
STRATUM: A BigData-as-a-Service for Lifecycle
Management of IoT Analytics Applications

Anirban Bhattacharjee, Yogesh Barve, Shweta Khare,
Shunxing Bao, Zhuangwei Kang and Aniruddha Gokhale

EECS Dept, Vanderbilt University, Nashville, TN, USA
{anirban.bhattacharjee; yogesh.d.barve; shweta.p.khare;

shunxing.bao; zhuangwei.kang; a.gokhale}@Vanderbilt.Edu

Thomas Damiano
Lockheed Martin Advanced Technology Labs

Cherry Hill, NJ, USA
thomas.a.damiano@lmco.com

Abstract—Smart Internet of Things (IoT) applications require
real-time and robust predictive analytics, which are based on Ma-
chine Learning (ML) models. Building ML models from Big Data
is not only time-consuming, but developers often lack the needed
expertise for feature engineering, parameter tuning, and model
selection. The proliferation of ML libraries and frameworks, data
ingestion tools, stream and batch processing engines, visualization
techniques, and the range of available hardware platforms
further exacerbates the system design, rapid development, and
deployment problems. Finally, resource constraints of IoT require
that the execution of the analytics engine be distributed across the
cloud-edge spectrum. To overcome these daunting challenges, we
present Stratum, which is an event-driven Big Data-as-a-Service
offering for IoT analytics lifecycle management. Stratum provides
users with an intuitive, declarative mechanism based on the
principles of model-driven engineering to specify the application
and infrastructure requirements. It automates the deployment
via generative programming principles. This paper highlights the
problems that Stratum resolves, demonstrating its capabilities
using real-world case studies.

Index Terms—AI/ML platform, Big Data Analytics, IoT,
Cloud/Edge Resource Management, Deployment, Automation,
Domain-Specific Modeling.

I. INTRODUCTION

The Internet of Things (IoT)-based systems generate high
volumes of data at high velocity, which must be analyzed
to derive valuable insights and make informed decisions for
a variety of application domains, e.g., video analytics, pre-
dictive analytics, recommendation systems rely on the live
and in-depth analysis of the incoming data streams as well
as the historical data [1]. In this context, the development,
deployment, and execution lifecycle of IoT analytics tasks are
significantly complicated. First, it entails developing one or
more artificial intelligence (AI)/machine learning (ML) models
using large training data sets. This step requires the developers
to be cognizant of the range of feasible ML models (e.g.,
linear models, decision trees or deep neural networks), and
be able to select from among the plethora of ML libraries
and frameworks. Second, once the ML models are trained
and ready for serving the incoming requests, they must be
rapidly deployed and integrated with the analytics pipeline on
the target hardware infrastructure.

Although the ML model development can be carried out in
resource-rich clouds, the resource-constrained nature of IoT

systems and the real-time requirements of the analytics tasks
preclude the movement of large amounts of data from the
edge to the cloud for prediction. Instead, effective resource
management decisions are needed to partition and distribute
the trained ML models across the cloud-edge spectrum [2].

Unfortunately, IoT analytics application developers often
do not possess the expertise required in handling all the
challenging lifecycle activities of IoT analytics. Thus, there is
a compelling need to ease the ML model development process
and relieve the developer from the responsibility of having to
determine the placement of analytics application components,
monitoring their resource usage, and controlling different data
processing tasks across the cloud-edge spectrum [3].

Model-driven Engineering (MDE) [4], specifically domain-
specific modeling languages (DSMLs) and generative pro-
gramming [5] are known to provide intuitive abstractions to
users relieving them from error-prone and repetitive tasks
while serverless computing relieves the user from runtime
infrastructure management issues. In this paper, we exploit the
benefits of MDE and serverless computing, and present a Big
Data-as-a-Service called Stratum for IoT analytics lifecycle
management. Our preliminary work on Stratrum [6] presented
only the vision; this paper delves into the design and evaluates
Stratum’s capabilities using real-world use cases.

Organization of the Paper: The rest of the paper is
organized as follows: Section II presents a survey of existing
solutions in the literature and compares them to Stratum;
Section III presents the background and problem formulation;
Section IV presents the design of Stratum; Section V evaluates
Stratum in the context of a prototypical case study; and finally,
Section VI presents concluding remarks.

II. RELATED WORK

In this work, we compare and contrast Stratum with relevant
state of the art solutions for end-to-end lifecycle management
of big data analytics tasks.

Ease.ml [7] is a training platform providing automatic model
selection using a declarative programming approach. Ease.ml
introduces a resource scheduler to manage the deployment
of the training job in a shared cluster environment used by
multiple users at once. Similarly, TFX [8] is another ML
platform at Google, which provides tools for data preparation

and model inference serving. Michelangelo [9] is an ML-as-
a-service framework deployed at Uber that facilitates building
and deploying ML models in the cluster environment. Their
DSL enables users to define the ML tasks to be used for both
training and inference ML jobs. However, the DSL restricts
the users from choosing only the algorithms that are supported
by the platform, thus limiting users from experimenting using
different ML algorithms and frameworks.

To the best of our knowledge, Michelangelo, and Alchemist
are proprietary tools Commercial services such as Amazon
SageMaker, Microsoft Azure service, and IBM’s Watson
Studio support both ML training and deployment pipelines,
but are constrained to their underlying proprietary runtime
infrastructures, which can potentially result in vendor lock-
in. In contrast, Stratum framework offers the user to choose
their ML framework generating ML code for those runtimes.
Moreover, the addition of new ML libraries and frameworks
are relatively straight-forward in Stratum.

MLFlow [10] is an Python based open source ML platform
project that covers end to end lifecycle phases of ML de-
velopment and deployment. ML.NET [11] is an open source
ML pipeline framework by Microsoft. ML models can be
integrated directly into application codebase natively. Other
efforts such as Weka, Apache Mahout, Scikit-Learn provides
declarative programming means to design and create ML
pipelines and models. However, these platforms do not provide
the means for model versioning and model deployment.

In comparison, Stratum provides a unified framework that
supports design-time tools and deployment tools for model
construction and deployment. It handles deployment across a
heterogeneous set of platform spanning from cloud to edge
computing platforms. Stratum also provides version support
while creating designing models using a visual drag and
drop GUI interface. Stratum leverages MDE technologies that
facilitate creating custom DSMLs, automated code generation
facility, and orchestration of models to be deployed on the
target platforms. We believe these end-to-end capabilities are
lacking in the current state of the art integrated tool suites
which Stratum addresses.

III. PROBLEM FORMULATION

In this section, we use a motivating scenario to highlight the
challenges and derive the solution requirements for Stratum.

A. Motivating Case Study Eliciting Key Challenges

Consider an IoT use case of an automated toll booth which
takes images of a vehicle’s license plate to charge toll [12].
This application will involve an image recognition service
comprising predictive analytics so that it can automatically
detect the license plate of the entering or exiting car from
a toll plaza. The overall system will thus involve a camera
that takes a picture of the license plate, analyzes the image to
identify the license plate and accordingly charge the associated
account with the appropriate toll.

Challenge 1: Model Development: Building predictive
analytics requires developing AI/ML learning models based

on historical datasets, which is a challenging task and requires
domain expertise. The developer is faced with a diverse set
of ML capabilities including classification, regression, recom-
mendation (ALS), clustering etc. that are provided by different
libraries and frameworks, such as Scikit-learn, Spark MLlib,
etc. Developing highly accurate models using feature engineer-
ing, model selection, hyperparameter tuning in those platforms
is hard. Moreover, to speed up the training process, it needs
to be driven by high-performance computing using GPU and
CPU, and needs to be distributed, if possible. Unfortunately,
all ML frameworks and algorithms do not support distributed
model training. Finally, the model development platforms must
be able to rapidly select the best models by evaluating a large
number of models in a distributed manner.

Challenge 2: Model Deployment: For IoT applications,
such as the toll booth use case or for automation assistants
like Google Home that use natural language inference models,
the device-to-cloud data round trip latency is considerable and
hence processing at the edge is attractive as it reduces latency
and makes connected applications more responsive. Thus, after
the AI/ML model is trained, it needs to be rapidly pushed
to IoT devices for big data inference. The cloud resources
involve a variety of servers including energy efficient multi-
core processors and GPGPUs (e.g., NVidia TX1), or it can be
a private cloud with limited processing power. Thus, effective
selection of resources is necessary.

Challenge 3: Data Movement and Management: Edge
devices send the filtered data to the cloud using one of
many communication protocols, e.g., HTTP, MQTT and data
ingestion services such as Apache Kafka, Apache Nifi, or
Amazon Kinesis must be programmed to listen to incoming
data streams and be able to retain the data in databases or
data lakes. Once the data is ingested in the server, different
subscribers may be interested in the outcome so they can run
separate live analytics on the window of streaming data and
visualize the live patterns [6]. Developers are unlikely to be
experts in all of these technologies and protocols to deploy
and autoscale the complete data analytics pipeline.

Challenge 4: Determining the Right Hardware: Batch
processing frameworks such as Apache Hadoop or Spark
can run deep analytics by aggregating data from multiple
data sources. These frameworks can integrate the trained ML
model for their diagnostic or predictive analytics as required.
The challenges lie in determining the right hardware to use
from the wide variety of device classes, choosing deployment
options (on-premise or over cloud), and configuring the de-
ployment platform for the business application to deliver real
value. Moreover, all the performance metrics of the hardware
components need to be monitored for reactive and proactive
decision making to auto-scale the application.

B. Solution Requirements

Based on the elicited challenges from Section III-A, we
present the solution requirements that Stratum must meet.

Requirement 1: Flexible ML Service Development and En-
capsulation: To address Challenges 1 and 4 , there is a need

for an AI/ML model building framework that can decouple the
ML algorithms from existing ML frameworks and generate
code for the underlying framework from the users’ high-level
ML model. The model should be encapsulated, containerized
and exposed via REST APIs.

Requirement 2: Automated Deployment of Application
Components in Heterogeneous Environment: To address
Challenges 2, and 4, we need a capability that reduces de-
veloper effort. The developer should specify only minimal
information using a self-service framework, and the system
then automate the deployment and data movement challenges.

Requirement 3: Performance Monitoring and Intelligent
Resource Allocation: To address Challenges 3, and 4, the
solution must integrate data and storage services, schedule
the workload on container deployments that are orchestrated
by an execution engine with continuous monitoring of system
metrics, and integrate a performance data collection strategy.
Using these metrics, it must be able to allocate resources
effectively for the specific tasks dynamically and proactively.

IV. DESIGN AND IMPLEMENTATION OF STRATUM

This section describes the design of Stratum and shows
how it meets the requirements of Section III-B. Stratum is
realized around the core concepts of Model-Driven Engineer-
ing (MDE) and generative programming. Stratum provides a
graphical interface to compose and deploy the ML pipeline
using higher-level intuitive abstractions. The abstract syntax
and semantics of the DSML are captured concretely in mul-
tiple metamodels. The user-defined specifications are used to
automate the entire ML workflow for the user. The Stratum
DSML and its underlying metamodels, constraint checkers,
and code generative capabilities are built on top of WebGME
modeling environment [13].1 Figure 1 illustrates the overall
usage workflow of the Stratum model-driven framework to
realize a big data IoT analytics application.

User-specific
Abstract Models

User

Model
Interpreter

Code
Generator

Knowledge
Base

Constraint
Checker

Application-
specific

Templates

Code
Executor

Fig. 1: Stratum Workflow to Realize an IoT Analytics Pipeline

A. Addressing Requirement 1: Development Kit for AI/ML
Model Development

Stratum comprises a “Development Kit” for ML service
development and encapsulation. It is an integrated model-
driven environment aid to build ML pipelines by abstracting
data preprocessing strategies, ML algorithms that execute on
existing ML frameworks, and evaluation strategies.

1Due to space limitations, we do not show details of the metamodels.

1) Overview of the Development Kit: Stratum’s devel-
opment kit provides a standard data exchange format that
supports read and write capabilities in different data formats
from different data sources. It also provides unified data
access across different machine learning frameworks such as
Scikit-learn, SparkMLlib, and TensorFlow. The integrated ML
pipeline allows retrieval (input), and manipulation of data
stored in cloud storage such as Amazon S3, or Azure DataLake
Store, or locally or in a scalable datastore (e.g., HDFS-based)
via RESTful and other microservice interfaces (e.g., Data
Preprocessing, Stream Analytics).

We integrated Jupyter Notebook and Apache Zeppelin
(notebook-based environment) to provide data-scientists the
ability to train their models interactively. The data-scientist
can also directly generate Python code, if needed. The steps
in modeling and generative capabilities of Stratum are shown
in Figure 1. The Deployment Platform can be a distributed
system or standalone hardware. The deployment of the ma-
chine learning pipeline on the target machine for training is
handled by Stratum as described in Section IV-B.

2) Metamodel for Machine Learning Algorithms: We cap-
ture various facets of the application and target machine
hardware specifications in the metamodel. We captured the
specifications for a diverse set of ML algorithms including
classification (e.g., logistic regression, naive Bayes), regres-
sion, decision trees, random forests, recommendation (ALS),
clustering (K-means, GMMs), and many others in the Stratum
metamodel. Using this metamodel, the data-scientist can drag
relevant machine learning blocks, and define all the parameters
such as fit_intercept, normalize, n_jobs for Scikit-learn linear
regression block or specify the type of layers such as dense,
CNN, RNN for deep learning.

3) Model Evaluation and Flexible ML Service Encapsu-
lation: Users can express pipelines as a directed acyclic
graph (DAG) where each node represents a task such as
data preprocessing, training based on different ML techniques,
and deployment to evaluate the model. The hyperparameter
tuning methods such as Grid Search, Bayesian optimization,
Gradient-based Optimization, Reinforcement Learning based
optimization, etc are an advanced mechanism to evaluate the
model, and this is provided as placeholders in Stratum.

The ML algorithms are encapsulated in Linux containers
and exposed using endpoints. The DSML encapsulates the ML
algorithms in Linux containers to support parallel execution of
the pipeline based on the availability of the resources. After
training the model, we evaluate the model based on different
scoring methods such as accuracy, f1 score, precision, r2 score
etc. based on the user’s choice. Based on the evaluation crite-
ria, the best ML model is selected and saved for prediction.

B. Addressing Requirement 2: Automated Deployment of Ap-
plication Components on Heterogeneous Resources

Requirement 2 on automating the deployment on potentially
heterogeneous resources is also addressed using Stratum’s
DSML and its generative capabilities. We captured the infras-
tructure specification details of the data analytics pipeline in

the metamodel [14]. The user models the deployment scenario
by using the intuitive abstractions using the Stratum GUI.
Then, the Stratum model interpreter verifies the correctness
of the abstract deployment model. A code generator within
the Stratum DSML generates the Infrastructure-as-Code (IAC)
solution by parsing the user-defined model and deploying it on
the target machine using a template-based transformation and
knowledge base. Finally, the IAC solution is executed by the
code executor to deploy the desired data analytics architecture
on the target machines across the cloud-edge spectrum as
shown in Figure 1. The deployment is accomplished via the
Stratum MDE approach without writing a single line of code.

1) Metamodel for Data Ingestion Frameworks: The meta-
model for data ingestion tools (e.g., RabbitMQ, Kafka) capture
the details of services for interacting with the Data Reposito-
ries and other microservices using RESTful APIs. The user
must select the specific data ingestion tool to deploy it on
the target platform. We also verify the correctness of the
user model based on the semantics defined in the metamodel.
For example, if the user selects the AzureEventHubs as there
desired Data Ingestion Tool, then Amazon AWS or OpenStack
or bare metal cannot be its target deployment platform.

2) Metamodel for Data Analytics Applications: The live or
batch analytics frameworks such as Hadoop, Spark, Flink etc.
need to be deployed on the target distributed systems. More-
over, the trained ML model needs to be integrated with these
data analytics frameworks. So to deploy the production-ready
machine-learning pipeline, we captured the specifications for
the ML libraries and frameworks such as Tensorflow, scikit
learn along with live and batch analytics frameworks.

3) Additional Metamodels: Stratum also provides meta-
models to capture the heterogeneity in resources (e.g., Rasp-
berry Pi, NVIDIA Jetson TX1, bare metal server machines,
etc), different operating systems and versions, as well as data
stores (e.g., AmazonS3, HDFS, AzureBlobStorage, Ceph).

C. Addressing Requirement 3: Framework for Performance
Monitoring and Intelligent Resource Management

Once the trained models are deployed and start executing,
runtime resource management is required. Stratum supports
autoscaling and load-balancing using the serverless paradigm.

1) Performance Monitoring: It is critical to monitor the
system metrics to understand the runtime performance of the
infrastructure and the application. Stratum leverages our recent
work on FECBench [15] to collect different system metrics,
such as GPU-specific metrics such as power consumption,
GPU utilization, temperature, and host-specific metrics such
as CPU, disk, network, low-level cache utilization, memory
bandwidth utilization, using CollectD at different granularities
from a distributed set of resources and collect these informa-
tion at a centralized server using InfluxDB .

2) Resource Management: Stratum contains a Resource
Manager to maintain the QoS of the application components
by scaling and migrating the application components. The
latency of predictive analytics applications is the summation of
round trip latency (lrt) of data and the ML model execution

time. We profile the ML model execution times on various
data and target hardware before actually deploying the model,
and consider its 95th percentile execution latency as estimated
execution time (exechw_id,mlmodel).

Migration of ML Prediction Tasks. Before considering edge
devices as a potential node for executing predictive analytics,
we check if it has sufficient memory to keep the model in
memory. If the edge node can host the ML model, we profile
the ML model on the edge devices. We also profile 95th

percentile network latency (lrt) between edge and cloud node.
We consider the migration of the ML model in the edge if
execedge,mlmodel < execcloud,mlmodel + lrt.

Auto-scaling of Application using Serverless Paradigm:
Let χ denote the constraint specified by the Service Level
Objective (SLO) of the ML model execution latency, and let
exechw_id,mlmodel,p denote 95th percentile execution latency
on p CPU cores. For each server configuration, we can com-
pute the number of requests n_req it can serve for a prediction
service while meeting the SLOs using p CPU cores. By moni-
toring the total number of incoming requests, we calculated the
total number of machines (total_incomingrequests/nreq)
required to handle the highly-parallel workloads is. We cal-
culated how many more machines to provision based on the
difference between the current state and desired state. The
Stratum Resource Manager deploys the ML model on these
machines and starts the prediction service automatically to
handle dynamic workload proactively [16].

D. Discussion and Current Limitations

Currently Stratum is capable of generating only Python
based code, and only Scikit-learn and TensorFlow are inte-
grated. However, other languages such as Java, C++ can easily
be plugged into Stratum, and other cloud libraries such as
Amazon SageMaker, AzureML can be integrated with Stratum
very easily. The design of Stratum uses agile methodologies
so that it can be extended with ease. We also incorporated the
automatic version control in Stratum framework so that we can
recall a specific version of the framework later if required.

V. EVALUATION OF STRATUM

In this section we evaluate the simplicity, rapid deployment,
and resource management capabilities of Stratum, along with
the accessibility, scalability, and efficiency of the ML model
development framework of Stratum.

A. Evaluating the Rapid Model Development Framework

We show how Stratum’s MDE capabilities eases ML devel-
opement. Figure 2b shows how the ML developer can build
their ML pipeline using the visual interface of Stratum. In
the left-hand pane (box1), all the building blocks are defined
using the metamodel. The ML model developer has to drag and
drop the required blocks in the design pane (box 2) and must
connect the blocks to define the ML pipeline including pre-
processing, ML algorithm selection, hyperparameter tuning,
model evaluation, and best model selection criteria. All the
attributes of the selected ML algorithms such as max_depth,

hostedOn

connectsTo

RaspberryPi

hostedOn

Edge Analytics
Application

hostedOn

connectsTo
Consumer

Component

hostedOn

connectsTo MySQL
Database

connectsTo

hostedOnconnectsTo SPARK MLlib
ApplicationhostedOn

Server

(a)

Random	Forest
Regression

Principal
Component
Regression

Input
DataPreprocessing

Ridge	
Regression

Evaluate	Model

Best
Model

Linear
Regression

Support	Vector
Regression

2

4

1

3

(b)
Fig. 2: (a) Example of Big Data Analytics System Deployment Model across Cloud/Edge Spectrum. (b) Usability of the ML model development Framework. Box 1

shows the available selection of blocks available to create ML pipeline as shown in Box 2. Attributes can be set using attribute selection panel in Box 3. Box 4 shows

model evaluation.

criteria, etc need to be specified by the user (or can take default
values) from the right pane (box 3). The name of the attributes
are dependent on ML algorithms, and this aspect is captured
by reverse engineering. The ML execution framework needs
to be mentioned to bind the workflow with a specific library or
framework such as Scikit-learn, Spark MLlib, or Tensorflow.

All the ML algorithms are encapsulated in Docker con-
tainers, and different algorithms can be executed in parallel
to speed up the training and tuning phases. Similarly, in the
input building block, the source data type, and path needs to be
mentioned, and also data source type, e.g., csv, text is required.
In the data preprocessing block, we only support simple data
cleaning methods, such as filtering and normalization. In the
evaluation building block, the method of evaluation needs to
be specified, and based on that, Stratum selects the best model.

The model transformer can distribute different jobs with
different ML algorithms over a cluster of connected machines
and aids the developer to select the best model or ensemble of
models based on the user’s choice of evaluation methods. A
sample ROC curve shown in box 4 depicts that the ensemble
of two ML methods has the highest accuracy in the training
phase on a sample dataset, and it should be selected as the
best model. Thus, Stratum helps to build the ML model using
MDE techniques, and the ML developer does not need to write
any code on supported ML frameworks. The framework can
also generate the code in the notebook environment for the
expert user, where they can tune the ML model as required.

B. Evaluation of Rapid Application prototyping Framework

As depicted in Figure 2a, using the visual interface of
Stratum the application developer can develop the data an-
alytics application. As described in our previous work [14],
the business application workflow is designed by dragging
and connecting the specific building blocks for application
components and infrastructure components. As shown in Fig-
ure 1, by parsing the user-defined abstract model tree, the
Stratum DSML creates the deployable model (Ansible-specific
in our case), and using NodeJS based plugin to execute

the deployable model and create the infrastructure of the
application as described in Section. IV-B.

Figure 2a illustrates that using the Stratum modeling en-
vironment, edge analytics application components can be de-
ployed on Raspberry Pi machine, and data ingestion tool, e.g.,
Kafka can be deployed on cloud VMs, which is maintained by
OpenStack. The data consumer application component can be
similarly deployed on OpenStack VM, which will consume the
data from Kafka in a batch or stream and store it in MySQL
database, which is deployed on top of the bare-metal server.
Then, Spark with the MLlib library can be deployed and
configured on OpenStack VMs, and a visualization engine like
Kibana can be integrated with the workflow. RESTful APIs
connect all the application components, so the ML model can
easily be pushed into predictive analytics application during
management phase. We developed a sample big data use case
scenario using Stratum for sentiment analysis of Twitter data
stream using Figure 2a deployment model.

C. Performance Monitoring on Heterogeneous Hardware

As described in Section IV-C1, to describe the monitoring
capabilities of Stratum, we set up the training experiments
on NVIDIA GeForce Titan X Pascal GPU machine integrated
with Intel(R) Xeon(R) CPU E5-2620 v4. For prediction ex-
periments, we set up a cloud cluster of Intel(R) Xeon(R)
CPU E5-2620 v4 machines, Dell OptiPlex 3020 machines, and
MinnowBoard with 64-bit Intel Atom devices as edge devices.

Deep Learning Model Training for Image Classification:
During the training phase of a deep learning model for image
classification using CIFAR10 dataset, we monitor the accuracy
and loss of the model along with the GPU performance metric
such as GPU utilization, GPU memory utilization per core, the
power drawn by GPU cores in watt, and the temperature of
the GPU machine in Celsius as shown in Figure 3.

Prediction using Pretrained Image Classification model:
Stratum enables us to monitor the performance of the ML
containers along with host machines. We collect various met-
rics, which includes execution time, CPU, memory, network,

Fig. 3: GPU performance metrics for Deep Learning Training

disk utilization along with L2, L3 cache bandwidth etc.
Figure 4 illustrates a glimpse of collected performance metrics
during the prediction serving phase. Figure 4(a) shows the
execution latency of InceptionResnetV2 and Xception mod-
els on different ML containers with variable configurations,
which is hosted on different bare-metal machines. Figure 4(b)
shows CPU utilization of the ML containers from the host
machines,and Figure 4(c) shows memory utilization of ML
containers (in MB) from host machines.

a

b

c

Fig. 4: (a) Latency of InceptionResnetV2 and Xception prediction services, (b)

Host CPU utilization, (c) Host Memory utilization

D. Resource Management

As mentioned in Section. IV-C2, we profile the prediction
service on the specific hardware before deploying it on the
cluster of machines. Based on the number of incoming re-
quests (dynamic workload), we scale up and down the number
of ML model containers to guarantee the pre-defined QoS
in an event-driven manner using the Docker swarm cluster
management tool, as demonstrated in our recent work [16].

VI. CONCLUSIONS

As IoT-based analytics becomes increasingly sophisticated,
developers are finding themselves lacking expertise in a wide
range of skills while also being overwhelmed by the plethora
of frameworks, libraries, programming languages, and hard-
ware available to design and deploy analytics applications. To
address these highly practical challenges, this paper presents
Stratum, which is a novel Big Data-as-a-Service for the
lifecycle management of IoT analytics applications. Stratum

provides a graphical tool that allows a user to graphically
compose the ML development and deployment pipeline using
its supported features, and Its DSML realizes the model and
generate the code to automate and orchestrate the application
lifecycle management across the cloud-edge spectrum.

The Stratum framework capabilities are available for down-
load from github.com/doc-vu/Stratum.

ACKNOWLEDGMENT

This work was supported in part by AFOSR DDDAS FA9550-18-1-0126
and AFRL/Lockheed Martin StreamlinedML program. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of AFOSR or AFRL.

REFERENCES

[1] E. Blasch, S. Ravela, and A. Aved, Handbook of dynamic data driven
applications systems. Springer, 2018.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[3] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale,
“Indices: exploiting edge resources for performance-aware cloud-hosted
services,” in 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). IEEE, 2017, pp. 75–80.

[4] D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25–31, 2006.

[5] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Reading, MA: Addison-Wesley, 2000.

[6] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and
T. Damiano, “Stratum: A serverless framework for the lifecycle
management of machine learning-based data analytics tasks,” in
2019 USENIX Conference on Operational Machine Learning (OpML
19). Santa Clara, CA: USENIX Association, May 2019, pp.
59–61. [Online]. Available: https://www.usenix.org/conference/opml19/
presentation/bhattacharjee

[7] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease. ml: Towards multi-
tenant resource sharing for machine learning workloads,” Proceedings
of the VLDB Endowment, vol. 11, no. 5, pp. 607–620, 2018.

[8] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc et al., “Tfx: A tensorflow-based
production-scale machine learning platform,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 1387–1395.

[9] (2017) Meet michelangelo: Uber’s machine learning platform. [Online].
Available: https://eng.uber.com/michelangelo/

[10] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Kon-
winski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accel-
erating the machine learning lifecycle with mlflow,” Data Engineering,
p. 39, 2018.

[11] Y. Lee, A. Scolari, B.-G. Chun, M. Weimer, and M. Interlandi, “From
the edge to the cloud: Model serving in ml .net,” Data Engineering,
p. 46, 2018.

[12] K. Kumar, S. Sinha, and P. Manupriya, “D-pnr: Deep license plate
number recognition,” in Proceedings of 2nd International Conference
on Computer Vision & Image Processing. Springer, 2018, pp. 37–46.

[13] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi,
“Online collaborative environment for designing complex computational
systems,” Procedia Computer Science, vol. 29, pp. 2432–2441, 2014.

[14] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “A model-
driven approach to automate the deployment and management of cloud
services,” in 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). IEEE, 2018, pp.
109–114.

[15] Y. D. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee,
Z. Kang, H. Sun, and A. Gokhale, “Fecbench: A holistic interference-
aware approach for application performance modeling,” in 2019 IEEE
International Conference on Cloud Engineering (IC2E), June 2019, pp.
211–221.

[16] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and scalable serverless serving system
for deep learning prediction services,” in 2019 IEEE International
Conference on Cloud Engineering (IC2E), June 2019, pp. 23–33.

