
Technology Enablers for Big Data, Multi-Stage
Analysis in Medical Image Processing

Shunxing Bao∗, Prasanna Parvarthaneni∗, Yuankai Huo∗, Yogesh Barve∗, Andrew J. Plassard∗,
Yuang Yao∗, Hongyang Sun∗, Ilwoo Lyu∗, David H. Zald†, Bennett A. Landman∗ and Aniruddha Gokhale∗

∗Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
†Dept. of Psychology and Psychiatry, Vanderbilt University, Nashville, TN 37235, USA

Abstract—Big data medical image processing applications in-
volving multi-stage analysis often exhibit significant variability in
processing times ranging from a few seconds to several days.
Moreover, due to the sequential nature of executing the analysis
stages enforced by traditional software technologies and platforms,
any errors in the pipeline are only detected at the later stages
despite the sources of errors predominantly being the highly
compute-intensive first stage. This wastes precious computing
resources and incurs prohibitively higher costs for re-executing
the application. The medical image processing community to date
remains largely unaware of these issues and continues to use
traditional high-performance computing clusters, which incur a
high operating cost due to the use of dedicated resources and
expensive centralized file systems. To overcome these challenges,
this paper proposes an alternative approach for multi-stage anal-
ysis in medical image processing by using the Apache Hadoop
ecosystem and offering it as a service in the cloud. We make the
following contributions. First, we propose a concurrent pipeline
execution framework and an associated semi-automatic, real-time
monitoring and checkpointing framework that can detect outliers
and achieve quality assurance without having to completely execute
the expensive first stage of processing thereby expediting the entire
multi-stage analysis. Second, we present a simulator to rapidly
estimate the execution time for a given multi-stage analysis, which
can aid the users in deciding the appropriate approach for their
use cases. We conduct empirical evaluation of our framework and
show that it requires 76.75% lesser wall time and 29.22% lesser
resource time compared to the traditional approach that lacks such
a quality assurance mechanism.

Keywords—Hadoop, Medical image processing, Big data multi-
stage analysis, Simulator.

I. INTRODUCTION

The research presented in this paper addresses the execution
time variability incurred by big data, multi-stage analysis appli-
cations found in medical image processing and reduces the cost
of hosting these applications in the cloud. A typical medical im-
age processing job involves multiple stages of analysis activities
as shown in Figure 1. For instance, to conduct a group image
analysis, the voxels1 of raw individual images are processed
and quantified in the first stage to provide a filtered matrix or a
mathematical value. When all the first stage jobs are completed,
the collected quantified data for the group are fed to a second
stage or subsequent higher stages to perform a group-based
statistical analysis. The processing of such multi-level analysis
jobs is, however, complicated by the fact that it often must deal

1A medical image is usually collected as a series of two-dimensional image
slices, and combined or stacked to get a three-dimensional image. The intensity
value of the image, represented in the units of “voxel,” is stored either as a
three-dimensional cube or a three-dimensional matrix.

with heterogeneous magnetic resonance imaging (MRI) modal-
ities acquired by different protocols, e.g., Diffusion weighted
imaging (DWI), T1-weighted (T1W) or T2-weighted (T2W).
Hence, non-unified image resolution and intensity may lead to
different processing speeds even in the same medical image
processing pipeline or algorithm [18], [27]. To our knowledge,
there has been no study to date to address these performance
issues. Moreover, the medical image processing community
has traditionally utilized expensive high performance clusters
for their multi-stage analysis, which when combined with the
performance issues makes executing these jobs prohibitively
expensive. Thus, a key issue in medical image processing is
dealing with the significant variance in the processing times
incurred by such multi-stage analysis.

To support our claim, we collected anonymous trace statis-
tics logs of completed jobs from the XNAT system [19] for
4 years worth of multi-stage analysis without accessing any
Protected Health Information (PHI) or imaging data. These
jobs were executed in Vanderbilt’s high performance computing
cluster called Advanced Computing Center for Research and
Education (ACCRE), which is representative of modern high
performance clusters. The ACCRE cluster is deployed with a
10 Gigabit Ethernet on 12 racks with IBM’s General Parallel
Filesystem (GPFS). Each rack has 1 Gigabit Ethernet for its
computation nodes. The total CPU cores is over 6,000. The
anonymized statistics logs involved a total of 96,103 jobs whose
completion times ranged from 15 seconds to 9 days.

Although these jobs were single image-based with first stage
analysis (e.g., performing multi-atlas segmentation or surface
mapping) and the output image(s) varied based on the type of
processing, the data illustrates the compute-intensive nature and
execution time variability of the first stage. One key reason for
the long execution times was that within the ACCRE cluster,
the input data for the jobs are transferred from GPFS through
a high speed switch to the available cores of each computation
node, and the resulting output is returned to GPFS over high
speed networks. However, the computation nodes within the
same rack share the low-speed network bandwidth, which often
leads to network saturation and impacts I/O intensive jobs. Thus,
researchers and practitioners who are routinely involved in the
execution of such pipelines will incur a high price for using
these clusters besides paying the high maintenance fees for
using GPFS and the high speed networks.

Our study also revealed a critical insight about the multi-
stage analysis pipeline. We observed that in comparison to the
first stage processing times, the second and subsequent stages
are usually substantially faster. The first stage analysis deals
with much more data cleaning and preprocessing in preparation

Fig. 1. A classical medical image processing multi-level analysis Tract-Based Spatial Statistics and Gray Matter Surface-based Spatial statistics. Our target pipeline
for this work is the first example dtiQA & TBSS pipeline. The purple box indicates our second contribution focus area.

for cross subject analysis. It is thus very common for the first
stage to take on the order of days to even months to process
a group of images. Existing platforms to execute the pipeline
force it to execute the stages in a serial order, which means
that the second and subsequent stages of analysis cannot start
executing until the first stage is entirely complete. Consequently,
any outliers or anomalies observed in the later stages of the
analysis pipeline, which are often a result of anomalies in the
first stage (e.g., due to wrong parameter, incorrect pipeline
design, mistakes in input data collection) are detected only
very late in the processing. This wastes significant amount of
resources, time and money, and requires re-executing the first
stage after correcting the errors, which again requires very long
running times. Unfortunately, there is no existing capability that
can detect outliers in the first stage in a timely manner such
that early detection and corrective action can be taken without
unduly wasting resources and time. Thus, a key requirement
to deal with is to identify errors as early as possible and to
promote concurrent execution of the pipeline thereby speeding
up execution time and saving the cost of executing these jobs.

To address these challenges, we propose a concurrently
executing medical image processing pipeline with early er-
ror/anomaly detection via periodic monitoring of intermediate
results in the first stage. Our approach is based on the well-
known Apache Hadoop ecosystem [1], which has been shown to
be effective in other application domains (e.g., fraud detection,
web search). Since the Hadoop ecosystem integrates storage
with the computation node, medical image processing jobs can
be completed faster with minimal data transfer. Moreover, the
Hadoop ecosystem is amenable to be hosted in the cloud and
does not require expensive systems and high maintenance fees
for GPFS. By using the Hadoop ecosystem, we monitor inter-
mediate results of the compute-intensive first stage and catch
anomalies early on before passing the intermediate processed
data to the next stage, thus enabling concurrent processing of
the pipeline stages.

Despite this promise, however, before deploying medical
image processing jobs in the cloud and using our new approach,
researchers and practitioners will require some way to estimate
the potential performance gains (and lowering of cost) in using
our cloud-based solution. Since such an estimate cannot be
obtained by actually executing the jobs on the cluster or cloud

resources, we also present a simulation framework that can esti-
mate the performance requirements of medical image processing
jobs under different large-scale cloud resource allocations and
running mixed types of workloads.

The proposed innovations are empirically evaluated in a pri-
vate, research cloud comprising a Gigabit network and 188 CPU
cores. For larger scalability estimation, we use the historical
trace data and test it on the simulation engine. To evaluate the
concurrent pipeline with early error detection methodology, we
use a real-world, two-stage medical image processing job. The
evaluation results show that our proposed framework requires
76.75% less wall time and 29.22% less resource time compared
to the traditional approach that lacks the quality assurance
mechanism.

The rest of the paper is organized as follows: Section II
compares our work with related work; Section III describes
the contributions that realize the medical image processing-as-
a-service; Section IV describes our evaluation approach and
presents experimental results; and finally Section V presents
concluding remarks alluding to ongoing and future work, and
discusses the broader applicability of our approach.

II. RELATED WORK

In this section we summarize a sampling of prior efforts.
Specifically, we focus on related research along the following
dimensions: cloud-based medical image processing, and efforts
that focus on quality assurance of these jobs.

A. Literature Survey

1) Cloud-based Deployment: Wang et al. [24] develop a
novel ultrafast, scalable and reliable image reconstruction tech-
nique for four-dimensional CT (4DCT) and cone beam CT
(CBCT) using MapReduce. They show the utility of MapReduce
for solving large-scale medical physics imaging problems in a
cloud computing environment. The Java Image Science Toolkit
(JIST) is a tool that integrates with Amazon Web Service
(AWS) EC2 and Amazon S3 storage to perform medical image
processing, which submits local first stage analysis to AWS to
utilize the pay as you go feature of the cloud [6]. Huo et al. [21]
provide a dockerizing approach for deploying large-scale image

processing to High Performance Computing environment and
potential affordable cloud.

Zhang et al. [34] implement a distributed computing frame-
work using Apache Spark cloud for automatic segmentation of
skeletal muscle cell image. The paper aims for load balancing
on available resources of the Spark cluster for the muscle
cell segmentation, and propose a parallelized hierarchical tree-
based region selection algorithm to efficiently segment muscle
cells. Roychowdhury et al. [29] proposed the Azure-based
Generalized Flow for medical image classification. The flow
automates generalized workflow by combining the efficacy of
cloud-computing frameworks with machine learning algorithms
for medical image analysis.

The above cloud-based services are either for clinical usage,
hosting the application for experiencing the benefit of using
cloud, or to ease the interaction and deployment cost of using
cloud. However, they do not aim to deal with cost, rapid
execution, or design for multi-stage medical image processing
of group-based analysis, which illustrates a different set of
challenges. Moreover, none of them solve the performance
improvement and quality assurance of intermediate results via
early error detection as we propose in this paper.

2) Quality Assurance in Medical Image Processing: In [10],
a quality assessment framework is presented that leverages
MapReduce to find and assess errors in large medical datasets.
It presents an approach to finding any errors in a medical dataset
by formulating a SPARKL super-query having common-join el-
ements. Their technique avoids redundant computation of joins,
which enables them to complete over 80 join operations using
two Map/Reduce iterations. Unlike our work which focuses on
the medical image processing of datasets, their work focuses on
finding errors in medical datasets themselves.

There are several medical image processing systems and
pipeline toolboxes, e.g. FSL [31] and JIST. These tools focus
on providing a medical image processing pipeline, however,
without a focus on the quality assurance. Although our proposed
work on early error detection works in the context of the Hadoop
ecosystem, our ultimate goal is to carry over our ideas to these
existing frameworks.

Many prior efforts exist that deal with performance opti-
mization and fault detection strategies in HPC and cloud envi-
ronment, however, we have not found any effort that addresses
the challenges in Big Data medical image processing multi-
stage pipelines. Naksinehaboon et al. [25] built a model that
aims to reduce full checkpointing overhead by performing a
set of incremental checkpoints between two consecutive full
checkpoints. Moreover, they demonstrated a method to find
the number of those incremental checkpoints and empirically
verified that the total wasted time in the incremental checkpoint
model is significantly smaller than the wasted time in the
full checkpoint model. Di et al. [13] presented a novel multi-
level periodic checkpoint model based on various types of
locations (software RAID, local SSD, remote file system) to deal
with unpredictable types of failures. The authors also proposed
an iterative method to find optimal checkpoint intervals for
each level and how to optimize the selection of checkpoint
levels. Recently, they constructed a two-level checkpoint model
online solution without requiring knowledge of the job length
in advance [14], where the first level checkpoint deals with
errors with low checkpoint/recovery overheads such as transient

memory errors, while checkpoint level two deals with hardware
crashes such as node failures. The model shows that periodic
patterns are optimal and determines the best pattern. It is
possible that our approach may benefit from these more general-
purpose reliability efforts, which forms part of our future work.

Nicolae et al. [26] presented a series of design principles
that facilitate checkpoint-restart on IaaS clouds and show how
they can be applied in IaaS cloud architectures that involves the
ability to roll back I/O operations performed by the application.
The principles were implemented on BlobSeer, a versioning
storage service specifically designed for high throughput under
concurrency. Camarasu [11] proposed an end-to-end Monte
Carlo simulation framework combining dynamic simulation
load-balancing with parallel, incremental merge of checkpointed
results. The framework is designed for heterogeneous, non-
reliable distributed systems deployed in production and focused
on improved usage of existing infrastructures rather than on the
design or tuning of their services.

In summary, the above works focus on creating models to
deal with different types (heterogeneous software applications
and hardware) of failure and multiple levels of failures for
HPC and cloud environments. Our proposed checkpointing
mechanism aims to solve multi-level analysis in medical image
processing, where the first-level takes a long time. Moreover,
our checkpointing tool utilizes output to perform reverse engi-
neering to identify wrong input or first-level pipeline design.

Our earlier effort on realizing a cloud-hosted “medical image
processing-as-a-service” approach focused on improving the
performance of just one concrete and single stage medical image
processing transformation process: dicom2nifti and supported it
on the Apache Hadoop ecosystem [8]. We named it as Hadoop
& HBase Toolkit for Medical Image Processing (HadoopBase-
MIP) system. Specifically, we made modifications and opti-
mizations to HBase, which is a NoSQL database that is built
upon Hadoop. Our work treated the dicom2nifti transformation
process as a MapReduce job where the reduce phase was a no-
op while providing a modified row key design and a new region
split policy for the map phase that maximizes the colocation of
the computation task (i.e., dicom2nifti) with the stored data.
Although our results were promising, this work only handles
fast processing type jobs and does not consider different types of
medical image processing jobs and multi-stage analysis, which
is a completely different problem that we tackle in this work.

B. Novelty and Generality of Our Work

The novelty of the proposed work is that we provide a new
way of thinking about the second and later stages of multi-level
analysis to boost the quality assurance of the entire process
rather than just the intermediate results. Although we use the
Hadoop ecosystem for the subsequent stages of the pipeline,
the proposed incremental real time learning monitor for early
error detection is not tightly coupled to it. Moreover, our second
stage analysis can exploit our prior work - HadoopBase-MIP -
on hierarchical key optimizations [8].

While most of the studies [3], [15], [32] incorporate some
form of quality checking (though not cloud based) at individual
scan level or outlier detection level (which are all at the first
stage) where data were checked for extreme outliers (relative
to expected outcome for given study), these checks are not yet
carried over into the second stage of analysis. All the data is first

processed and then based on the study design fed into second
stage analysis in a serial order. While this approach works
for smaller datasets, for studies involving large-scale data as
mentioned above where a number of hypothesis are tested, it is
beneficial to have intermediary checks on second level or higher
level while detecting any faulty outliers or draw conclusion at
early stages as data is processed instead of waiting until the
end. This is a capability we provide in our work.

III. QUALITY ASSURANCE IN MEDICAL IMAGE
PROCESSING MULTI-STAGE ANALYSIS PIPELINE: DESIGN

AND ESTIMATING PERFORMANCE IMPROVEMENTS

In this section we provide details on our technical contri-
butions. First, we shed more light on the challenges faced in
handling medical image processing (MIP) jobs using two case
studies. We then describe our contributions.

A. Eliciting Challenges using Two Case Studies

Figure 1 depicts two examples of multi-stage analysis jobs
in medical image processing. The first example pertains to the
analysis for understanding the brain structure (white matter
skeleton [23]) differences within a group of people. In this
case, the first-stage pipeline is dtiQA, which determines how
usable the diffusion data is and where a diffusion of water
molecules is used to generate contrast in MRI images. The
input is a group of raw brain DWI images that are collected
by MRI scanners. The first-stage pre-processing conducts brain
extraction of images (i.e., removing head skull and other struc-
tures except the human brain), and then performs registration.
The registration (especially non-rigid one) for medical images is
time-consuming, because it generally does not have an analytic
solution [4], [5]. Therefore, finding the optimal deformation
in non-rigid registration requires an optimization process at
each iteration where each deformation updates all voxels. If
the size of a voxel is 1mm3, and the size of the entire brain
is 1600cc = 1.6 × 106mm3, then there are 1.6 × 106 updates
at each iteration of the optimization process. Thus, non-rigid
registration requires significant computation. Assuming that we
have N images, we could let all images do registration2 to one
target image, where each image would take an hour, or perform
an all-subjects-to-all-subjects registration which takes even more
time. For each pre-processed and registered image, DTIFIT is
the last step in the first-stage analysis of dtiQA. It generates a
quantified image called fractional anisotropy (FA), which can
be viewed as an image with all its data stored in a 3D matrix.

The FA images, which are the quantified results generated
from the first-stage, are then fed to a second-level statistical
analysis, e.g., Tract-Based Spatial Statistics (TBSS) [30] or Gray
Matter Surface-based Spatial statistics (GS-BSS) [28], to ensure
that all FA images adhere to a common template. Specifically,
TBSS contains 4 steps3 and also involves registration. However,
the registration time here is significantly less than that in the first
stage because an FA image does not need as much data cleaning
and preprosessing as the original raw image. Finally, we run a

2Registration means a process of transforming/warping a moving image into
a target image space for further analysis.

3Specifically, tbss_1_preproc helps prepare all FA data in the right folder and
format; tbss_2_reg applies non-rigid registration of all FA images into standard
template space; tbss_3_postreg creates the mean FA image and skeletonizes it;
tbss_4_prestats projects all subjects’ FA data onto the mean FA skeleton and
creates 4D images for later statistic comparison usage.

randomized statistical analysis (randomise), and subsequently
observe the spatial distribution in order to find differences in
the brain over the entire cortical region or regions of interest
set by the researchers.

The second example in Figure 1 shows the first-stage pro-
cessing comprising image segmentation for cortical parcellation
of raw T1W images (or tissue segmentation of raw T1W im-
ages). Most segmentation methods are also very time consuming
by embedding a registration process simultaneously [16], [22].
All input images need to first register together or register to a
known segmented structure template image, and a tissue class
is then determined for each image voxel (e.g., white matter,
gray matter, cerebrospinal fluid). From the tissue segmentation,
we can further extract brain structural (or morphological) repre-
sentations like gray matter surface. The cortical surfaces could
better support quantitative information than 3D MRI images in
terms of a topological preservation. This information is then
used by the second-stage analysis to conduct cortical-based
statistical analysis such as GS-BSS. Again, since the input to
the second-stage has already been preprocessed, the next stages
of analysis are faster than the first-stage processing.

As evident from the two case studies above, in most multi-
stage medical image processing analysis, the first-stage takes
a long time, and the second and subsequent stages cannot start
until all first-stage results are generated. Further, due to a lack of
capabilities to monitor the progress of the first-stage and detect
any anomalies therein, errors can propagate to the subsequent
stages and are eventually detected only in the later stages, which
is wasteful of resources, time and money. Thus, addressing these
problems calls for a new pipeline execution and error detection
mechanism, which is the first contribution of this paper. At
the same time, migrating existing pipelines from cluster-based
deployment to the new cloud-based approach requires the users
to have a rough estimate of when the new approach will pay
dividends. Thus, a capability that can provide such estimates is
needed, which is another contribution of this paper.

B. Contribution 1: Semi-automated, Real-time Quality Assur-
ance Framework for Medical Image Processing Pipeline

To speed up the execution of the medical image processing
pipeline, we propose concurrent execution of the stages and
early detection of anomalies. To that end, as we accumulate
results in the first-stage, the second-stage analyses can start
executing based on all collected first-stage results up to that
point, and its analyses model can be incrementally updated when
more first-stage results show up. In the meantime, if periodic
monitoring of the first-stage results indicates an anomaly or
outlier, these errors can be flagged right away and either the
results can be discarded or the pipeline can be aborted instead
of letting it run for a significantly longer time for the errors
to be eventually detected. The same idea can be carried over
to each stage of a multi-stage pipeline. The rationale for this
approach is that after kicking off a multi-month task, users
would not want to wait until all the data processing is done.
Incrementally updating second (and later) stage analysis results
would help the users detect unusual findings and outliers in the
first-stage analysis significantly faster and earlier. It would also
help users to draw preliminary conclusions before finishing all
data processing.

Figure 2 illustrates our proposed real-time monitoring and
intermediate checkpointing framework for multi-stage analysis.

Except for the human quality assurance that involves manual
checking, the entire pipeline is automated. In our approach we
assume that all the first-stage jobs are HBase MapReduce map
tasks (e.g., each map task is a dtiQA processing phase). The
pipeline can be scripted using tools such as Matlab. In effect,
this script runs on a single input image, and the output, such as
an FA image, is uploaded to HBase. At this point our results
monitoring job kicks in. The monitor can be configured to run
periodically, say, every one hour, to include any new results
generated in the first-stage. Anomaly detection is then carried
out when intermediate results are available during the execution
of the monitor.

Fig. 2. Real-time monitoring and intermediate checkpointing framework for
multi-stage analysis (in this case 2-stage).

In terms of realizing this approach, the pipeline starts from
the Hadoop YARN default job status monitor, which can find the
basic job running status such as File System Counters (number
of bytes read and written on machine file system and HDFS),
Job Counters (total number of launched data-local or rack-
local map tasks, total time spent on map tasks), MapReduce
Framework (map input and output record, GC time elapsed,
CPU, physical & virtual memory usage), etc. We exploit a
feature of the Hadoop system for anomaly detection. For each
MapReduce job, the Hadoop system maintains a file that records
map-task success ratio. Our monitor can capture exceptions
raised in the job such as map task failed or the job stuck at
one point. Anything that is anomalous would then be reported
to the system administrator. An example of such a log is shown
below which shows progress. A potential indicator of anomaly

is when a task does not make any progress over the periodic
interval of our monitor task or if it has made progress and then
the percentage drops from its previous value:

17/09/12 13:39:08 INFO mapreduce.Job: map 0% reduce 0%
17/09/12 19:20:03 INFO mapreduce.Job: map 1% reduce 0%
17/09/12 19:29:26 INFO mapreduce.Job: map 2% reduce 0%
17/09/12 19:34:59 INFO mapreduce.Job: map 3% reduce 0%

Note that the above approach is only for detecting anomalies
in the execution of MapReduce tasks but does not provide
any quality assurance about the correctness of results produced
by these tasks, which requires analyzing the medical image
processing results. Therefore, in the intermediate second-stage
analysis, the “check success ratio” function performs the fol-
lowing: (1) scans HadoopBase-MIP’s result column and issues
fast query to find all intermediate results; (2) retrieves value to
the designated folder, does command-line based QA to check
file format and content (in our case, we embedded a script
to check medical image dimension); (3) decides based on a
pre-set analysis type if the second stage analysis can utilize
previous historical analysis results, and if so starts the second-
stage analysis and merges the result in the summary folder. If the
entire MapReduce job is not completed, then the monitor would
wait a pre-set number of hours before running the next analysis.
If the analysis results meet an evaluation metric requirement,
the monitor then reports a message to the administrator to
recommend terminating the processing.

As a concrete example, consider the second-stage analysis
like TBSS in Figure 1, which is an embedded pipeline in itself.
The first two steps of TBSS (tbss_1_preproc and tbss_2_reg)
incur a one-time cost for each image if we register each image to
the same target template. In the subsequent incremental second-
stage analysis, these two steps can be skipped for those images
that have already been processed in the previous second-stage
analysis, so we just need to store those intermediate results. The
last two steps of TBSS (tbss_3_postreg and tbss_4_prestats)
need the entire dataset of current second-stage analysis and
hence the results of these two steps cannot be used for future
second-level analysis.

In essence, the performance benefit of adding a monitor
at the first-stage is due to the following a reason: while the
first-stage analysis utilizes all the cluster resources, the second-
stage analysis often involves a “summary” process that only
runs on a single machine with single core. Compared to the
whole cluster resource usage by the first-stage, the second-
level analysis consumes significantly less resources. Thus, an
effective monitor on the first-level analysis is promising and
can greatly help resource conservation of the whole cluster.

C. Contribution 2: Performance Improvements Estimation via
Simulation Engine

Recall that a user in medical image processing may want to
first estimate whether using our approach can provide substantial
gains in their use cases or not. We now present the design
and implementation of two simulators for that purpose: one
for the traditional cluster using shared network storage with
simple linux utility for resource management (SLURM [33],
for job dispatching) called SLURM-simulator, and the other
for the Hadoop ecosystem using distributed storage called
HadoopBase-MIP-simulator.

In a traditional cluster, a job does not care about the
placement of data, which is always retrieved from the network
storage, gets processed, with the results sent back to the storage.
All simultaneously running jobs on the same rack will compete
for network bandwidth during retrieval and uploading since a
rack usually has access to a slower network. For HadoopBase-
MIP, the jobs are dispatched by a MapReduce computation
module [12]. data-locality is one of the best features that
Hadoop MapReduce provides, i.e., the computation code gets
dispatched to where data is. Since we leverage HBase, which
is a NoSQL database built on top of Hadoop’s distributed file
system (HDFS), we focus on HBase–based MapReduce instead
of the traditional Hadoop MapReduce.

In HBase MapReduce, the map task is dispatched to the
region server, a single host on which the data block resides [2].
Thus, the computation is local to where the data is. If, however,
all the cores on that node are occupied, then the data is moved
to another node on the same rack. Only in such a rack-local
case, the map tasks would compete for the network bandwidth
as in the traditional cluster case. For HadoopBase-MIP, we
use default YARN to control MapReduce tasks. We switch
scheduling methods by using two popular built-in schedulers,
namely, capacity scheduler and fair scheduler, for I/O-intensive
and compute-intensive applications, respectively. The capacity
scheduler can maximize job dispatching with more data-local
map tasks while fair scheduler schedules jobs to better utilize
all CPU slots and memory resources.

Before introducing the workflow in our simulator design, we
outline the following key assumptions to simplify the design of
our simulator engine:

• An identical one Gigabit bandwidth is connected to
all of machines under the same rack. Each rack is
connected to the GPFS with high speed fiber. To ease
network contention on each rack, we balance the total
number of machines per rack.

• For each job on the same rack, if data retrieval or
upload request occurs while the network is available,
then the entire bandwidth is consumed for an interval
of 50 milliseconds, and the rest of the data transfer
needs to wait until its next turn. Moreover, we do not
consider any priority between retrieval and upload.

• Job dispatching time does not include queuing delay.
In traditional cluster, a simple First Come First Service
(FCFS) scheduler is used. Jobs are ordered based on
submission time and scheduled by a single entity. For
fair comparison with SLURM, in our HadoopBase-MIP
simulator we also mimic a single scheduler entity and
introduce a single MapReduce job at a time so that
the job can occupy the entire cluster resource as in the
case of the traditional cluster. All jobs are dispatched to
maintain data-locality first; if there is an available CPU
slot without local data, the resource manager finds a
node that has most pending jobs.

• We only consider the Map Phase, i.e., all the necessary
processing pipelines are embedded in the map tasks and
the reduce tasks are no-op, which has been shown to
maximize data locality in our prior work [7], [8].

The full pipelines for both of our SLURM-simulator and
HadoopBase-MIP-simulator are shown in Figure 3 while a

complete implementation of the simulators is available from
our open source repository at https://www.nitrc.org/projects/
hadoop_2016/. We briefly describe the two simulators below.

Fig. 3. Full pipelines of SLURM-simulator for the traditional cluster (left) and
the HadoopBase-MIP-simulator (right).

1) SLURM-simulator: The input for both simulators
are text files. The text files for SLURM-simulator con-
tains 3-element-tuples with the format <input_file_size, esti-
mate_processing_time, output_file_size>, and each row repre-
sents one job. Jobs are dispatched in a FCFS manner, i.e.,
according to the submission order. Within the same rack, each
job needs to wait for the available network resource to retrieve
the input data. Once all the necessary data is retrieved, the job is
processed and the results are uploaded. After the job completes
and successfully uploads the results, the associated CPU core is
freed and assigned to the next pending job. The simulator tracks
and summarizes the time usage per rack.

2) HadoopBase-MIP-simulator: The HadoopBase-
MIP-simulator works in a similar manner but with a few
differences. First, a text file for HadoopBase-MIP-simulator
contains 4-element-tuples with the format <input_file_size,
estimate_processing_time, output_file_size, data_location>.
Since uploading original datasets to HBase database incurs a
one-time cost, users can upload the data to database and find
out relevant node id to fill up the text files. The scheduler
can then schedule the available data-local and rack-local jobs.
Specifically, the scheduler determines if the job is data-local,
otherwise it is scheduled as rack local. It mimics the YARN
default fair scheduler to fully utilize the cluster resource.
Obviously, data-local jobs use hard disks to do data transfer
without network competition.

IV. EVALUATION METHODOLOGY AND EXPERIMENTAL
RESULTS

The goal of this section is to evaluate the efficacy of our
simulator in guiding the users to the appropriate solution, and
evaluating the performance gains and anomaly detection capa-
bilities of our Hadoop-based concurrent pipeline framework.

A. Experiment Scenarios

For our evaluations we have defined three experimental
scenarios that are described below.

1) Experiment 1: The goal of experiment 1 is to empirically
verify the prediction accuracy of the simulator for running a
mix load of medical image processing jobs (which represents
real-world scenarios) in a real, in-house heterogeneous cluster
using HadoopBase-MIP and traditional cluster with Sun Grid
Engine [17] (SGE, a similar scheduler with SLURM), We use
the same experimental design strategy as in [9], which uses
gzip to compress 1,876 T1 images to the .gz format and adds a
sleep function to mimic different processing times. The images
are pre-split equally to 47 HBase regions (each region with
approximately 40 images), and data allocation ratio of 10 images
per CPU core. Each job compresses only one NiFTI image with
2GB memory available and generates one compressed image.
The total input size of the images is 29.5GB and the processing
generates 20.57GB of compressed files as output.

To explore the impact of different processing times, we
artificially increase the processing time by adding a sleep
function without any data retrieval to increase the job length
by an additional 30 and 90 seconds. The reason we select those
two time ranges is because our theoretical model [9] shows that
if we run a large number of jobs with similar type, then even a
job length as small as 65 seconds4 would be enough to saturate
the network because all jobs would try to access the storage
at the same time. Thus, if we only run the 30-second jobs, the
jobs will saturate the network and decrease the performance of
SGE. Similarly, if we only run the 90-second jobs, the network
saturation will be alleviated and the performance of SGE should
be similar to that of HadoopBase-MIP. So we mix short and
long length jobs to observe the effectiveness of our simulation
engine’s design.

Two test scenarios are configured as follows: (1) We select
80% of the 1,876 images and configure them as short jobs, the
rest 20% are configured as long jobs; (2) We reverse the job
length setup from the previous scenario by configuring 80% of
the jobs to be long and the rest to be short.

2) Experiment 2: The goal of experiment 2 is to use the
simulator on the historical trace data we alluded to in Section I
to simulate the total execution wall clock time trend for a much
broader scale usage and find the performance crossover point
between traditional cluster with SLURM and HadoopBase-MIP.
This provides an idea of when users should select our technique.
Since we do not have any performance data to compare against
due to a lack of other simulators and infeasibility of re-running
the jobs both due to the computational overhead and because we
had access only to the logs that we mentioned in Section I, we
use these results simply to illustrate the trends. For machines
in the cluster, we assume using homogeneous machines with
10 cores. Each rack maximally can attach 50 machines. The
simulation scales the size of cluster cores from 10 to 6000. For
simulating the scalability, we start from one machine, and in
each next step, we add one additional machine with 10 cores up
to a total of 600 homogeneous machines and hence 6000 cores
for a total of 12 racks. The experiment is based on our high
performance computing cluster ACCRE’s design (http://www.
accre.vanderbilt.edu/?page_id=63). Note that only 12 racks is
very hard to saturate GPFS, but network competition within

4A typical Gigabit network is ideally 128 MB/second, and in our empirical
observation, the average speed of the network can reach 80 MB/second. For
each processing task, the average data input and output size is about 27.33
MB((29.5GB input + 20.57 output) / 1876 datasets), and if we allocate whole
cluster of 188 cores to run those types of jobs, 188=80/(27.33/processing time),
and we will get processing time = 65 seconds to rightly saturate network.

each racks are where saturation is expected to occur which
makes the case for our fair comparison between traditional
cluster and HadoopBase-MIP. This allows us to understand the
minimum resource allocation needed when moving to using our
technique. We use simulation models to schedule the mix types
of jobs (IO-intensive and compute-intensive) with actual time
order according to the historic record and find the running time
of all the jobs from the logs. We separate all 96,103 jobs into 3
categories based on job length: all jobs whose processing time
are less than 2 hours (51,496 jobs), 24 hours (73,558 jobs) and
all 96,103 jobs taken as a whole, respectively.

3) Experiment 3: This experiment is concerned with vali-
dating the effectiveness of our monitoring and checkpointing
capability in the concurrent multi-stage analysis pipeline by
incrementally conducting second stage analysis while checking
for errors in the first-stage. We used an existing medical image
processing multi-stage analysis where the first-stage does dtiQA
as depicted in Figure 1. Specifically, this experiment aims to
analyze significant differences related to age-effect of a group
of humans’ brains in the same study. The age distribution of
dataset ranges from 23-31 years old.

Our example has 423 DWI images, whose total input size
is 3.5GB, and they would generate 423 FA images as output
with a total size around 0.74GB. The estimated time of the
first-stage dtiQA pipeline for one image is 7 hours (the total
execution time is 35.06 hours estimated by our HadoopBase-
MIP simulator). Note that each first-stage dtiQA is a single
image-based processing task and would generate an FA image.
The FA image would be verified by software FSL (which simply
checks the image dimension).

Unlike the traditional multi-stage analysis which runs the
two stages in a serial order, using our monitor and checkpoint
approach we started both stages concurrently as follows. After
every one hour of execution, we check if there are enough new
results generated from the first-stage. If not, the monitor waits
one more hour to check the output of intermediate results. If the
number of newly collected first-stage results meets the threshold
(e.g., 10 new images), then the second stage analysis starts (this
is the incremental execution of the second stage).

For the second stage analysis, we first use TBSS to pro-
cess all current and previous first-stage analysis results and
then run randomise to observe the spatial distribution of age
effects with positive correlation or negative correlation. For each
intermediate round, each person’s age effect is that person’s
age minus the average age of the group (423 subjects) for fair
comparison of each intermediate second stage analysis result.
After a specified number of iterations, if we observe that the
second stage analysis is producing similar results, we assume
that the results are converging and no additional first or second
stage processing is needed. Accordingly the pipeline is stopped.
Doing so we can execute the entire pipeline faster compared to
traditional approaches. At the same time, if any error is observed
in the second stage at any checkpoint interval of the monitor,
the system flags the error and lets the user remove the outliers
in the first-stage, and resume.

Since there is no similar monitoring mechanism imple-
mented on HadoopBase-MIP or similar medical image process-
ing system, we used the baseline performance as the time to
run the entire pipeline in the traditional way.

B. Experimental Setup and Metrics

Metrics: We are concerned with three metrics in this work:
the first one is wall-clock time and the second one is system
throughput, which is the number of datasets (or jobs) processed
per minute. The last metric is p-value that represents the
significant difference for the statistical analysis of a group
study. In particular, p-value = 0.05 and 0.01 are two standard
significance levels to reject a null-hypothesis. For instance,
the null-hypothesis for experiment 3 is that there is no brain
structure difference related with age. A lower p-value we get
for any brain voxels implies that the brain area has significant
differences based on age, so we can reject the null-hypothesis.
Experiment 3 is designed to find all high p-value voxels to know
the area of brain structure that is affected by age.

Datasets: For the experiments used in validation, experiment
1’s dataset is retrieved from normal healthy subjects gathered
from [20]. Experiment 2 uses historic anonymized statistic logs
with no actual medical image processing and data retrieval.
Experiment 3 uses 423 subjects’ data from The Tennessee Twin
Study (TTS) (RDoC Constructs: Neural Substrates, Heritability
and Relation to Psychopathology).

Hardware: The testbed used for our validation involves 9
physical machines with a total of 188 cores. Specifically, the
testbed consists of 5 machines with 12 cores of AMD Operon
4184 processors and 4 machines with 32 cores of Intel Xeon
E5-2630 running Ubuntu 16.04.2 LTS (64 bit). At least 2GB
RAM was available per core. The storage is allocated to HDFS
and a Gigabit network connects all the machines. Each machine
is deployed with a local Seagate ST32000542AS disk, and is
used as a Hadoop Datanode and HBase RegionServer for data
locality. All machines are also configured using the Sun Grid
Engine (Ubuntu Package: gridengine-*). NAS was provided via
CIFS using a Drobo 5N storage device (www.droboworks.com)
with a 12TB RAID6 array. Both SGE and HadoopBase-MIP
contain an additional common master node as cluster master. A
typical Gigabit network is deployed at the cluster.

C. Experimental Results

1) Experiment 1: For each scenario, we repeat the entire test
20 times on a real cluster. When fast jobs dominate the work-
loads (80% of jobs are processed in 30 seconds), HadoopBase-
MIP’s performance on the cluster achieves a mean±standard
deviation throughput of 152.5±3.3 dataset/minute, which is
1.5-fold better on average than the traditional cluster using
SGE whose mean±standard deviation throughput is 102.2±2.5
dateset/minute. In comparison, the simulator predicts that
HadoopBase-MIP is 1.53-fold better than traditional cluster
(163.9±4.6 vs. 106.9±5.7 dataset/minute). For the second test
case, most jobs are long jobs (80% of jobs need to be processed
in 120 seconds). Thus, the difference in throughput is smaller
between the two systems compared with the first test case,
and HadoopBase-MIP becomes 1.17-fold better than traditional
cluster (91.3±2.3 vs. 179.4±2.7 dataset/minute). Our simulator
estimates that HadoopBase-MIP would be 1.15-fold better than
traditional cluster (94.0±0.6 vs. 81.7±1.7 dataset/minute).

2) Experiment 2: Figure 4 presents all simulation scenarios
for HadoopBase-MIP and traditional cluster with SLURM using
different cluster setups. The execution time is in log10 scale for
better illustration and comparison since the range between low
and high values is too large. When the cluster is full of relatively

short jobs (less than 2 hours as shown in Figure 4(1)), we can see
that SLURM suffers from network saturation when the cluster
scales to more than 50 machines (or 1 rack).

When processing jobs whose processing times are less than
24 hours, the performance of SLURM is closer to that of
HadoopBase-MIP (as shown in Figure 4(2)). However, when we
estimate the total time of all 96,103 jobs, we can see that the
performance for HadoopBase-MIP fluctuates with a jitter trend.
The reason is that the load contains jobs whose lengths are
dramatically different (ranging from 15 seconds up to 9 days).
Thus, the data location and job running sequence would affect
the entire performance, e.g., due to high data locality simulated
scheduling, long running jobs co-located on the same machine.
In summary, the simulation results help us better understand
how HadoopBase-MIP would behave before we deploy it at
large scale. In general, HadoopBase-MIP shows benefit when
scaling up on cheap network environment and running short-
length jobs.

Fig. 4. Simulation result of estimating total execution time (log10 (Hour))
according to historic jobs trace. (1)-(3) show running all jobs whose processing
times are less than 2 hours, 24 hours and all 96,103 jobs, respectively. Blue line
represents the performance for traditional cluster while orange line represents
the performance for HadoopBase-MIP. (4) shows a summary of all HadoopBase-
MIP MapReduce jobs’ data locality ratio for each scenario, which reveals that
most jobs are data-local map.

3) Experiment 3: In this experiment, there are 20 interme-
diate rounds including the last one. Using our approach we first
get a ratio of significant trend as shown in Figure 5(1). Here,
all results are projected to a common space (mean FA skeleton
image). Then, we do t-test based on groups (corresponding to
negative age) and find the ratio of voxels that are significant
within the common space, using p-value=0.01, 0.05 and 0.1 as
three significance levels that we are interested in. However, the
trend in Figure 5(1) has a strange behavior: with the number
of new outputs generated from the first stage, the trend of the
p-values should not fluctuate that dramatically; moreover, the
involved significant ratio is too small. Therefore, QA checking
should be invoked. As a result, we found some bad examples
within the first stage as shown in Figure 5(2). After removing
all bad outputs from the first stage and re-running the second
stage analysis, Figure 5(3) shows a new trend of ratio of total
number of voxels with significant difference in common space
based on p-value within different intermediate rounds. The trend

shows after intermediate round 11, the number of activated
voxels gradually increased, and the trend is saturated after
about 15 rounds. Figure 5(4) presents the qualitative result of
the finding from each intermediate second stage analysis, the
significance area reveals that FA image has negative correlation
with age-based effect. This result has the similar outcome from
the work [23], which does TBSS analysis of age-effect on FA
image, thus validating our finding.

If we only run the second stage analysis after the last round
as usual without intermediate QA mechanism, we can still con-
clude that some part of the brain white matter skeleton structure
(around 1500 voxels) is significantly different regarding age-
effect. However, the conclusion is wrong since it fails to detect
outliers which distort the real result. Again, experiment 3 aims
to provide a guidance for users to use this incremental second
stage analysis to detect error and draw conclusion, so that they
do not need to wait till all data processing is complete. For
instance, in real life, by using our proposed monitor, users
should stop the pipeline around round 15-16 if they see a weird
fluctuation as shown by Figure 5(1), and users could conclude
their findings when they see some p-value saturation around
round 15-19 as shown by Figure 5(4).

In summary, the total wall-clock time of processing the
first stage dtiQA pipeline was 35.93 hours (2.84% slower than
HadoopBase-MIP simulator prediction), and the second level
analysis took 12.16 hours. Moreover, the time to re-run the
second level analysis was 11.58 hours. Thus, the final total
wall-clock time using the traditional approach was 59.67 hours
with 2773 hours’ resource time. On the other hand, using our
incremental checkpointing monitor, it would take 22.01 hours’
wall-clock time on the first level with 1.25 hours for running
the 15th intermediate second level analysis. Once the wrong
output from the first level is removed, re-running the whole
second level analysis using incremental behavior on a single
machine would lead us to draw conclusion at round 15 taking
10.5 hours. Thus, in total 33.76 hours’ wall-clock time and 2146
hours’ resource time will result from our proposed framework,
which is 76.75% less wall-clock time and 29.22% less resource
time than the traditional approach.

V. CONCLUSIONS

The computation time for medical image processing jobs
involving multi-stage analysis often exhibits a significant vari-
ance ranging from a few seconds to several days, and most
of the processing time is spent on the first-level analysis
in the pipeline. Moreover, the cost is very high to process
these jobs using traditional clusters, which are deployed with
storages like GPFS and high speed networks. The high cost
is further exacerbated when errors occurring in the first stages
are not detected due to limitations in existing approaches and
get propagated to subsequent stages when they are eventually
detected. To address these concerns, this paper presented an
alternative Hadoop-based approach that utilizes cheap hardware
and storage, and enables a concurrent medical imaging pipeline
where errors can be detected much earlier in the first stage itself.
Additionally, to aid the users in making an informed decision
as to when to use our approach versus traditional cluster-based
approaches, we present the design of a low-cost simulator.

In this work, we did not focus on proving the efficiency of
our proposed monitoring mechanism. Instead, we are using it as
a prototype to convince the community that one should always

(1) Found weird p-value trend

(2) 3 samples of bad output from 1st level processing

(3) Remove all bad examples and re-run 2nd level analysis

(4) Qualitative result of whole intermediate analysis from round
 number 13 - 20 basing on negative correlation p-value

Fig. 5. Experiment 3’s result of using second level incremental learner monitor
architecture for QA. In (2) and (4), 0.1, 0.05 and 0.01 are three different p-value
significant level. The ratio of significance means the percentage of significant
area that is found in group analysis of whole brain white matter skeleton.

examine the outcomes from those time consuming preprocessing
stages as early as possible rather than losing valuable computa-
tion and time resources. In our approach, the outlier detection
was based on “strange p-value behavior” from the second level
group analysis via human checking. Meanwhile, the summary
trend of intermediate results gave us hint to promote filtering
anomality samples in the first level, also based on manual
checking. For future work, integrating effective outlier detection
in the first level with a quantitative approach for identifying
“strange trend” in the second level is necessary. Finally, for
facilities that have neither large scale HPC clusters nor large
image sets to deal with, our recent work [9] has discussed the
trade-offs between using HadoopBase-MIP and traditional in-
house clusters.

ACKNOWLEDGMENTS

This work was funded in part by NSF CAREER IIS 1452485
and US Ignite CNS 1531079. This work was conducted in part
using the resources of the Advanced Computing Center for
Research and Education at Vanderbilt University, Nashville, TN.
This project was supported in part by the National Center for
Research Resources, Grant UL1 RR024975-01, and is now at
the National Center for Advancing Translational Sciences, Grant
2 UL1 TR000445-06. Any opinions, findings, and conclusions
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsoring agencies.

REFERENCES

[1] Apache Hadoop Project Team. The Apache Hadoop Ecosystem. http:
//hadoop.apache.org/.

[2] Apache HBase Team. Apache hbase reference guide. Apache, version
2.0.0 edition, Apr. 2016.

[3] A. J. Asman, Y. Huo, A. J. Plassard, and B. A. Landman. Multi-atlas
learner fusion: An efficient segmentation approach for large-scale data.
Medical image analysis, 26(1):82–91, 2015.

[4] B. B. Avants, N. Tustison, and G. Song. Advanced normalization tools
(ants). Insight j, 2:1–35, 2009.

[5] B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C.
Gee. A reproducible evaluation of ants similarity metric performance in
brain image registration. Neuroimage, 54(3):2033–2044, 2011.

[6] S. Bao, S. M. Damon, B. A. Landman, and A. Gokhale. Performance
management of high performance computing for medical image process-
ing in amazon web services. In Proceedings of SPIE–the International
Society for Optical Engineering, volume 9789. NIH Public Access, 2016.

[7] S. Bao, B. Landman, and A. Gokhale. Algorithmic enhancements to
big data computing frameworks for medical image processing. In Cloud
Engineering (IC2E), 2017 IEEE International Conference on, pages 13–
16. IEEE, 2017.

[8] S. Bao, A. J. Plassard, B. A. Landman, and A. Gokhale. Cloud engineer-
ing principles and technology enablers for medical image processing-
as-a-service. In Cloud Engineering (IC2E), 2017 IEEE International
Conference on, pages 127–137. IEEE, 2017.

[9] S. Baoa, F. D. Weitendorfa, A. J. Plassarda, Y. Huob, A. Gokhalea, and
B. A. Landmana. Theoretical and empirical comparison of big data image
processing with apache hadoop and sun grid engine. In SPIE Medical
Imaging, pages 101380B–101380B. International Society for Optics and
Photonics, 2017.

[10] S. Bonner, A. S. McGough, I. Kureshi, J. Brennan, G. Theodoropoulos,
L. Moss, D. Corsar, and G. Antoniou. Data quality assessment and
anomaly detection via map/reduce and linked data: a case study in the
medical domain. In Big Data (Big Data), 2015 IEEE International
Conference on, pages 737–746. IEEE, 2015.

[11] S. Camarasu-Pop, T. Glatard, R. F. Da Silva, P. Gueth, D. Sarrut, and
H. Benoit-Cattin. Monte carlo simulation on heterogeneous distributed
systems: A computing framework with parallel merging and checkpoint-
ing strategies. Future Generation Computer Systems, 29(3):728–738,
2013.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimiza-
tion of multi-level checkpoint model for large scale hpc applications.
In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International, pages 1181–1190. IEEE, 2014.

[14] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online
checkpoint solution under a two-level hpc checkpoint model. IEEE
Transactions on Parallel and Distributed Systems, 28(1):244–259, 2017.

[15] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts,
J. S. Anderson, M. Assaf, S. Y. Bookheimer, M. Dapretto, et al. The
autism brain imaging data exchange: towards large-scale evaluation of the
intrinsic brain architecture in autism. Molecular psychiatry, 19(6):659,
2014.

[16] J. Doshi, G. Erus, Y. Ou, S. M. Resnick, R. C. Gur, R. E. Gur, T. D.
Satterthwaite, S. Furth, C. Davatzikos, A. N. Initiative, et al. Muse:

Multi-atlas region segmentation utilizing ensembles of registration algo-
rithms and parameters, and locally optimal atlas selection. NeuroImage,
127:186–195, 2016.

[17] W. Gentzsch. Sun grid engine: Towards creating a compute power grid.
In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pages 35–36. IEEE, 2001.

[18] S. S. Ghosh, S. Kakunoori, J. Augustinack, A. Nieto-Castanon, I. Kovel-
man, N. Gaab, J. A. Christodoulou, C. Triantafyllou, J. D. Gabrieli, and
B. Fischl. Evaluating the validity of volume-based and surface-based
brain image registration for developmental cognitive neuroscience studies
in children 4 to 11years of age. Neuroimage, 53(1):85–93, 2010.

[19] R. L. Harrigan, B. C. Yvernault, B. D. Boyd, S. M. Damon, K. D. Gibney,
B. N. Conrad, N. S. Phillips, B. P. Rogers, Y. Gao, and B. A. Landman.
Vanderbilt university institute of imaging science center for computational
imaging xnat: A multimodal data archive and processing environment.
NeuroImage, 124:1097–1101, 2016.

[20] Y. Huo, K. Aboud, H. Kang, L. E. Cutting, and B. A. Landman. Mapping
lifetime brain volumetry with covariate-adjusted restricted cubic spline re-
gression from cross-sectional multi-site mri. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages
81–88. Springer, 2016.

[21] Y. Huo, J. Blaber, S. M. Damon, B. D. Boyd, S. Bao, P. Parvathaneni,
C. B. Noguera, S. Chaganti, V. Nath, J. M. Greer, et al. Towards portable
large-scale image processing with high-performance computing. Journal
of digital imaging, 31(3):304–314, 2018.

[22] A. Keshavan, C. Madan, E. Datta, and I. McDonough. Mindcontrol:
Organize, quality control, annotate, edit, and collaborate on neuroimaging
processing results. Research Ideas and Outcomes, 3:e12276, 2017.

[23] C. Kodiweera, A. L. Alexander, J. Harezlak, T. W. McAllister, and Y.-
C. Wu. Age effects and sex differences in human brain white matter of
young to middle-aged adults: a dti, noddi, and q-space study. Neuroimage,
128:180–192, 2016.

[24] B. Meng, G. Pratx, and L. Xing. Ultrafast and scalable cone-beam
ct reconstruction using mapreduce in a cloud computing environment.
Medical physics, 38(12):6603–6609, 2011.

[25] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun, S. L.
Scott, et al. Reliability-aware approach: An incremental checkpoint/restart
model in hpc environments. In 2008 8th International Symposium on
Cluster Computing and the Grid (CCGRID, pages 783–788. IEEE, 2008.

[26] B. Nicolae and F. Cappello. Blobcr: efficient checkpoint-restart for
hpc applications on iaas clouds using virtual disk image snapshots. In
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, page 34. ACM, 2011.

[27] Y. Ou, H. Akbari, M. Bilello, X. Da, and C. Davatzikos. Comparative
evaluation of registration algorithms in different brain databases with
varying difficulty: results and insights. IEEE transactions on medical
imaging, 33(10):2039–2065, 2014.

[28] P. Parvathaneni, B. P. Rogers, Y. Huo, K. G. Schilling, A. E. Hainline,
A. W. Anderson, N. D. Woodward, and B. A. Landman. Gray matter
surface based spatial statistics (gs-bss) in diffusion microstructure. In
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 638–646. Springer, 2017.

[29] S. Roychowdhury and M. Bihis. Ag-mic: Azure-based generalized flow
for medical image classification. IEEE Access, 4:5243–5257, 2016.

[30] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols,
C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews,
et al. Tract-based spatial statistics: voxelwise analysis of multi-subject
diffusion data. Neuroimage, 31(4):1487–1505, 2006.

[31] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak,
D. E. Flitney, et al. Advances in functional and structural mr image
analysis and implementation as fsl. Neuroimage, 23:S208–S219, 2004.

[32] D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens,
R. Bucholz, A. Chang, L. Chen, M. Corbetta, S. W. Curtiss, et al. The
human connectome project: a data acquisition perspective. Neuroimage,
62(4):2222–2231, 2012.

[33] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility
for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 44–60. Springer, 2003.

[34] Z. Zhang, F. Xing, F. Liu, and L. Yang. High throughput automatic muscle
image segmentation using cloud computing and multi-core programming.

