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Abstract—As distributed systems become more complex, un-
derstanding the underlying algorithms that make these systems
work becomes even harder. Traditional learning modalities based
on didactic teaching and theoretical proofs alone are no longer
sufficient for a holistic understanding of these algorithms. In-
stead, an environment that promotes an immersive, hands-on
learning of distributed system algorithms is needed to comple-
ment existing teaching modalities. Such an environment must be
flexible to support learning of a variety of algorithms. Moreover,
since many of these algorithms share several common traits with
each other while differing only in some aspects, the environment
should support extensibility and reuse. Finally, it must also allow
students to experiment with large-scale deployments in a variety
of operating environments. To address these concerns, we use
the principles of software product lines (SPLs) and model-driven
engineering and adopt the cloud platform to design an immersive
learning environment called the Playground of Algorithms for
Distributed Systems (PADS). The research contributions in PADS
include the underlying feature model, the design of a domain-
specific modeling language that supports the feature model, and
the generative capabilities that maximally automate the synthesis
of experiments on cloud platforms. A prototype implementation
of PADS is described to showcase a distributed systems algorithm
illustrating a peer to peer file transfer algorithm based on
BitTorrent, which shows the benefits of rapid deployment of the
distributed systems algorithm.

Index Terms—Learning System, Feature model, Software
Product Lines, Distributed Systems, Cloud.

I. INTRODUCTION

Complexities in Distributed Systems and Algorithms: As
the world gets more connected owing to many advances
in hardware, software and networking technologies, many
new services of significant societal relevance (e.g. healthcare,
transportation, avionics, weather prediction, search and rescue,
education etc.) are likely to emerge. With the advent of low-
cost embedded devices, sensors and other ubiquitous comput-
ing devices, such services will be inherently networked and
distributed. Although these services will be designed to be
easy to use, their underlying design and implementations will
be substantially complex. In large-scale networked and dis-
tributed systems, many complex issues need to be addressed,
such as time synchronization, fault management, replication
and replica synchronization, consensus among peers, leader-
election among nodes, deadlock avoidance etc. There is also
a large degree of heterogeneity in the distributed systems in
terms of network topology (ring, star, mesh etc.), node types
(fixed vs mobile nodes, static vs dynamic nodes, physical vs
virtual nodes), communication types (client-server, peer-to-

peer, publish-subscribe etc.), network types (Ethernet, WiFi,
Satellite). These design considerations and heterogeneity make
the algorithms for distributed systems very complex.

Difficulties in Teaching and Learning Distributed Algo-
rithms: From our experience with distributed algorithms both
as a student taking a course on Distributed Systems and as
an instructor teaching such a course, we felt that learning and
teaching distributed systems and their algorithms is a difficult
task. Existing teaching modalities, tools and techniques for
understanding the algorithms for distributed systems often rely
on traditional approaches such as didactic lecturing, simple
proof sketches on the whiteboard, and basic simulations or
toy assignments. It is general practice in universities to teach
distributed systems algorithms theoretically and then having
students implement them in a programming language like
(Java, Python or C++) or simulate them using basic simulation
tools [1] . This approach incurs several difficulties for students
including (1) programming them in languages they are not
experts in, (2) analyzing these algorithms in simulators/emu-
lators they are unfamiliar with, and (3) needing to deal with
accidental infrastructure complexities in order to deploy them
on real hardware to realistically validate them or propose
improvements and extensions to them. Due to a piecemeal
approach in learning and implementing these algorithms (i.e.
programming/learning algorithms individually), students (1)
cannot analyze multiple algorithms at the same time to com-
pare and contrast them, (2) cannot seamlessly switch between
simulation, emulation and real deployment on hardware, and
(3) hence do not obtain a holistic view of distributed systems
and how different algorithms work together in a real world
distributed system.

Solution Approach and Organization of paper: To address
these challenges, we use Software Product Lines (SPLs) [2]
in the context of cloud platforms to improve teaching and
learning of distributed systems algorithms. The key intuition
behind applying SPL principles stems from the observation
that these algorithms tend to share several common traits while
differing only in some aspects. Consequently, a collection
of distributed systems algorithms can be viewed as variants
of a product line. The challenge then lies in understanding
and capturing the commonality and variability across these
algorithms, and developing techniques needed to automate the
synthesis of these variants so that the different dimensions of
accidental complexities faced by the student can be substan-
tially alleviated.



Our solution is a learning framework for distributed sys-
tems called the Playground of Algorithms for Distributed
Systems (PADS), that reifies SPL principles by building on
the strengths of model driven engineering (MDE) [3] with
generative capabilities, feature modeling and teaching/learning
tools & technologies. In this context, this paper makes two
contributions:

1) We present the underlying feature model that captures
the commonality and variability across a collection
of distributed systems algorithms, and show how this
feature model is realized in a domain-specific modeling
language (DSML), as well as generative capabilities that
maximally automate the synthesis of product variants
(i.e., experiments involving one or more distributed
algorithms) that can be deployed and tested at large-
scale using cloud platforms.

2) We present a prototype implementation of PADS to
showcase a distributed systems algorithm illustrating a
peer to peer file transfer algorithm based on BitTorrent,
which shows the benefits of rapid deployment of the
distributed systems algorithm. Using this example, we
provide some qualitative evaluation of PADS showcasing
the effort saved on the part of a student.

By no means do we claim to have solved all the challenges
in this realm, however, our research is continuing to further
develop the capabilities of PADS. The rest of the paper is
organized as follows: Section II surveys related research and
compares and contrasts them with PADS; Section III presents
a motivating example and key challenges that are resolved
by PADS currently; Section IV delves into the details of
PADS; Section V provides a validation of PADS; and finally
Section VI provides concluding remarks alluding to lessons
learned and future work.

II. RELATED WORK

In this section we compare PADS to related works along
three dimensions: tools for network experimentation, current
work in the teaching specific software for distributed systems
algorithms, and use of model driven engineering in the design
of large scale software systems in the context of educational
learning systems.

1. Tools for network experimentation: The authors in [4]
have provided an extensive list of experiment management
tools for carrying out research in distributed systems. The
strengths and weaknesses of various tools are provided. It
highlights the need for good experimentation tools to ensure
replicability and reproducibility of an experiment. It also
points out the need for further development of these tools
due to numerous challenges in fully exploiting the capacity
of certain experimental testbeds. Efforts have been made
to address the problem in repeatable research environments.
For example, the Apt (the Adaptable Profile-driven Testbed)
approach has been presented in [5]. It builds an experiment
profile which describes the dependencies needed to conduct
networking experiments. Dependencies include both hardware
and software requirements of the experiment. Researchers

can build their own testbeds and share these profiles with
others, who can then repeat and reproduce the experimental
environment.

The cOntrol and Management Framework (OMF) [6]
provides a modular architecture for managing heterogeneous
resources in networking testbeds. It manages resources such as
remote bootstrapping, and saving and loading disk snapshots
for conducting experiments. It also features an experiment
description language which can be used to specify resource
requirements and configuration and experiment orchestration.
OMF-F [7] is based on OMF [6]. It addresses the shortcomings
of OMF which was targeted for a single testbed deployment
only. OMF-F allows management of resources for network
experiments across federated networking testbeds. It provides
a DSML supporting special event-based experimental scenario.
It also supports management of resources using a resource
model which features publish-subscribe messaging pattern for
communication and control of resources. Further, it supports
scalable deployment of experiments across federated testbeds.

The above frameworks are oriented more towards the re-
search community to conduct experimental research. Unlike
these tools, PADS is designed as a learning aid in teaching
distributed systems algorithms. Our approach also facilitates
use of both the simulator and real world testbed in a single
development environment for testing different distributed sys-
tems algorithms. We also use the SPL approach in the design
and development of PADS.

2. Learning systems for distributed algorithms teaching:
Authors in [8] present a comprehensive survey providing
an overview of different tools, simulators and learning plat-
forms available for teaching distributed systems. It outlines
tools available for managing deployment, execution, discovery,
monitoring and configuration of distributed systems. It also
presents a list of algorithms that can be used for teaching and
demonstrating intricate details of distributed algorithms.

ViSiDiA [9] is a framework for designing, simulating
and visualizing distributed algorithms. It is developed using
JAVA frameworks. It provides implementations of different
distributed systems like sensor networks and mobile agents.
A user can specify their custom distributed algorithms by
making use of framework specific JAVA API. Distal [10] is
another framework that is specifically aimed at a certain class
within the distributed systems algorithm, namely fault-tolerant
systems. It is developed on top of the Scala programming
framework. One can write pseudo code for the algorithm
using its DSML to translate into an executable code. The
executable can then be deployed on clusters for testing. It
lacks integration with simulators that would facilitate quick
testing and debugging of algorithms.

LYDIAN [11] is an animation environment for visualizing
the behavior of distributed algorithms. It supports writing
custom protocols which can be executed on the LYDIAN’s
simulator and the output animation can be viewed on the
TCL/TK based graphical user interface. It also supports play-
back of algorithm execution events using a trace file for
quick demonstration of algorithm behavior on the animation



windows. VADE [12] is another framework that provides
visualization of distributed algorithms. The VADE framework
is designed such that computation and implementation of
algorithm is done on the server side while users can see the al-
gorithm visualization via JAVA applets using the web browser
on their client machines. The algorithm is implemented using
JAVA programming language.

Another teaching and learning framework called FADA
(Framework Animations of Distributed Algorithms) is pre-
sented in [13]. In FADA, the simulations are written using
JAVA programming language using the visualization APIs pro-
vided by the framework. It also provides a set of preassembled
simulations for different algorithms which can be used as
examples for demonstrating distributed algorithms to students.

The frameworks presented above have the following short-
comings compared to our approach. First, the distributed algo-
rithms need to be written in a language which the framework
supports. Secondly, the tools presented above do not support
seamless translation of programming artifacts from simulation
to real world deployment.

3. MDE in learning systems: Previous work has shown
MDE and DSML being effective tools [14] in developing
teaching software systems. Students have also seen the benefits
of rapid code generation based on MDE techniques. In [15],
students were able to rapidly synthesize code artifacts using
MDE to rapidly generate code, when changes where required
to be made in platform configuration of robotics control code
and mobile device.

An educational game design software framework is pre-
sented in [16]. It utilizes model driven approach to de-
scribe educational game concepts. It presents an educational
game metamodel that defines platform-independent educa-
tional game concepts. The framework aims to design edu-
cational games to motivate the students to get involved in
the learning process thereby effectively conveying educational
material.

SPL techniques were applied for design, development and
support of a family of elearning systems [17] called TALES.
It also highlighted some of the challenges involved in the
development of large-scale educational system and how SPL
helped it to gain 10-fold productivity boost in the develop-
mental efforts. The educational systems were built as a part
of Adult Literacy Programme (ALP) for teaching illiterates
in India in 22 Indian languages. Unlike the work presented
above our area of study is focused on a special topic within
computer science which is the distributed systems algorithms.
Our work leverages the MDE and the SPL techniques in the
design of a learning framework for distributed algorithms.

III. DIMENSIONS OF VARIABILITY IN THE LEARNING
PROCESS

Decentralization is a fundamental aspect of distributed algo-
rithms. Distributed systems algorithms deal with a large num-
ber of issues that arise in distributed systems, e.g., challenges
pertaining to successful coordination of various entities in
the system, fault-tolerance, communication heterogeneity, and

the distributed time synchronization. Given these challenges,
distributed algorithms are difficult to comprehend and its
implementations are often non-trivial. Moreover, these algo-
rithms target different classes of problems such as consensus,
synchronization, discovery, fault-tolerance, performance and
correctness. To observe the behavior of a distributed algorithm
in action one could use a simulation environment or real time
observation on a set of actual distributed systems. Network
simulators can be used to implement and test existing or new
algorithms in a controlled environment at a lower expense both
in terms of time and money.

This section elicits the key challenges in the learning pro-
cess of distributed systems. It presents a motivating scenario
based upon which a set of challenges are documented that
subsequently drive our research on PADS.

A. Motivating Scenario

Figure 1 shows a motivating scenario illustrating a work-
flow that captures a typical approach to hands-on learning
of distributed systems algorithms. A number of challenges
manifested in this workflow and described below prompted
us to investigate solutions to address these challenges.

Fig. 1: Commonality and Variability in Algorithm Learning
Workflow

As shown in Figure 1, teaching and understanding of an
algorithm is typically accomplished by simulating the algo-
rithm in simulators that can be parametrized in a variety of
ways or by running the algorithm in testbed environments that
can be configured in multiple different ways. This apparently
simple teaching and learning workflow manifests a significant
amount of variability both within and across the stages of
the workflow. For example, many different network simulators
exist such as OMNET++ and ns-3. Similarly many different
network testbeds exist such as Emulab, PlanetLab and GENI.
Furthermore, the algorithm demonstration involves setting up
of different deployment configurations and network topology
setups. The algorithm under study may involve a variety of
network actors like mobile hosts, clients, servers, peers, elected



leader actor, and network coordinator. The underlying network
communication may involve different types of network inter-
faces either standalone or a combination of Bluetooth, WiFi,
ZigBee, Ethernet, USB, and serial interfaces. Moreover, the
target algorithm involves defining the network topology for
demonstrating the experiment and understanding the algorithm
details.

As an example, the process of understanding a peer to
peer file transfer algorithm such as BitTorrent will involve
a set of peers which communicate with each other. In this
scenario, there would be different network actors like Peers
and Trackers. These actors, which are specified by the algo-
rithm, may communicate via an Ethernet interface in a LAN
environment or over a wireless link. The network interface
could support variable transmission speeds. For demonstrating
the target algorithm, one also needs to represent the desired
network topology accounting for all the associated network
actors in the system thereby ensuring a faithful operation of
the algorithm. Based on all the configurations chosen in the
different stages of the workflow, a student must then proceed to
deploy the experiment in the deployment environment, which
can be either a simulator or a testbed.

B. Challenges and Requirements

As evident from the above scenario, any tool used in
teaching and learning distributed systems algorithms must
manage a large amount of variability across the different stages
as well as support the key commonalities. The commonalities
include the communication model, model of computation, and
the problem being solved, e.g., consensus, fault tolerance,
consistency, lookup, etc. We surmise that by capturing the
variability in the demonstration of the distributed algorithm
as a software product line would enable instructors to rapidly
provision a desired target algorithm for teaching, which in turn
will make it easier for students to learn it thereby saving time
in the experiment configuration and setup. To be an effective
teaching aid, however, the educational software product line
must address a number of challenges that are summarized
based on the above discussion of the variabilities:

Requirement 1→ Extensibility and Tool Reuse: The tool
should enable new algorithms to be added to the existing
collection. At the same time, any associated tool such as a
simulator or a testbed must be reusable in the context of newly
introduced algorithms. At the same time as new simulators,
experimental testbeds, and real-world scenarios emerge, the
framework should be extensible to include these new back
ends also.

Requirement 2→ Programming and Deployment het-
erogeneity: The framework may be tied to one programming
language but the student may not always be familiar with
that programming language. One should be able to program
the distributed systems algorithms in the language one is
familiar with and the SPL framework should support learning
of distributed algorithms by being implementation language-
agnostic. The deployment of algorithms can be made on
simulators, emulated testbeds or in a real world network

deployment. The SPL framework must allow users to define a
network topology of the target distributed algorithm and run
it on the desired deployment environment thus enabling the
possibility to seamlessly transition the code artifacts written
for a simulator to a real-world deployment or vice versa. There
should be clear separation of concerns between the definition
and deployment of network topology.

Requirement 3→ Integrated tool to rapidly create topol-
ogy and deploy experiment: It is a challenging task to use
existing tools to rapidly create a new network topology to
showcase the desired distributed systems algorithm and deploy
on single or multiple deployment environments all using a
single toolchain. It is hard to find such tools that can be used
to run experiments targeting multiple deployment frameworks
in an integrated tool suite. Such a requirement must be met.

IV. DESIGN AND IMPLEMENTATION OF
PADS

We now discuss the design and implementation of the
Playground of Algorithms for Distributed Systems (PADS),
which is an extensible framework that manages a software
product line of distributed algorithms used as an instructional
and learning aid for distributed systems. It uses MDE and SPL
techniques to integrate various distributed systems algorithms
for teaching, and cloud platforms for deployment of experi-
ments. We also show how PADS addresses the challenges and
requirements introduced in Section III.

A. Feature Model Representation

For a successful SPL for PADS we need to manage the com-
monalities and variabilities that are exhibited for realizing the
development, implementation and demonstration of distributed
algorithms. One of the well known approaches for representing
and managing these commonalities and variabilities is by the
means of feature models [18]. Feature models provide proven
techniques for improving reusability by specifying the reuse
rules.

The feature model for PADS must capture the common-
alities and different dimensions of variabilities that we high-
lighted in Section III. To that end we have defined a conceptual
feature model for PADS shown in Figure 2. The PADS
framework is represented as the root feature in the figure.
The Deployment and the Distributed-Algorithms
are the required features. Both these features are required
because we must have an algorithm that we want to test, and
it must have one of the many potential choices available for
deployment so that it can be tested.

These features are used to capture from the user the types
of target distributed systems algorithm to be evaluated and
where to perform the deployment of such algorithm.
The Deployment can be made on Simulator,
RealDeployment or an Emulator. OMNET++ and
NS-2 are types of Simulator feature. Emulator can
be Mininet or Qemu which are type of emulator tools
available for experimentation. RealDeployment can be
done on cloud based virtual machines(Cloud-VM) or on



Fig. 2: Feature Model Diagram of Playground of Algorithms for Distributed Systems (PADS) Framework

actual physical host machine(PhysicalHost) to conduct
experiments. The Distributed-Algorithms consists
of an extensible set of distributed algorithms, which in
turn can be categorized under different classes, such as
Coordination and Communication. Coordination
category of algorithms include Checkpointing,
Synchronization, State Machine Replication,
Consensus and Leader-Election. Peer to peer
(P2P), publish-subscribe (PUB/SUB) and client-
server (Client-Server) communication models are
a part of Communication models category. The
Distributed-Algorithms comprises one or more
kinds of Actors. Actors may be an abstract representation
of peer systems: like Server, Client, Leader, Tracker.

Other actors could represent an abstract notion of host
system, which could either be Mobile or Static host.
Some of these actors could represent network devices based
on the functionality it performs like Router, Hub, Switch.
Each of these Actor feature exhibits a set of network
and communications features. These features are represented
by the NetworkTypes feature. NetworkTypes could be
Wireless or Wired communication interface. WIFI, GSM,
Bluetooth are a type of Wireless communication inter-
face. Ethernet and Optical are type of Wired commu-
nication interfaces.

B. Realizing the PADS Feature Model using Model-driven
Engineering

The SPLs can be built using modular software. Changes in
the feature configurations can be mapped to the changes in the
software modules [19]. Design and development of modular
software framework is a challenging task. We use model-
driven engineering(MDE) techniques to codify the feature
model by mapping it to metamodel(s) of a domain-specific
modeling language and use generative technologies, which are
key artifacts of MDE, to automate the synthesis of product
variants of our PADS product line.

Our PADS framework is hosted on virtual machines de-
ployed on Openstack cloud, which is an open source cloud
computing infrastructure [20]. Cloud computing provides on-
demand access to large pool of shared resources for compute

intensive simulations and network experimentation. Students
and instructors access these virtual machines using remote
access client which could be either a web browser client or a
desktop client.

Figure 3 shows the overall process of creating a network
topology, selection of the distributed algorithm, intermediate
topology-specific code generation, and deployment of the algo-
rithm using our PADS framework. A student develops a model
of the experiment using our DSML. The user first selects
the algorithm. The algorithm selection can be done from one
of the pre-assembled algorithm modules provided as part of
the framework. The user then creates the network topology
for the desired test algorithm. The framework has built-in
constraint checker module which verifies if the test topology
is supported, if any violations are present it will notify the
user about the constraint invalidation. Next, to conduct the
experiment the user selects the deployment environment. Once
the experimental setup for a given algorithm and deployment
environment are modeled, a set of reusable model interpreters
are executed to automatically generate the deployment engine
specific glue-code and the execution artifacts.

Fig. 3: Model-based Process for Distributed Algorithm
Demonstration and Deployment

The Generic Modeling Environment (GME) [21] is used
to develop the DSML and generative capabilities for provi-
sioning and deployment management of the experiment. GME
provides an environment to define the syntax and semantics



of a DSML through metamodeling. Model interpreters can
be defined associated with the metamodels that can provide
additional semantics to the language which are not captured
in a visual form as well as provide the generative capabilities
needed for automation. The same GME environment can be
used to build model instances of a DSML. Thus, in our PADS
framework, an instructor can extend existing metamodels for
the collection of algorithms by providing a metamodel for
a new algorithm. The students use the PADS framework
to develop model instances and configure them for their
experimental scenarios.

Figures 4, 5 and 6 illustrate the metamodels used in
the framework. In these metamodels we have mapped the
features that we described in the feature model into concrete
metamodeling artifacts. The metamodel primarily comprises
first class entities, such as DistributedAlgorithm, Deployment,
and Main.

Fig. 4: Meta-Model of Playground of Algorithms for Dis-
tributed Systems (PADS) Framework

Next, we describe the different metamodel components in
the DSML and their responsibilities:

• Main: represents the main meta-model block of PADS
framework. This component aims to provide information
for all the framework components like: Deployment and
DistributedAlgorithm, which can be configured by users
depending on their experimental setup needs.

• DistributedAlgorithm: defines the distributed algorithms
supported by the framework. Users can then select
distributed algorithms contained within this model. As
can be seen in the Figure 4 the BitTorrentNetwork and
ClientServer algorithms are currently available with Dis-
tributedAlgorithm.

• Deployment: specifies the type of deployment environ-
ments available for testing the algorithms from Dis-
tributedAlgorithm. A user can create the network topol-
ogy and deploy the algorithm on the target environments
supported by Deployment. OMNET which is a simulation

Fig. 5: Meta-Model of Network Actors

Fig. 6: Meta-Model of DataRateChannel representing the
communication characteristics

environment and RealTestNetwork which is a real world
testbed are two such deployment environments.

• ActorNodes: these represent the type of network partic-
ipants/nodes that will be used in the algorithm. As seen
in Figure 5, these have an attribute field of PortNumber
which represents the network port of the node. Server,
Router, Peer, MobileHost, Tracker, Router are such Ac-
torNodes that can be utilized in distributed systems
algorithm as network actors.

• DataRateChannel: is used to define the network commu-
nication characteristics. Communication properties like
communication rate (Speed) and communication delay



(delay) can be specified for the network. Ethernetline and
Fiberline are two such communication media represented
in the Figure 6.

• DeploySimConnection: acts as a bridge between the test
algorithm and the deployment environment. Therefore the
DistributedAlgorithm defined by the user are connected
to the Deployment component via DeploySimConnection.

Our framework also leverages the GME’s OCL constraint
checker facility to detect design time configuration errors. If
there is any violation the constraint checker reports this to the
user.

In Figure 7, an example model of execution of a distributed
systems algorithm using the DSML is illustrated. In the figure,
DSML components such as TestModel (DistributedAlgo-
rithm) and Deployment (Deployment) are defined. In this
example model, we have selected OMNET++ as a target
deployment environment. Selection of desired distributed al-
gorithms is done as shown in the model in Figure 8. Here we
have selected a BitTorrent algorithm as an example.

Fig. 7: Model example

Fig. 8: Model of target algorithm selection

C. Meeting the Requirements

1) Extensibility and Tool Reuse: The framework supports
working with new distributed systems algorithms and
topologies. Using the MDE concept of metamodels,

we can specify the metamodels for new distributed
systems scheme. This also applies to new deployment
environments which the framework may need to support
in future. As shown in Figure 4, we can add new dis-
tributed systems algorithms and deployment schemes by
attaching the new meta-models to DistributedAlgorithm
and Deployment metamodels respectively. We also need
to specify the model interpreter and how to generate
the new configuration code for the new metamodels.
Thus this framework can be easily extended to support
new type of distributed systems and deployment envi-
ronments on top of the existing software tools.

2) Overcoming Programming and Deployment hetero-
geneity: We leverage MDE technique where in we
created a DSML which allows one to describe the type
of distributed systems one would like to experiment
with. Using the DSML the user can create a network
topology of the distributed systems and deploy it on
the target environment to which he is familiar with. For
example, if the user is familiar with the programming
construct of OMNET++ simulator, the framework will
autogenerate configuration files which are compatible
with OMNET++ environment. If an experiment needs
to be conducted on the cloud, the tool will generate the
files required to configure and deploy the experiments
on virtual machines in the cloud.

3) Integrated tool to rapidly create topology and deploy
experiment: This framework is designed to facilitate
users to use a single toolchain that can create and
deploy large distributed systems on different deployment
environments. It also lets a user reuse the same network
system topology and allows to target simultaneously
to multiple deployment environments. Also the auto-
generation code facility helps one to quickly configure
new network topology without manually writing the
network configuration code which can be both tedious
and error prone.

V. FRAMEWORK VALIDATION

In this section we evaluate PADS along three dimensions.
First, we show how PADS can be extended to include a new
algorithm. Second, we show PADS’ effectiveness in terms
of effort saved on the part of the instructor and learner in
using the framework. Note that we have not yet conducted
any user studies since the framework was developed after our
experience with the course. We expect to use the framework
in future offerings of the course and report on the learning
outcomes in a future publication. Third, based on the case
study used in the first two evaluations, we elicit how the three
key requirements from Section III are met by PADS.

A. Extensibility of PADS

To showcase the extensibility of our framework we have
created an application based on a peer to peer (P2P) distributed
system that uses the BitTorrent algorithm [22]. The BitTorrent



system is a P2P distributed system that facilitates downloading
of files. This is achieved by splitting a file into large number
of chunks, which may be spread across a number of peers.
A peer interested in downloading a specific file can download
the file by downloading different chunks simultaneously from
peers who have those chunks. The BitTorrent algorithm has an
elaborate scheme involving a Tracker node which keeps track
of peers in the system and what chunks they hold.

Thus, in the BitTorrent system, there are two kinds of
network actors: a tracker and peer. As mentioned above, the
Tracker is a centralized entity responsible for keeping track of
the location of file copies in the P2P network. It also keeps
track of available file chunks with the participatory peers in
the network. Typically peers that are interested in downloading
a certain file query the tracker for the availability of the file.
Once the peer has the information required to download the file
chunks from the tracker, it downloads the file chunks directly
from the respective peers without the tracker acting as a broker.
Moreover, peers that are interested in sharing the file register
themselves with the tracker so that other peers interested in
downloading that file can find them.

To enable the BitTorrent systems logic in our framework the
instructor can first specify a meta-model as shown in Figure 9.
It consists of a peer, router and tracker network actors in
this BitTorrentNetwork model. The proxy elements in the
figure basically refer to the references to their target models.
We also see different kinds of DataRateChannel connections
depending on the type of link shared among the network
actors.

Fig. 9: Meta-Model of BitTorrent Algorithm

Figure 10 provides more details about how the specific
connections such as BTPeerRouterConnection, BTRouterCon-
nection and BTTrackerConnection are derived from the base
DataRateChannel model. The instructor can specify the OCL
constraints for the metamodel which ensures that there is
at least one peer and only one tracker in the deployment
experiment as shown in the Listing 1. Once the metamodel
is specified for the BitTorrent system, the instructor can make
the the BitTorrent network available to students for modeling

and experimentation.

Fig. 10: Metamodel of BitTorrent Network Connection

Listing 1: Using OCL to Detect Conflicts in BitTorrent System
Modelling
−− o n E r r o r : ” Network Topology needs

a t l e a s t one Pee r and T r a c k e r ”
s e l f . a toms ( ” Pee r ” ) −> s i z e >1
s e l f . a toms ( ” T r a c k e r ” ) −> s i z e =1

Next we show the steps that the student will perform after
the instructor has newly introduced the BitTorrent System for
experimentation.

• Using the graphical modeling feature the student can
choose to first draw the connection between Dis-
tributedAlgorithm and Deployment as shown earlier in
Figure 7.

• From the DistributedAlgorithm the student can select the
BitTorrentNetwork model as shown in Figure 8.

• Next the student can configure the experimental topology
using the Tracker, Peer and Router from the selection
window. One such possible topology is shown in Fig-
ure 11.

Fig. 11: Model of BitTorrent Algorithm

• The student must also specify where he/she would like
to deploy the experiment. Using the Deployment model
the student selects the target deployment.



• The student can run the OCL constraint checker to
validate if there are any constraint violation in their model
selection.

• Once the experimental model is specified, the GME
interpreter is invoked which generates the intermediate
code for the network topology which is specific to the
deployment environment. Figure12 shows the screenshot
of the source code section auto generated.

Fig. 12: Screenshot of the section of code generated by GME
interpreter

• Further, the GME interpreter calls the deployment run-
time engine and passes the generated code and executes
the experimental topology in the target environment. The
student can then analyze the results and performance of
the distributed systems using the tools provided by the
deployment environment.

B. Effectiveness of PADS

In this section we describe our evaluation of Distributed
Systems Playground. We focus on how the framework alle-
viates the error prone and tedious effort of manually writing
the network topology and deployment configuration code. We
then summarize how our approach addresses the challenges
discussed in the section III

To evaluate how the modeling approach helps in simpli-
fying manual configuration gluecode of the network actors
used in our Distributed Systems Playground, a topology of
a distributed systems similar to Figure 11 is constructed. It
consists of varying number of routers and peers. For each such
configuration we record the number of lines autogenerated by
the GME interpreter. As can be seen from the Table I, the
number of generated lines increases with an increase in the
number of network actors. One can observe the effectiveness
of such autogeneration feature specifically in the context of
large distributed systems topology, without which one would
need to configure all the connection links and endpoints
manually. Manual configuration of such large system can be

very tedious and error prone. The Distributed Systems Play-
ground automatically generates all the configuration gluecode
which is deployment environment specific, thereby simplifying
modeling significantly

TABLE I: Increase in the number of generated code lines with
increase in number of components

Router Peers Total Lines
5 4 85

10 103 190
20 203 299

C. Meeting the Requirements

Based on our BitTorrent case study from above, we now
qualitatively describe how PADS meets the challenges and
requirements discussed in Section III.

1) Extensibility and Tool Reuse: Section V-A demon-
strated how an instructor can use the existing PADS
framework and introduce a new algorithm. It also ex-
plains how a student can then model the system and use
all existing back ends provided by PADS.

2) Overcoming Programming and Deployment hetero-
geneity: Sections V-A and V-B show how a student can
model an algorithm and with a click of a button, most
artifacts needed to experiment with the algorithm are
generated thereby relieving the student from having to
deal with any programming and deployment heterogene-
ity.

3) Integrated tool to rapidly create topology and deploy
experiment: Sections V-A and V-B also illustrate how
easy it is to extend the framework and rapidly create
the experimental scenarios and test them in a variety of
deployment scenarios.

VI. CONCLUDING REMARKS

This paper motivated the need for an integrated teaching
framework used for demonstrating distributed systems algo-
rithms. The genesis of this work stemmed from our experience
as an instructor and student of a Distributed Systems course
where a number of different algorithms were studied. We
were interested in developing a learning aid to overcome the
challenges we faced in the course. Our software engineering
background helped us develop an intuition behind our solution
approach. We realized that the problem space can be viewed
as a software product line because of the commonalities and
variabilities demonstrated by the problem space and how
individual algorithms and their testing environment can be
viewed as individual variants or members of a product line.

To realize these ideas, we decided to utilize a model-driven
engineering approach comprising metamodeling and genera-
tive techniques. Modeling based on visual artifacts provides
intuitive means to model a system using artifacts that are closer
to the domain in which the system is being modeled while
generative mechanisms automate many of the mundane and



repetitive manual tasks. To that end, the initial prototyping of
the ideas were accomplished as a class project for an MDE
course. Our cloud hosted solution called the Playground of
Algorithms for Distributed Systems (PADS) is a continuation
of these original efforts.

PADS provides intuitive, domain-specific modeling ab-
stractions to capture various distributed systems algorithms’
components and requirements. The playground resolves the
potential conflicts faced by student learners/researchers, such
as programming these algorithms in simulators they may not
be familiar with, or implementing them in specific program-
ming languages and deploying them on real testbeds. The
playground provides fundamental distributed systems building
blocks that a student can use to model their system, and
automate the tasks of generating simulation or real-world code,
deploy these on the platforms, visualize the resulting behavior
and provide feedback to the user so they can continue to iterate
through this learning cycle. The playground has an extensible
interface and as such has lot of capabilities for adding and
supporting both various distributed algorithms and deployment
plans.

We evaluated the capabilities of PADS using a representative
case study of BitTorrent, which is a peer to peer file sharing
distributed system. Our evaluation indicates that it prevents
designers from making errors in the distributed systems al-
gorithms test-bed setup and significantly simplifies system
deployment by automating the generation of platform-specific
metadata that faithfully implements the necessary execution
dependency.

Our work on PADS is by no means complete; rather it
provides some evidence of developing intuitive and effective
learning aids for distributed systems. Our future work will
involve the following dimensions of work:

• Extensibility: In its current form, the suite of algo-
rithms we currently have in our PADS framework is
rather limited (e.g., BitTorrent, Chord, Paxos). We aim
to improve the collection by adding several new algo-
rithms. Moreover, currently our communication model is
restricted to TCP/IP level communication. Many higher
level protocols and systems hide these low-level details
and instead offer other means to represent the end points.
We plan to identify this variability in the problem space.

• Reuse: We do not aim to reinvent the wheel. Many
other frameworks exist that tend to provide specialized
capabilities. For example, frameworks such as Ptolemy
provide effective mechanisms to model different models
of computation. We will seek solutions to integrate such
frameworks within PADS.

• User studies: Utilizing the framework in an actual course
and evaluating its effectiveness in impacting the learning
outcomes is a significantly important activity. We plan to
undertake this activity when we offer this course again in
Spring 2016 and beyond. By opening up the framework
for downloads, we also hope that others would utilize its
capabilities and report on its effectiveness.
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