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Abstract

Modern Web servers need to process multiple requests
concurrently in order to fulfill the workload demands ex-
pected of them. Concurrency can be implemented in a
Web server using synchronous and asynchronous mecha-
nisms offered by the underlying operating system. Com-
pared to the synchronous mechanisms, the asynchronous
mechanisms are attractive because they provide the benefit
of concurrency while alleviating much of the overhead and
complexity of multi-threading. The Proactor pattern in mid-
dleware, which effectively encapsulates the asynchronous
mechanisms supported by the operating system, can be used
to implement a high performance Web server.

The performance expectations imposed on a Web server
make it necessary to analyze its performance prior to de-
ployment. Design-time performance analysis, conducted
earlier in the life cycle, can also enable informed configura-
tion and provisioning choices. A model-based approach can
be used for such early, design-time performance analysis.
In this paper, we describe a performance analysis method-
ology for an asynchronous Web server implemented using
the Proactor pattern. We present a performance model of
the Web server and implement the model using CSIM, which
is a general purpose language for building simulation mod-
els. We demonstrate the use of the model to guide key provi-
sioning and configuration decisions using several examples.

1 Introduction and motivation

Within a relatively short duration since its advent, the
World Wide Web (WWW) has become an important source
of information and services in our society. In the initial
years, users were attracted to the WWW primarily due to
the convenience, flexibility, ease of use and low costs asso-
ciated with the use of these services. However, as the preva-

lence of WWW in business and critical domains grows, it is
becoming evident that WWW services must be offered with
superior performance in order to retain existing users and
attract new ones [23].

A central component of any WWW service is a Web
server. Modern Web servers have to process millions of
client requests on a daily basis. In order to fulfill such
high workload demands, it is inevitable that modern Web
servers be equipped with the capability to process multiple
requests concurrently. Concurrency may be implemented in
a Web server using the synchronous or asynchronous capa-
bilities provided by the underlying operating system. Al-
though multi-thread and multi-process Web server architec-
tures [13] which rely on the synchronous capabilities are
commonly used, the asynchronous mechanisms may be at-
tractive compared to the synchronous mechanisms because
they provide the benefit of concurrency while alleviating
much of the overhead and complexity of multi-threading.
The Proactor pattern in middleware [18], which effectively
encapsulates the asynchronous mechanisms supported by
the operating system, can be used to implement a high per-
formance Web server.

Due to the high performance expectations associated
with a WWW service, it is imperative that service perfor-
mance be analyzed prior to deployment. Although perfor-
mance can be measured once the service is implemented, it
is often too late and too expensive to take corrective action
at this stage if it is discovered that the target performance
cannot be met. It is thus cost-effective and advantageous
to conduct performance analysis earlier in the life cycle, at
design time. Model-based analysis is an attractive approach
to conduct such design-time performance analysis.

In this paper we describe a model-based approach for the
design-time performance analysis of a Web server which
implements concurrent processing capabilities using the
asynchronous mechanisms encapsulated in the Proactor pat-
tern. We capture the characteristics of the Proactor pat-
tern that are relevant from a performance perspective into



a queuing model. The queuing model is implemented using
CSIM [19], which is a general purpose language used to
build simulation models. We illustrate how the model im-
plemented in CSIM can be used to guide configuration and
provisioning decisions with several examples.

The balance of the paper is organized as follows: Sec-
tion 2 provides an overview of the Proactor pattern along
with a discussion of its advantages. Section 3 describes
the performance analysis methodology. Section 4 illustrates
the potential of the methodology with examples. Section 5
summarizes the related research. Section 6 offers conclud-
ing remarks and directions for future research.

2 Proactor pattern

In this section we provide an overview of the Proactor
pattern. We also discuss the advantages of implementing a
Web server using the Proactor pattern.

2.1 Proactor description

The Proactor pattern is a software architectural pattern
for event handling, which is used to describe how to initi-
ate, receive, demultiplex, dispatch and process events in net-
work systems [18]. It has been primarily developed to sup-
port many simultaneous user requests. Its main purpose is
to improve the performance of an event-driven application
that receives and processes multiple events asynchronously.
Conceptually, this pattern simplifies asynchronous opera-
tions by integrating the demultiplexing of completion events
and the dispatching of the corresponding event handlers.
The general idea of the Proactor pattern is to wait for an
event to occur and then initiate the appropriate operation.
Once the event starts execution, other events may be initi-
ated and processed. When the event finishes execution, the
Proactor demultiplexes the completion event and dispatches
it to an appropriate event handler for subsequent processing
of the results of the operation.

To implement the Proactor pattern (considering the ar-
rivals of events, each of which requires a single operation
to complete), when an event arrives, the application’s en-
tity called an initiator starts an appropriate asynchronous
operation and registers the event with an associated event
handler and event dispatcher with the Asynchronous Oper-
ation Processor (AOP). Then an initiator invokes the regis-
tered asynchronous operation on the AOP. An asynchronous
operation is executed without blocking its callers thread of
control. As a result, the caller can perform other operations.
That is, the operation and the initiator can run independently
and the initiator can invoke a new asynchronous operation
while others continue executing concurrently. If an opera-
tion must wait for the occurrence of an event, such as a con-
nection request generated by a remote application, its exe-

cution will be deferred until the event arrives. In this paper,
however, we consider only those cases where operations are
processed independently and do not wait for the occurrence
of other events. Once the operation is complete, AOP re-
trieves information corresponding to an event handler and a
dispatcher, and generates a completion event containing the
results of the asynchronous operation. The Proactor then
inserts the completion event along with the retrieved infor-
mation into the completion event queue. It then removes
the completion event from the completion event queue and
demultiplexes and dispatches the event to the event handler
associated with the asynchronous operation. Subsequently,
the event handler processes the results of the asynchronous
operation and calls back to the application.

2.2 Proactor advantages

There are several advantages to implementing a Web
server using the Proactor pattern [18]. These include:

• The Proactor pattern executes each asynchronous op-
eration independently, thus each service that a Web
server provides can be processed separately. Accord-
ingly, a particular demultiplexer and a dispatcher used
for each completion event associated with an asyn-
chronous operation can be implemented, managed,
and treated independently. As a consequence, the im-
plementation of the Web server is decomposed and de-
coupled, and hence is more manageable.

• Structuring the demultiplexing of completion events
and the dispatching of their corresponding completion
simplifies the development process of a Web server,
which normally requires asynchronous operations.

• Once an asynchronous operation is initiated, the thread
that initiated the operation becomes available to ser-
vice additional requests.

• Since the asynchronous operations are processed con-
currently and the completion events associated with
the operations are demultiplexed and dispatched asyn-
chronously, the operations are executed without wait-
ing for the completion of the previous ones. Multiple
client requests can be processed simultaneously, which
may improve server performance.

3 Performance analysis methodology

In this section we discuss the performance analysis
methodology for a Web server implemented using the
Proactor pattern. We first discuss the characteristics of the
Web server, followed by the desired performance metrics.
Subsequently, we describe the performance model of the
Web server.
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3.1 Web server characteristics

A Web server employs the request/reply paradigm, using
the HTTP protocol to communicate between itself and the
clients (Web browsers). The clients’ requests are specified
in an HTTP message, which may also include the operation
to be performed and the location where the operation should
be performed. Though a variety of request operations may
be defined, we consider a scenario where the Web server
provides only two types of service, namely a read service
(service to read a file) and write service (service to write a
file). As soon as a read request arrives at the Web server,
a read operation is assigned, initiated, and executed, while
a write operation is assigned, initiated, and executed when
a write request is received. The completion of these opera-
tions will be handled in a common queue regardless of the
request type. The completion events are then demultiplexed
by the Proactor and dispatched to an appropriate completion
event handler. The completion events are further processed
by the completion event handlers. For instance, if the client
requests for a particular file, an HTTP handler can be used
as an initiator to initiate a read operation. After the read op-
eration is complete, an HTTP handler, which now acts as a
completion event handler, further processes the request by
issuing a write operation to transfer a file to the client.

From the point of view of performance analysis, the Web
server has the following characteristics:

• The server receives two types of client requests,
namely, read and write requests.

• To service these requests, appropriate asynchronous
operations are assigned and executed with a pool of
handlers for each request type registered with the
Proactor. If an incoming request finds that all the event
handlers for that request type are busy, the request is
rejected. In this paper, to distinguish between handlers
that handle asynchronous operations and handlers that
deal with completion operations, the former are simply
referred to as event handlers, while the latter are called
completion event handlers.

• The completion operations of both types of requests,
referred to as completion events, are queued in a single
completion event queue.

• The completion events are dequeued by the Proactor in
a first-in, first-out manner.

• Each request type has a separate queue holding com-
pletion event operations which are processed by the
completion event handler registered with the Proactor.

• Each request type has a single completion event han-
dler to process the completion events.

3.2 Performance metrics

In this section we present the performance metrics for
each request type along with their practical relevance.

• Expected throughput:It is an estimate of the rate at
which the requests are processed by the Web server.
The expected throughputs of read and write requests
are denotedTr andTw respectively.

• Expected busy handlers:It is an estimate of the aver-
age number of busy event handlers. This can be used
to guide provisioning decisions regarding the sizes of
the event handler pools for a given load. The expected
number of busy handlers for read and write requests
are denotedBr andBw respectively.

• Expected queue lengths:It is an estimate of the av-
erage number of completion events in the common
and individual completion event queues. The expected
queue lengths of the common and the separate comple-
tion queues are denotedQ, Qr andQw respectively.

• Expected probability of request loss:It is the average
probability that an incoming request will be discarded
because an event handler is unavailable. The average
loss probabilities of the read and write requests are de-
notedLr andLw respectively.

3.3 Performance model

In this section we describe the performance model of a
Proactor-based asynchronous Web server. We assume that
the read and write requests arrive according to a Poisson
distribution with ratesλr andλw. The sizes of the event
handler pools are denotedNr andNw. The service times of
the asynchronous operations follow an exponential distribu-
tion with ratesµr andµw. The capacities of the common
and the separate completion queues are denotedM , Mr and
Mw. The demultiplexing rate of the Proactor is denotedκ.
The service times of the completion event handlers are ex-
ponentially distributed with ratesγr andγw.

Figure 1 shows the queuing model of a Proactor-based
Web server. The event handler pools which handle asyn-
chronous operations for read and write requests are mod-
eled as multi-server processing stations without queuing.
These servers feed completion events to the completion
event queue and they block if there is no spare capacity
in the completion queue. The operation of demultiplexing
the completion events is conducted by a server, which ac-
cepts the completion events from the completion queue and
dispatches them to the read or write completion queues de-
pending on whether the completion event was a result of
a read or a write request. Because the scheduling strategy
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Figure 1. Performance model of an asynchronous Web server

used for demultiplexing is first-in, first-out, the demultiplex-
ing operation blocks if the completion queue to which the
present event is to be dispatched is full. For example, if
the current completion event to be demultiplexed is of type
read and the read completion queue hasMr events, the de-
multiplexing operation is blocked. The completion event
queue of each event type feeds the corresponding comple-
tion handler which completes the processing. The through-
put of each request type is the effective rate at which the
corresponding completion event handlers process the com-
pletion events. The performance model was implemented
using CSIM [19], which is a general purpose language to
implement simulation models.

4 Illustrative examples

In this section we illustrate the potential of the perfor-
mance model described in Section 3.3 to guide the selec-
tion of configuration options using several examples. The
parameter settings used here are solely for the sake of illus-
tration. To use the methodology in a practical setting, the
parameters specific to the given infrastructure need to be
determined. We note that although in this paper exponential
distributions are used to model the arrival and service times,
the model implementation in CSIM is flexible and power-
ful and can consider many other distributions including the
Pareto which is often used to model these processes [14].

The sizes of the event handler pools and the capacities
of the common and the separate completion queues are the
configuration parameters of the Proactor-based Web server.
We designed three experiments to assess the impact of each

one of these configuration parameters on the performance
metrics. For these three experiments, the arrival and
service rates were set as follows:λr = λw = 1.00/sec.,
µr = µw = 2.00/sec.,κ = 2.0/sec. andγr = γw = 2.0/sec.
For all the experiments, the confidence intervals are within
5% of the mean and are not shown to avoid visual clutter.

Experiment I:
We study the impact of event handler pool sizes, namely,
Nr andNw on the performance metrics. We varyNr and
Nw from 1 to 5 in steps of1. The size of the common
completion queue is set to10 and the sizes of the individual
completion queues are set to5. The performance metrics as
a function of the sizes of the event handler pools are shown
in Figure 2. Since the arrival, service and configuration
parameters of both the request types are identical, their
performance estimates are also the same and hence metrics
for only one request type are shown. The top left plot in
Figure 2 indicates that the throughput increases signifi-
cantly when the event handler pool size increases from1

to 2. This increase in throughput is also accompanied by
a similar significant drop in the loss probability as shown
in the bottom left plot in the figure. For each subsequent
increment in the event handler pool size after two, the rate
of increase in the throughput reduces, and similarly the rate
at which the loss probability decreases is reduced. This
occurs because as the event handler pool size increases,
incoming service requests are processed faster, which
increases the rate at which the completion events are fed
into the common completion queue. The demultiplexing
operation, which is performed by just one downstream
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Figure 2. Performance metrics as a function of event handler pool sizes

demultiplexer then becomes the bottleneck which causes
an increase in the length of the common completion queue
as shown in the bottom right plot in the figure. The top
right plot of the figure shows that for the given level of
load, the average number of busy handlers is very low. In
fact, when the handler pool size is5, on an average only
1.6 handlers are busy. A larger event handler pool size
will invariably require higher hardware resources leading
to higher costs. These costs must be offset by a justifiable
improvement in the performance. The plots in Figure 2
illustrate that increasing the handler pool size beyond three
offers diminishing returns since it provides only a marginal
improvement in the performance. Thus, for the load level
considered in this experiment, a pool size of three may
offer an acceptable tradeoff between cost and performance.

Experiment II:
In this scenario we assess the impact of the size of the
common completion queueM on the performance metrics.
We vary the completion queue size from2 to 10 in steps
of 2. The sizes of the event handler pools are set to5

and the sizes of the individual completion queues are
also set to5. The performance metrics as a function of
common completion queue size are shown in Figure 3.
The metrics for only one request type are shown similar
to Experiment I. The top right plot in the figure indicates

that the average number of busy event handlers drops
with the size of the common completion queue. When
the common completion queue is full, the event handlers
cannot feed the completion events into the queue, causing
them to block, which increases the average time each
event handler is busy. This causes a subsequent increase
in the average number of busy event handlers. Because
the likelihood of the completion queue being full increases
as the size decreases, the average number of busy event
handlers increases as the queue size decreases. The loss
probability in the bottom left plot (throughput shown in the
top left plot) shows only a marginal decrease (increase) as a
function of the completion queue size. This occurs because
the small completion queue size is offset by an increase in
the service time of the event handlers. Thus, effectively the
event handler pool serves as a queue and compensates for
the small completion queue size.

Experiment III:
Through the third experiment, we seek to assess the im-
pact of the sizes of separate completion queues on the per-
formance metrics. We vary the completion queue sizes,
namely,Mr andMw, from 1 to 5 in steps of1. The sizes
of the event handler pools are set to5 and the size of the
common completion queue is set to10. The performance
metrics (for one request type) as a function of the separate
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Figure 3. Performance metrics as a function of queue size (common queue)

completion queue sizes are shown in Figure 4. The through-
put plot (top left) in Figure 4 indicates a high increase when
the sizes of the individual completion queues increase from
1 to 2. When the sizes of the individual queues are low,
the demultiplexing blocks due to the lack of buffer space
in the downstream queues. This leads to lower throughput,
higher loss probability, higher number of busy servers and
higher queue length of the common queue, as shown in the
plots. Increasing the queue size beyond three, however, of-
fers only marginal performance improvement.

The results of the above three experiments lead us to the
following conclusions. First, for a given load, increasing
the sizes of the event handler pools and the queues beyond a
certain threshold offers a very small performance improve-
ment. Second, for a given set of configuration options, the
demultiplexing operation constitutes a performance bottle-
neck and increasing the demultiplexing rate could thus pro-
vide significant performance benefits. The impact of the
demultiplexing rate on the performance could be easily ana-
lyzed using the model. The above experiments demonstrate
the use of the queuing model to guide the selection of con-
figuration options. It is often the case that at design time
exact estimates of the arrival and the service rates are not
available. The performance model could also be used to an-
alyze the sensitivity of the performance to the variations in
the arrival and the service rates.

5 Related research

Research efforts in two areas, namely, performance anal-
ysis of middleware services and patterns and performance
analysis of Web servers, are relevant to the present work.

Performance analysis of middleware services and
patterns can be broadly classified into two, namely,
measurement-based and model-based. The measurement-
based approach comprises of testing specific implementa-
tions with benchmarking suite(s) and then measuring the
relevant metrics [4, 10, 16, 22]. The model-based ap-
proach consists of building and solving a model using an-
alytical/numerical or simulation methods to obtain perfor-
mance estimates. Ramaniet al. [17] present a framework
for performability analysis of messaging systems in mid-
dleware. Aldredet al. [1] develop Colored Petri Net (CPN)
models for different types of coupling between the appli-
cation components and with the underlying middleware.
Kahkipuro [11] propose a multi-layer performance model-
ing framework based on UML and queuing networks for
CORBA-based systems. The methodology, however, is for
generic CORBA-based client/server systems rather than for
systems built using design patterns.

With the growing complexity of software systems and
increasing pressure to reduce the time to market, there is
a significant push towards composing large systems us-

6



Figure 4. Performance metrics as a function of queue size (separate queues)

ing reusable building blocks or patterns [3, 18]. Perfor-
mance analysis of such a composed system requires mod-
els of the individual building blocks and their composition.
Our previous work has developed an analytical model of
the Reactor pattern [5]. In this paper we have developed
a performance model of the Proactor pattern. Although
the model was developed to analyze the performance of an
asynchronous Web server, it is generic and could be used
for the performance analysis of any Proactor-based system.

Web server performance analysis can also be broadly
classified into measurement-based and model-based ap-
proaches. The former approach measures the server perfor-
mance using benchmarks [8, 7, 9]. Many model-based ap-
proaches use queuing networks to analyze performance [20,
6, 2, 15, 21, 12]. Most of these techniques however, are for
Web servers which use synchronous mechanisms for con-
currency, whereas the model presented in this paper is ap-
plicable for the analysis of an asynchronous Web server.

6 Conclusions and future research

In this paper we presented a model-based approach
for the design-time performance analysis of a Web server
which implements concurrent processing capabilities using
the asynchronous mechanisms encapsulated in the Proactor
pattern. We represented the characteristics of the Proactor

pattern that are relevant from a performance perspective in
the form of a queuing model, which was then implemented
using CSIM [19]. We illustrated how the simulation
implemented in CSIM can be used to guide provisioning
decisions with several examples. Our future research
consists of developing an analytical/numerical approach
for the performance analysis of the Proactor. Developing
model decomposition strategies to alleviate the issue of
large models is also a topic of future research.
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