
Cloud Computing for Cyber Physical Systems:
Reliability and Security Challenges and Solutions

Kyoungho An, Subhav Pradhan, Faruk Caglar, Prithviraj Patil, Shashank Shekhar, Aniruddha Gokhale
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235, USA
Email: {kyoungho.an, subhav.m.pradhan, faruk.caglar, prithviraj.p.patil, shashank.shekhar, a.gokhale}@vanderbilt.edu

Abstract—Contemporary cloud computing solutions that have
proven beneficial in supporting the needs of enterprise appli-
cations do not readily carry over to supporting cyber physical
system workflows. For example, existing cloud platforms do not
yet provide the stringent assurances on multiple simultaneous
quality of service (QoS) properties expected by CPS applications
including timeliness, reliability and security. This position pa-
per outlines key challenges we have discovered and promising
solutions we are designing to address these needs.

Index Terms—cloud computing, CPS, fault tolerance, security,
resource management.

I. PROBLEM STATEMENT

Cloud computing is a large-scale distributed computing
paradigm based on the principles of utility computing that
offers various resources such as CPU and storage, systems
software, and applications as services over the Internet [1].
Traditionally although the cloud has been used to support
enterprise applications, lately a class of systems called cyber-
physical systems that are mission-critical, tightly integrate
physics and the cyber artifacts, and require stringent quality
of service (QoS) assurances are moving towards being hosted
in the cloud [2].

This section describes the key challenges in supporting
CPS in the cloud and surveys related literature. By no means
are these the only challenges, however, we list only the key
challenges we have identified based on limitations in prior
work and those that we are addressing as part of our ongoing
research.

A. Real-time and Scalable Resource Monitoring

Context and Problem: Providing scalable and QoS-enabled
(i.e., real-time and reliable) monitoring of resources (both
virtual and physical) in the cloud is essential to supporting
application QoS properties in the cloud as well as identifying
security threats. Existing approaches to resource monitoring
in the cloud are based on web interfaces, such as RESTful
APIs and SOAP, which cannot provide real-time information
efficiently and scalably because of a lack of support for fine-
grained and differentiated monitoring capabilities. Moreover,
their implementation overhead results in a distinct loss in per-
formance, incurs latency jitter, and degrades reliable delivery
of time-sensitive information.
Related Research: Contemporary compute clusters and grids
have provided special capabilities to monitor the distributed
systems via frameworks, such as Ganglia [3] and Nagios [4].

Additionally, NWS (Network Weather Service) [5] provides a
forecasting service for dynamically changing performance of
distributed resources. However, these frameworks are struc-
tured to monitor physical resources only, and not a mix of
virtualized and physical resources. Even though some of these
tools have been enhanced to work in the cloud, e.g., virtual
machine monitoring in Nagios1 and customized scripts used in
Ganglia, they still do not focus on the timeliness and reliability
of the dissemination of monitored data that are essential to
support DRE systems in the cloud.

In recent works, [6] presents a virtual resource monitoring
model while [7] discusses cloud monitoring architecture for
private clouds. Although these prior works describe cloud
monitoring systems and architectures, they do not provide
experimental performance results of the models, such as
overhead and response time. Consequently, we are unable to
determine their relevance to host mission-critical applications
in the Cloud. Latency results using RESTful services are
described in [8], however, they are not able to support diverse
and differentiated service levels for cloud clients.
Unresolved Challenges in Prior Work: Prior research illus-
trates a general lack of resource monitoring capability in
the cloud infrastructure that is suitable for hosting mission-
critical, real-time applications. For example, the performance
of RESTful services described in [8] and [9] do not show
promise in using RESTful APIs for the fine-grained and timely
monitoring, and dissemination of resource usage information
needed to support mission-critical applications in the cloud.
Thus, we observe a significant limitation in today’s state-of-
the-art for cloud resource monitoring, which is the problem
we address in this paper.

B. Time-critical Applications in Data Center Networks

Context and Problem: At the heart of a cloud platform are
data centers that provide a large collection of networked
resources to host the applications. Assuring timeliness of
network flows in data center networks is crucial to complete
requested application tasks within expected deadlines. Prior
efforts to satisfy deadlines of network flows in data centers
can be categorized into two classes: (1) packet scheduling
using the Earliest Deadline First (EDF) scheduling policy,
and (2) bandwidth reservations [10]. EDF scheduling and rate

1http://people.redhat.com/~rjones/nagios-virt



reservations approaches perform relatively well towards data
center networks for time-critical flows, but still incur two
challenges. First, deadlines in DRE systems are associated
with applications flows, not packets. EDF is packet based, and
works on per-hop packet deadlines while applications have
end-to-end flow deadlines. Second, data centers today have a
diverse mix of flows with widely varying deadlines.
Related Research: Network protocols for data centers is an
active area of research. For example, DCTCP (Data Center
TCP), which is TCP modified for data center networks [11].
DCTCP realizes better throughput than TCP, reducing queuing
delays and congestive packet drops via Explicit Congestion
Notification (ECN) to notify feedback to the hosts. However,
DCTCP does not work well for deadline sensitive applications
as deadlines of network flows are not regarded in the protocol.

Hence, Wilson et al. [12] suggest D3, a deadline-aware
control protocol customized for the data center environment,
as a solution to achieve real-time data center networks. D3

strives to maximize the number of flows that satisfy their
deadlines, accommodating burst application workflows, and
amplifying network throughput for flows without deadlines.
The key insight guiding D3 design is the following: given a
flow’s size and deadline, the rate needed to satisfy the flow
deadline are determined.

Although D3 enhances DCTCP by providing deadline-
awareness feature, there are two main drawbacks to D3.
First, 24% to 33% of priority of requests are inverted which
increases deadline miss ratio. Second, customized hardware
is required to use D3. This shortcoming makes its use hard
with commodity TCP and switching hardware used in data
centers without using hardware for D3. Therefore, D2TCP
is suggested to overcome these flaws [13]. D2TCP adopts a
reactive approach for bandwidth allocation. Additionally, ECN
and deadlines are used to control congestion. D2TCP reduces
deadline miss ratio of DCTCP and D3 by 75% and 50%,
respectively.
Unresolved Challenges in Prior Work: The recent research
on data center networks has been addressing throughput and
deadline issues through adjusting protocols between physical
server machines and network switches. However, as cloud
data center employs virtualization technology, network I/O
resources in a single physical machine need to be scheduled
properly to realize high throughput and low latency because
several virtual machines share I/O resources of a physical
machine. Moreover, since a DRE system is likely to be
distributed across multiple virtual machines, such assurances
must be provided holistically.

C. Real-time Scheduling in Hypervisors

Context and Problem: Resource virtualization is a key tech-
nology that improves the utilization of resources in the data
center and provides isolation among applications. Virtualiza-
tion allows physical machine resources to be shared among
different virtual machines that have their own operating sys-
tems by using a software layer called a hypervisor or a virtual
machine monitor (VMM). The hypervisor (VMM) virtualizes

the physical resources such as CPUs, memory, networks, and
other devices for guest domains, and the guest domains are
isolated and scheduled by the hypervisor. As tasks from virtual
CPUs are scheduled by the hypervisor, execution and comple-
tion time of applications in guest domains are dependent on a
scheduling policy selected by the hypervisor, which may not
be suitable for real-time tasks.
Related Research: Prior research [14], [15], [16] has fo-
cused on achieving real-time computation in virtualized en-
vironments. In [14], the Xen hypervisor’s credit scheduler is
modified to support real-time tasks. In the modified scheduler,
deadlines, called laxity in the paper, of domains are used to
insert real-time tasks into the scheduler’s run queue and the
tasks can be scheduled in desired deadlines. To determine the
positions of the real-time tasks in the run queue, the expected
wait times of all the tasks in the queue need to be maintained,
and it is calculated by the amount of CPU time utilized in
previous run cycles gained from virtual CPUs. The modified
scheduler, however, does not change the credit distribution
mechanism of Xen’s credit scheduler to prevent starvation.

RT-Xen [16] implements four fixed priority real-time sched-
ulers (Deferrable Server, Periodic Server, Polling Server, and
Sporadic Server) in Xen. Experimental results comparing real-
time schedulers to the traditional Xen schedulers in terms of
overhead and deadline miss ratio are presented in the paper.
In the experiments, scheduling overhead including context
switch of the suggested schedulers (4 fixed priority real-time
schedulers) are about 0.21% which is acceptable for soft
real-time systems, but still worse than the general schedulers
(credit and SEDF schedulers) which are less than 0.1%. In
contrast, deadline ratios of the suggested schedulers are better
in both normal and overloaded situations. Specifically, the
credit scheduler performs poorly in terms of capacity, missing
almost all deadlines even under normal load, while the SEDF
scheduler maintains a good capacity with the normal case but
comparatively worse than the fixed priority schedulers in most
overloaded cases.
Unresolved Challenges in Prior Work: Similar to the short-
comings in prior work on data center networks, related re-
search in real-time scheduling in hypervisors also need to
examine performance of network intensive applications with
hypervisors where real-time scheduling policies are applied.

D. High Availability and Tunable Adaptive Consistency

Context and Problem: Hardware failure in data centers occur
frequently, which requires elegant mechanisms to survive
the failure to deliver high availability of services demanded
by mission critical systems. Special-purpose hardware or re-
engineering software to include complicated recovery logic
is generally used for unceasing services, but they are ex-
pensive and not trivial to be accomplished for the different
services with different QoS requirements deployed in the
cloud. Therefore, mechanisms involving efficiently replicating
virtual machines are needed within the cloud infrastructure in
a general and transparent way.



A commercial product for fail-over protection against virtual
machine failures in virtualized environment already exists [17]
to provide highly available services in the cloud. However,
in the currently available products, only the results written
to disk prior to the crash are preserved without the state
of CPU and main memory [18]. Consequently, the entire
active states, network connections of applications are lost and
initiated again. Moreover, recovering a virtual machine does
not appear instantly due to the virtual machine’s booting time
on another host.
Related Research: The solutions presented in [18] address
the challenge by making checkpoints of a running virtual
machine very frequently, typically tens of times per second.
Likewise, [19] presents Remus, a software system that pro-
vides high availability via efficient virtual machine replications
with extending the technique to make snapshots used for
live migrations. Remus achieves it by disseminating frequent
checkpoints of an active virtual machine to a backup physical
host. On the backup, the image of virtual machine is resident
in memory and may immediately begin execution if failure
of the active system is detected. Because the backup is only
periodically consistent with the primary, all network output
must be buffered until state is synchronized on the backup.
When a consistent image of the active virtual machine has been
received, the network buffer is released to external clients to
achieve strong consistency between active and host machines.
The virtual machine on the backup host is not actually
executed until a failure occurs. Therefore, this consumes a
relatively small amount of the backup host’s resources.

Kemari [20] is another approach which takes advantage of
both lock-stepping and continuous check-pointing approaches.
It synchronizes primary and secondary VMs just before the
primary VM has to send an event to devices such as storage
and networks. At this point, the primary VM pauses and
Kemari updates the state of secondary VM to the current
state of primary VM. Thus, VMs are synchronized with less
complexity compared to lock-stepping and output latency of
continuous check-pointing due to external buffering mecha-
nism is also avoided.

Another important work on high availability is Hy-
draVM [21]. It is storage based, memory efficient high
availability solution which does not need a passive memory
reservation for backups. It uses incremental check-pointing
like Remus, but it maintains a complete recent image of VM in
shared storage instead of memory replication. Thus, it reduces
hardware costs for providing high availability support and
provides greater flexibility as recovery can happen on any
physical host having access to shared storage.
Unresolved Challenges in Prior Work: The solutions sug-
gested above employ the active replication approach rather
than passive primary-backup replication. In systems that use
primary-backup replication for fault-tolerance, maintaining
system availability after failures refers not just to ensuring
the liveness of application functionality at a backup replica but
also to ensuring that the state of the promoted backup matches
that of the failed primary. DRE systems may demand differ-

ent levels of availability and state consistency requirements.
Consequently, as single scheme as proposed in prior research
will not suffice. New algorithms and mechanisms are needed
that can tune the replica consistency algorithms at runtime
in accordance with the workloads, resource availabilities, and
QoS requirements. Additionally, in the current state-of-the-art,
there does not exist a flexible and practical framework, which
provides both high availability and acceptable response times
to DRE applications while optimizing resource consumption
in data centers.

II. ONGOING RESEARCH

In current work we have addressed two of the four chal-
lenges. For example, in [22] we presented a scalable cloud
resource monitoring system called SQRT-C that leverages the
OMG’s Data Distribution Service (DDS) publish/subscribe
technology for efficient resource monitoring and and support
QoS. We observed through experimental results that DDS
in the cloud as a monitoring service is more appropriate
for hosting real-time applications that need fine-grained auto-
scaling decisions than widely used technologies like RESTful
services. There were a few challenges we uncovered in using
DDS for a cloud monitoring service because in the cloud
it is preferred that resource information be obtained as a
service rather than directly by accessing physical machines
or virtual machines by clients. Also, proper configurations
of DDS services according to service levels are not trivial
to be defined by clients. The Monitoring Manager in SQRT-
C is hence indispensable as a public access point and an
orchestrator to furnish services appropriately and automate
most of the activities.

In another recent work [23], we presented our preliminary
work on a high availability framework we are developing.
The paper presented the architectural details of a framework
for a fault-tolerant cloud computing infrastructure that can
automatically deploy replicas of VMs according to flexible
algorithms defined by users. Finding an optimal placement
of VM replicas in data centers is an important problem
to be resolved because it determines the QoS delivered to
performance-sensitive applications running in the cloud. To
that end the paper presented an instance of an online VM
replica placement algorithm we have formulated as an ILP
problem.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[2] T. M. Takai, “Cloud Computing Strategy,” Department of Defense
Office of the Chief Information Officer, Tech. Rep., Jul. 2012. [Online].
Available: http://www.defense.gov/news/DoDCloudComputingStrategy.
pdf

[3] M. Massie, B. Chun, and D. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience,” Parallel Computing,
vol. 30, no. 7, pp. 817–840, 2004.

[4] W. Barth, Nagios: System and network monitoring. No Starch Pr, 2008.



[5] R. Wolski, N. Spring, and J. Hayes, “The network weather service: a
distributed resource performance forecasting service for metacomput-
ing,” Future Generation Computer Systems, vol. 15, no. 5, pp. 757–768,
1999.

[6] F. Han, J. Peng, W. Zhang, Q. Li, J. Li, Q. Jiang, and Q. Yuan,
“Virtual resource monitoring in cloud computing,” Journal of Shanghai
University (English Edition), vol. 15, no. 5, pp. 381–385, 2011.

[7] S. De Chaves, R. Uriarte, and C. Westphall, “Toward an architecture for
monitoring private clouds,” Communications Magazine, IEEE, vol. 49,
no. 12, pp. 130–137, 2011.

[8] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (IOT), 2010. IEEE, 2010,
pp. 1–8.

[9] J. Meng, S. Mei, and Z. Yan, “Restful web services: A solution for
distributed data integration,” in Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on. IEEE,
2009, pp. 1–4.

[10] C. Aras, J. Kurose, D. Reeves, and H. Schulzrinne, “Real-time commu-
nication in packet-switched networks,” Proceedings of the IEEE, vol. 82,
no. 1, pp. 122–139, 1994.

[11] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, M. Sridharan, C. Faster, and D. Maltz, “Dctcp: Efficient
packet transport for the commoditized data center,” in Proc. SIGCOMM,
2010.

[12] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proceedings of
the ACM SIGCOMM 2011 conference on SIGCOMM. ACM, 2011, pp.
50–61.

[13] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer
communication. ACM, 2012, pp. 115–126.

[14] M. Lee, A. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik, “Sup-
porting soft real-time tasks in the xen hypervisor,” in ACM SIGPLAN

Notices, vol. 45, no. 7. ACM, 2010, pp. 97–108.
[15] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “Vm-based real-

time services for automotive control applications,” in Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE
16th International Conference on. IEEE, 2010, pp. 218–223.

[16] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: towards real-time hyper-
visor scheduling in xen,” in Proceedings of the ninth ACM international
conference on Embedded software. ACM, 2011, pp. 39–48.

[17] Vmware high availability. [Online]. Available: http://www.vmware.com/
products/high-availability/

[18] D. Petrovic, “Virtual machine replication.”
[19] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield, “Remus: High availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation. USENIX Association,
2008, pp. 161–174.

[20] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual machine
synchronization for fault tolerance,” In USENIX 2008 Poster Session,
2008.

[21] K.-Y. Hou, M. Uysal, A. Merchant, K. G. Shin, and S. Singhal,
“Hydravm: Low-cost, transparent high availability for virtual machines,”
HP Laboratories, Tech. Rep., 2011.

[22] K. An, S. Pradhan, F. Caglar, and A. Gokhale, “A Publish/Subscribe
Middleware for Dependable and Real-time Resource Monitoring in
the Cloud,” in To Appear in the Secure and Dependable Middleware
for Cloud Monitoring and Management (SDMCMM ’12) Workshop at
ACM/USENIX/IFIP Middleware 2012. Montreal, Canada: ACM, Dec.
2012.

[23] K. An, F. Caglar, S. Shekhar, and A. Gokhale, “Automated Placement
of Virtual Machine Replicas to Support Reliable Distributed Real-time
and Embedded Systems in the Cloud,” in To Appear in the International
Workshop on Real-time and Distributed Computing in Emerging Appli-
cations (REACTION), 33rd IEEE Real-time Systems Symposium (RTSS
’12). San Juan, Puerto Rico, USA: IEEE, Dec. 2012.


