workload variations.

Consequently, an approach that can forecast the workload
to proactively perform vertical scaling while accounting for
interference imposed by co-located workloads is needed. Furt-
her, as the workload and interference level can vary dyna-
mically, the solution should be able to forecast the required
resources in an online fashion. Hence, we propose a model-
predictive approach for vertical scaling which predicts the
needed resources while accounting for workload variations at
different levels of performance interference due to co-located
workload. We use Gaussian Processes (GPs) to model the
latency variations due to varying workloads forecasted using
GPs We chose GPs over other learning techniques because
they have relatively small number of hyper parameters. So the
learning process can be achieved efficiently in online fashion.
In addition, they are probabilistic models thus allowing us to
model the uncertainty in the system while also being able to
model nonlinear behavior of the underlying system.



C. Technique for Model-based Prediction

To optimize the resource utilization while maintaining the
SLO guarantees for latency-sensitive applications, we need an
accurate and online performance model of the latency-sensitive
applications. There is also a need for an online model since the
latency-sensitive application workload can vary dynamically.
Moreover, the batch applications co-hosted on the same server
can vary in their amount and nature of resource utilization.
Finally, each application also incurs its own performance inter-
ference sensitivity to the co-located workload [6], [24]. Thus,
the core component of our framework is the model predictor
for which we have developed a per-application performance
model in an online fashion that helps to rapidly adapt to
changing levels of workload and co-location patterns.

We use Gaussian Processes (GPs) to model the performance
of the latency-sensitive applications. GPs are non-parametric
probabilistic models that utilize the observed data to represent
the behavior of the underlying system [9]. A function y =
f(x) : x ∈ Rd modeled by a GP can be expressed as: f(x) ∼
GP(m(x), k(x, x)) where m(x), k(x, x) are the mean function
and the covariance functions of the GP model, respectively.
Typically, a zero mean function and squared exponential (SE)
covariance kernel are used for their expressiveness.

Given the training data with n data points (D =
{(xi, yi)|i = 1, n}) where xi are the training inputs and yi
are the training outputs, we train the GP model to identify
their hyperparameters Θ so that they best represent the trai-
ning data. In other words, we optimize the hyperparameters
(Θ̂) of the GP model to maximize the log likelihood, i.e.,
Θ̂ = arg maxΘ log p(y|Θ,D) using the conjugate gradients
optimization algorithm [9]. We define the test input at which
we want to predict the model output as x∗. Hence, the
predicted output of the GP model (y∗) can be achieved by
evaluating the GP posterior distribution p(y∗|x∗,X,y) which
is a conditional Gaussian distribution with a mean and a
variance evaluated by:

E[y∗|y,X,x∗] = KT
∗ β

V ar[y∗|y,X,x∗] = k∗∗ − kT
∗ (K + σ2

ωI)−1k∗
(1)

where k∗ := k(X,x∗), k∗∗ := k(x∗,x∗), K := k(X,X) and
β := (K + σ2

ωI)−1y.
In this work, we initialize the model with previously ben-

chmarked metrics and then re-learn the model in an online
fashion based on a moving window technique whenever new
measurements are received. Since we emphasize online le-
arning, we reduce the input features to our model to make
the learning faster. First, we reduce the application level
features using Pearson correlation analysis, and filtering out
features with low correlation. Second, we cluster the system
level metrics using K-Means, so that each cluster reflects
a performance interference level caused by the co-located
workloads. For each cluster, we segment its corresponding
workload measurements and the container-level metrics to
learn a distinct performance model of the latency-sensitive

application. The cluster-based learning is very beneficial be-
cause it allows us to estimate the performance interference
level caused by the co-located workloads. Moreover, it allows
us to reduce the features dimension of the performance model
(i.e., model input size) for fast online learning, since we learn
independent models for each cluster using their corresponding
workload measurements and container-level metrics in contrast
to learning one model with all measurements including host-
level measurements as inputs.

Figure 2 depicts the online performance model learning
steps from our framework. The dashed lines indicate the
learning steps and the solid lines map to prediction steps.
In the first phase, we start by clustering the system-level
metrics to estimate performance interference levels and use
the associated workload measurements and the container-level
metrics to learn a performance model, i.e., latency model
using a distinct GP model for each estimated performance
interference level. Furthermore, we learn a time-series GP
model of the application workload, i.e., online users, so we
can forecast the workload for the next time-step.
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Fig. 2. Performance Model Learning and Prediction Steps

After learning the model, in the prediction phase, we use
the current measurement as the model input to predict the
application performance in terms of latency. Note that once
we learn the initial model, the performance prediction happens
first and the learned model is updated next. This ensures that
performance prediction does not get delayed due to model
update. We start with estimating the current performance
interference level by classifying the current host-level metrics.
In this step, the clusters’ centroid that we obtain in the model
learning step are used as the classifier centroid. Then, we
use the corresponding GP model to predict the latency of the
system. In addition, we forecast the application workload using
the workload time-series model and pass it as one of the inputs
to predict the latency using the GP model associated with the
estimated performance interference level as described above.

D. System Architecture and Implementation

Figure 3 shows the system architecture. Our implementation
comprises compute servers which host multiple containers or
virtual machines. For our experiments, we used Docker as the
virtualization mechanism, however, our architecture is generic
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enough to also include KVM or Xen-based hypervisors. The
latency-sensitive application containers have dedicated cores
assigned using CPU core pinning. The batch applications share
the cores according to a defined overbooking ratio [29]. The
CPU and memory allocation are controlled using the Cgroups
features supported by Docker.

The performance of the entire system is monitored using
a resource usage and performance interference statistics
collection framework that we have developed called FE-
CBench [24]. The measurements include both macro and mi-
cro architectural metrics, such as CPU utilization, memory uti-
lization, network I/O, disk I/O, context switches, page faults,
cache utilization, retired instructions per second (IPS), me-
mory bandwidth, scheduler wait time and scheduler I/O wait
time. Additionally, each latency-sensitive application reports
its observed workload and response time to the Application
Performance Monitor residing on the framework’s Manager
that is deployed on a separate virtual machine. Figure 3
illustrates the monitoring agent from FECBench residing on
each of the hosts which periodically reports metrics to the
Manager.

The system performance metrics are aggregated with the
latency-sensitive application workload and latency data, and
passed on to the model predictor (described in Section III-C).
The model predictor predicts the performance of the latency-
sensitive application and forwards the information to a deci-
sion engine. The decision engine then decides the action which
can be add/remove cores to the latency-sensitive application
and remove/add cores or checkpoint/restore for batch appli-
cations. Our control action is based on the fact that adding
more cores not only provides more resources to process addi-
tional workload, but also alleviates performance interference
due to larger share of resources, such as LLC and memory
bandwidth [22]. The batch applications are checkpointed once
they reach the overbooking ratio and the latency-sensitive
applications need more resources. On the other hand, they are
restored when it is found that restoring will still ensure that the
latency-sensitive applications get their required resources and
the overbooking ratio will not be exceeded. We leveraged the
Checkpoint/Restore In Userspace (CRIU) feature for Docker
to achieve checkpoint and restore of the containers.

IV. EXPERIMENTAL VALIDATION

We present an experimental validation of our framework.

A. Evaluation Use Case

We consider a deployment scenario where latency-sensitive
applications are co-located with batch applications whose wor-
kloads arrive in accordance to a distribution, emulated using
real-world traces. Some of the popular cloud hosted latency-
sensitive applications include web servers, search engines,
media streaming among others.1 For our system under test
(SUT), i.e., the latency-sensitive application, we chose the
CloudSuite WebSearch [30] benchmark since it fits our use
case of varying workloads with low response time needs.
The default version of this benchmark, however, can log only
the runtime statistics to a file. Since we needed the runtime
statistics to be published to a remote location to make adaptive
resource allocation decisions, we modified the benchmark to
publish the results using RESTful APIs for our data collection
and decision making.

Since the CloudSuite WebSearch benchmark also does not
provide workloads for experimentation, to emulate a real web
search engine workload, we used the workload pattern for Wi-
kimedia projects from the Wikipedia traces [31]. Specifically,
we collected the page view statistics for the main page in
English language for the month of September 2017 and scaled
the first two weeks of data to our experimental duration. We
used the scaled first week data for model training and the next
week data for testing.

We used two batch applications to co-locate with the SUT:
the first one is the Stream benchmark from the Phoronix test
suite (http://www.phoronix-test-suite.com/), which is a cache
and memory-intensive application, and the second one is a
memory-intensive custom Java application.

B. Experimental Setup

Our experimental setup consists of a compute server with
the configuration as defined in Table I. The server has Linux

1Latency-sensitive does not imply hard real-time applications but rather
applications that have soft bounds on response times beyond which users will
find the application behavior unacceptable. For instance, users expect a web
search to complete within a specific amount of time.



kernel 4.4.0-98, Docker version 17.05.0-CE and CRIU version
2.6 for checkpointing and restoring Linux containers.

TABLE I
HARDWARE & SOFTWARE SPECIFICATION OF COMPUTE SERVER

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Disk Space 500 GB

Operating System Ubuntu 16.04.3 64-bit

We used the containerized version v3.0 of the Cloudsuite
Web Search Benchmark as our SUT. The SUT is deployed
on a server where it receives varying workloads over a period
of time. The SUT is initially assigned 2 cores and 12 GB
of memory. We vertically scale the number of assigned cores
based on the output from the decision engine. The number of
cores can vary from 2 to 10. One container is used to emulate
the clients by varying their count as per the defined workload.
This container also collects response times and throughput
metrics. We deployed the client container on a separate host
such that it does not have any effect on the experimental results
similar to production deployment where the clients are located
outside of the system. We aggregated and scaled the traces so
that the number of users to the SUT change every 40 seconds.

The CloudSuite Web Search Benchmark relies on Fa-
ban [32] for time varying workload generation and statistics
collection. We modified the Faban core used by CloudSuite
benchmark so that it reports runtime metrics to the manager
VM for model prediction and decision making. The metrics
provided by CloudSuite include the throughput of the appli-
cation, average latency which we use for the decision making
and the 90th percentile latency which we consider as the tail
latency used for measuring the efficacy of our system. Another
key component of our experimentation is the FECBench fra-
mework that collects the application performance and system
utilization metrics at an interval of 5 seconds and reports them
to the Manager.

The manager VM is located on a separate machine which
is responsible for each host’s resource allocation decision
making. The decision making and model update occurs every
15 sec which was chosen in order to avoid too frequent
resource allocation modifications. Before deploying the system
for online model prediction, we first perform offline analysis
of the measured data set for the first week of the scaled
Wikipedia traces. We applied the Silhouette [33] technique that
determined two cluster centroids for performance interference
level, which we used as the number of clusters in our online
K-Means learning. For the online learning, we used 350 points
as the K-Means window size and 200 points as the GP
window size. We used the second week scaled data set for
the experimental validation.

For the batch applications, the custom Java application is
initially assigned 2 shared cores and 4GB of memory while
the Stream test application is assigned 2 shared cores and 2.5
GB memory. We used Grid computing workload traces [34] to

vary the batch application workload, which arrives according
to a distribution to the same server as the SUT.

Our objective is to ensure that the latency-sensitive applica-
tion adheres to the defined SLO guarantees while also allowing
the batch applications to utilize the remaining resource slack.
To achieve this, we need to appropriately assign resources to
the latency-sensitive application and allocate the remaining
resources to batch applications. While doing this, as the
workload on the SUT increases, the resources allocated to the
batch application need to be reduced. However, this reduction
in resources for batch applications will increase the overbook-
ing ratio (i.e., degree of contention for a specified number of
resources). In our experiments, when the overbooking ratio
reaches 2, the batch applications must be checkpointed in a
way that does not incur the limitations of prior work where
memory continues to be held by these batch applications.
Later, when the workload on the latency-sensitive application
reduces, the checkpointed applications are restored.

C. Experimental Results

The standard practice for cloud data center resource mana-
gement involves threshold-based resource allocation. Approa-
ches such as the ones defined in [35], [36] are reactive in nature
and usually have thresholds based on request rate, response
time or resource utilization. Thus, we compare our model
predictive framework against two threshold-based reactive
approaches. In the first approach, we set the threshold based
on CPU utilization of the SUT container. The objective of the
approach is to keep the CPU utilization within a target range.
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We chose CPU utilization range of 50-70%, named as
ReactiveUtililization. We make this choice as we do not want
the server to be either under-utilized or become saturated.
Whenever the utilization grows/reduces from the target range,
we add or remove a core, respectively. In addition, if there
is a sudden gain or drop of more than 20% utilization, we
add or remove two cores. In the second approach, we put
the threshold on average latency, which was chosen over tail
latency because the latter characterizes transient and higher
fluctuations, which is not needed for control actions. The
target range was set to 70-100 ms. We also had higher bounds
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for adding/removing two cores of 50/150 ms. The configu-
ration is called ReactiveLatency . We used the same bound
as ReactiveLatency for our proactive approach experiments,
which is called Proactive.

Figure 4 compares the response time of the three sce-
narios listed above. We observe that the tail latency (90th

percentile) of our proactive approach is lowest at 270 ms.
We also found the average latency to be 118, 102, 88 ms
for ReactiveUtililization, ReactiveLatency and Proactive,
respectively. Figure 5 compares the average resource utiliza-
tion for the duration of the experiment. Since our approach
is a trade-off between resource utilization and the obtained
latency, we observe that our proactive approach has higher
resource utilization of 4.96 cores compared to 4.01 and 4.28
for the ReactiveUtililization and ReactiveLatency approaches,
respectively. Thus, compared to the two approaches, at the cost
of 19.15% and 13.7% extra resources, we achieve 39.46% and
31.29% better tail latency, respectively.

We also measured the efficacy of our model prediction.
Figure 6 shows the model prediction results. We achieved
a mean absolute percent error of 7.56%. For interference
level, we found 2 clusters for our workload. The Co-located
Workload Clusters part of Figure 6 displays different regions
of co-located workloads. The other two subfigures compare
our prediction against observed latency and request rate.

V. CONCLUSIONS

Dynamic vertical elasticity solutions for cloud platforms are
increasingly becoming the first choice before using horizontal
elasticity strategies. To that end, this paper presented a data-
driven, machine learning technique based on Gaussian Proces-
ses to build a runtime predictive model of the performance
of the system, which can adapt itself to the variability in
workload changes. This model is then used to make runtime
decisions in terms of vertically scaling resources such that
performance interference is minimized and QoS properties
of latency-sensitive applications are met. Empirical validation
on a representative latency-sensitive application reveals up to
39.46% lower tail latency than reactive approaches.

Fig. 6. Model Prediction

Our future work is informed by the following insights into
unresolved problems that were gained from this research:

• Our work lacks finer-grained resource control such as
managing CPU shares and memory, last-level cache and
network allocation. To that end we are exploring the
use of modern hardware advances, such as Intel’s cache
allocation technology and software-defined networking
approaches to control network resource allocations.

• We viewed monolithic application design for latency-
sensitive applications that are containerized. However,
with applications increasingly being designed as distribu-
ted interacting microservices, distributed and coordinated
vertical elasticity solutions become necessary.

• The thresholds for reactive approaches were chosen based
on available literature. More experimentation is needed
to compare against different thresholds and for different
kinds of latency-sensitive applications.

• Presently, each of the clustered GP models executes in-
side the same VM. For future, we will perform distributed
machine learning to reduce our online learning duration.

• Our future work will consider combining vertical scaling
with horizontal scaling trading off along the different



dimensions based on application needs and incoming
workloads. We will also include different workload cate-
gories, which can be both predictable and unpredictable.

The source code and experimental apparatus is available in
open source at https://github.com/doc-vu/verticalelasticity.
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