
Applying Aspect Oriented Programming to Distributed Storage
Metadata Management

Dimple Kaul, Aniruddha Gokhale, Larry Dawson, Alan Tackett and Kelly McCauley
Dept of EECS and ACCRE, Vanderbilt University, Nashville, TN 37235

{dimple.kaul, a.gokhale, larry.dawson, alan.tackett, kelly.mccauley}@vanderbilt.edu

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Abstract
High performance computing applications often must handle on the
order of peta bytes of data during their operation. Such large data
sets inherently require distributed storage. Emerging distributed
storage solutions in this realm, such as our L-Store framework,
virtualize the distributed nature of the storage by offering the no-
tion of a single file system to applications. These virtualization
schemes must manage substantial amount of metadata to handle
the data sets across the distributed storage. Apart from the primary
concern of virtualization, a number of secondary but crosscutting
concerns related to transaction and persistence control, database
connection pooling, authentication and authorization, and logging
must be addressed in these metadata management schemes. This
paper describes our investigations into discovering these secondary
and crosscutting concerns in metadata management for large-scale
distributed data storage. We describe how we have applied AspectJ
to address these crosscutting concerns in metadata management for
the L-store distributed storage framework.

Keywords: Real-World Applications, Software, Tools, Aspects.

1. Introduction
High performance computing (HPC) applications, such as Physics
simulations, require data storage in the order of tera to peta bytes
over a span ranging from a few seconds to weeks or even years for
their correct operation. Such large data sets are inherently stored
at distributed sites. Prior to the advent of enabling technologies,
such as Logistical Networking (LN) [2] and the Internet Backplane
Protocol (IBP) [1], HPC applications were required to manage
the distributed storage themselves. LN provides new capabilities
to schedule data movement and storage on a global scale while
IBP provides a middleware for managing remote storage and data
objects of varying sizes.

Recent advances, such as the Logistical Store (L-Store) [14],
leverage LN and IBP by masking the distribution of the storage and

[copyright notice will appear here]

instead providing a single file system abstraction to applications. In
order to manage distributed data and to provide a single file sys-
tem abstraction, L-Store is required to maintain metadata informa-
tion for the distributed data. With increasing number of files that
store these large distributed data sets, the corresponding amount of
metadata also increases. With an explosion in the size of the meta-
data itself, the problem of metadata management must be resolved
for enabling technologies like L-Store to be successful. When the
amount of metadata is relatively small, L-Store manages it on a
single metadata server, but can scale it to larger sized systems by
leveraging the Chord distributed hash table architecture [13].

Our experience working on the design and implementation of L-
Store revealed a number of secondary design concerns for L-Store,
such as database connection pooling or transaction management,
which were tangled across the code. These additional design con-
cerns were found to be crosscutting with respect to the primary
design concerns of L-Store, which is to provide a single file sys-
tem abstraction. The primary sources of these crosscutting concerns
stemmed from the need to assure transactional and persistence con-
trol, database connection pooling, authentication and authorization,
and exception handling and logging, which are deemed orthogonal
to the primary goals of L-Store.

To improve the maintainability and extensibility of code, these
sources of code tangling must be resolved, which requires the
use of aspect-oriented software development (AOSD) techniques.
One of the AOSD techniques is Aspect Oriented Programming
(AOP). This paper describes our R&D and practical experiences
gained using AspectJ [8] in the context of resolving the crosscutting
concerns in L-Store. The rest of the paper is organized as follows:
Section 2 describes the L-Store architecture and the crosscutting
challenges we discovered during the design and implementation;
Section 3 describes how we have used AOSD techniques to address
the crosscutting challenges; Section 4 describes related research;
and Section 5 presents concluding remarks, lessons learned.

2. Design Challenges for Metadata Management
in Distributed Storage

In this section we focus on the tangled secondary concerns in meta-
data management that arise in the context of the L-Store architec-
ture. To elucidate the crosscutting nature of these concerns better,
we first outline our L-Store metadata management system architec-
ture. We then illustrate how different crosscutting concerns make
the design of such systems complex.

2.1 Logistical Storage
Logistical storage (L-Store) is a Java-based distributed file system
providing a virtualization of a single file system to the applications

1 2007/1/23

that use it. It is used for storing or writing arbitrary sized data ob-
jects and at high speeds. L-Store was created primarily to assist
campus researchers who have accumulated large datasets. It stores
metadata information of stored files in a database server for rel-
atively smaller sized metadata but has the ability to leverage the
Chord DHT [13] architecture for scalability.

L-Store has the ability to transfer huge amount of data for stor-
ing and access between remote labs and between different data
centers. It provides real time data transfer across geographically
isolated data stores. L-Store is a conceptually designed complete
virtual file system. It uses the Internet Backplane Protocol (IBP) as
the underlying abstraction of distributed storage, distributed hash
tables (DHT) as a scalable mechanism for managing distributed
metadata and software agent technology for implementing a dis-
tributed architecture.

In Internet Backplane Protocol (IBP) [1], exnodes are the point-
ers to allocations. IBP is a service that allows users to store data
in the network. IBP allows allocations up to 4 GB in size. When a
user requests an allocation, a depot (which is an IBP server) returns
a capability (or key). It is safer to use these capabilities than FTP
or HTTP for file distribution since the allocation key provides a se-
cure access to the files. Unlike ftp and http, the key does not reveal
details about the underlying file system. The IBP protocol transfers
data between IBP depots by treating the entire data as a big chunk
and transferring individual smaller slices. IBP provides fault toler-
ance and recovery features in a transparent fashion. This protocol is
used by L-Store for the storage of files distributed across different
storage sites.

2.2 Crosscutting Concerns in Logistical Storage
Our experience with the design and implementation of the L-Store
metadata storage management system revealed a number of sources
of crosscutting concerns that affect the maintainability, flexibility,
extensibility and in some cases even performance. Below we de-
scribe these crosscutting concerns and how they manifest them-
selves in the L-Store architecture. Section 3 then describes how we
resolved these design challenges.

2.2.1 Maintaining persistence in database transactions
Maintaining correct transaction control and persistence is vital for
database consistency. A transaction is a logical unit of work that
may include any number of database updates. During normal be-
havior, the issue of transaction consistency arises only in a few
cases, such as before any transactions have been executed, be-
tween the completion of a successful transaction and before the
next transaction begins, when the application terminates normally,
or the database is closed. However, in the case of failures, without
proper rollback mechanisms, transaction processing can result in
inconsistent data.

L-Store internally maintains database tables for access control
management and other functionalities it provides. There are some
tables to store the IBP exnodes, exnode mappings, user to exn-
ode mappings, protected rights of exnodes, among others. L-Store
database transactions are executed during application operations,
such as an upload of a file, which requires L-Store to update the cor-
responding metadata information stored across different database
tables.

For example, database entries that may need to be updated
based on an application action include updates to the exnode,
exnode_mappings and some access control related tables like
protected_objects and protected_rights. Thus, during this
transaction if any exception is raised or an error occurs, and the
transaction is aborted, there is a need to roll back the partially ex-
ecuted transaction. If not handled, a user may see inconsistencies
such as a file being listed as available but cannot be accessed. This
can prove to be a bottleneck for the application if it is not respon-

sible to handle these failures. Handling these database transaction
failures is a crosscutting concern since each different operation
supported by L-Store will require handling these cases in order
to maintain consistency of metadata. Thus it is necessary to make
transaction persistent so that rollbacks or other failure handling can
be seamlessly implemented.

2.2.2 Conventional methods used in database connection
pooling

As alluded to earlier, L-Store uses database servers internally for
the metadata management. Database connection management is an
important parameter that dictates resulting performance. Database
connection management involves a number of steps. First the con-
nection to the database server is established over the network. Next
the user trying to connect is authenticated with the database. Finally
a connection is established and operations are performed. Once all
activities are performed, the connection is closed resulting in the
connection and server resources being freed.

Owing to all these steps, database connection management can
be a bottleneck for applications using L-Store, whose main objec-
tive is to provide real time access to large quantities of distributed
storage virtualized as a single file system. Thus it is important to
optimize database connection management in L-Store.

Database Pooling is a process of obtaining and managing
database connections faster in an application. Conventional con-
nection pooling maintains a pool of connections in which a connec-
tion is allocated to an application when it requests a new connec-
tion and this connection is returned to the pool once the application
closes the connection.

There are several conventional database connection pooling
drivers like JDBC 2.0 which provide a rich set of features to the ap-
plications. They provide a standard way of creating and disposing
off database connections. They reduce time to obtain new database
connections but may cause extra memory and resource constraints.
Moreover, the feature richness can become excessive for many ap-
plications since they must use all the functionality provided by
these drivers even when they do not need them. And even if there
is an option to configure some of these drivers, it is very difficult to
configure them and then to test them.

In many application scenarios that use L-Store there is a need to
bypass some features so that performance can be improved. In the
current set of database drivers, this is not feasible and in most cases
these standardized drivers may have to be replaced with proprietary
drivers, which is not an acceptable alternative since the cost of de-
veloping and maintaining the code base increases. There may be
times during the lifecycle of L-Store that the connection pooling
feature may have to be toggled between on and off. With conven-
tional pooling it may require changing most of the modules that use
pooling [10]. These database connection pooling drivers provide a
good database connection pooling solution for the application, but
the application becomes tightly coupled to the driver for resource
pooling. The tangling between the resource pooling and database
connectivity concern is thus a big challenge needing resolution.

2.2.3 Authentication and authorization feature
Security is important in any software system. It is particularly an
important challenge for distributed systems and by nature it tends to
crosscut other design issues in any application. It consists of many
components like authentication, authorization, auditing, and cryp-
tography. In L-Store there is significant sharing and storing of data
across geographical distributed locations. So in order to provide
secure access and proper protection to the data and resources there
should be a security aspect for L-Store. In order to provide security
in L-Store based application we focused on the two main compo-
nents – authentication and authorization.

2 2007/1/23

Authentication is a process that verifies that user’s credentials
are valid at the time of login or in subsequent sessions. Authoriza-
tion determines if the authenticated users have permission to access
some system resource. For example user ’A’ cannot download a file
which has been uploaded by user ’B’ unless it has been permitted to
do so. Using conventional methods of providing security including
different API’s like OpenSSL, x.509 and JAAS leads to changing
multiple modules in the code base of the application. The access
control of L-Store was designed based on the entity relation of the
various database tables.

To add security to the architecture would have forced a change
to a large number of modules in our code base. After analyzing
our design we found out that the authentication part was straight-
forward and was not really an orthogonal concern. L-Store’s core
functionality was designed in such a way that it was better to use an
object-oriented approach to implement it. However, after designing
authorization we found that it was going to affect all the important
modules of L-Store. There were many file related functionalities
like upload, download, list, make directory and stat among others,
which needed verifying of access control. These challenges stem
from the conventional object-oriented design of applications, which
are tailored to meet the primary concerns but cannot accommodate
secondary concerns such as authorization seamlessly in the same
object oriented design framework and instead leads to a scatter-
ing of decision [10] i.e., the decision for operations to be checked
against permissions is scattered throughout the system, and there-
fore any modifications to it can cause invasive changes.

2.2.4 Lack of consistency in exception handling
Exception handling and logging are an integral part of almost ev-
ery application. Making applications exception safe is the respon-
sibility of the application developer. Logging may be necessary for
accounting or debugging. Often times, however, application devel-
opers ignore these secondary concerns and concentrate on the core
design challenges of the application. The secondary concerns, such
as exception handling and logging, become an afterthought in the
design of complex systems.

We observed that the design of L-Store suffered from the same
weaknesses. There are various logging techniques and toolkits that
can be used for logging. For any logging toolkit, such as log4j, de-
velopers are still required to write log statements wherever logging
is needed. Similar arguments hold for exception handling. Logging
and exceptions are interrelated to each other. Logging of exceptions
is a important part of the system. Whenever an exception is thrown,
applications need to log it so that system failures and problems can
be recorded and monitored. This type of logging is also called trac-
ing or monitoring.

Logging and exception are fundamentally secondary concerns
that crosscut the application code base. Due to code tangling, any
changes to the logging or exception handling policy will affect large
portions of the code base requiring most often manual changes.

2.3 Solution Approach: Aspect Oriented Techniques in
L-Store

We used Aspect Oriented programming to provide an elegant solu-
tion to address the outlined crosscutting concerns in L-Store. AOP
is an advanced programming technique used to separate crosscut-
ting concerns in a modularized fashion. For example, since autho-
rization is to be uniformly implemented in all the units of appli-
cation, it is better to use aspect oriented techniques so that any
changes to authorization are done at one place. In future if this ap-
plication may expand or change access control functionality it will
be very easy if we make it a separate concern.

In traditional object oriented programming languages if we add
this type of concern on top of existing system core functionality we

have to convert these secondary concerns into a class and then use
them in primary concerns. These classes would not be reusable and
they cannot be inherited and refined properly. They will ultimately
scatter across the program and will be very difficult to manage and
work with.

Since access control is a feature which tends to change with
the evolution of application, it is always a good idea to use aspect
oriented technique to design it. That way we can easily modify and
understand security aspect very clearly.

AOP provides many powerful techniques to enhance code but
sometimes it creates problems because it does not directly affect
source code. Reading through code and understanding it becomes
difficult but then even comprehension of object oriented program-
ming is also difficult often times. Also we have to make sure that the
code added or the changes made by AOP to the application should
be orthogonal in nature. But sometimes aspect can be deeply cross-
cutting, and this happens when the application state, structure and
the logic influence the aspect code in such a way that the aspect is
only applicable in one specific application context [15].

3. Applying AOP Technologies to L-Store Design
Section 2 described various secondary and crosscutting concerns
that make designing complex systems, such as L-Store challenging.
In this section we illustrate how we resolved these challenges using
AOP techniques. While addressing these secondary concerns we
took care of the changeability and extensibility issues of the code.
Since L-Store application is a Java based application hence we
used the AspectJ AOSD technology to resolve the challenges. In
the remainder of this section we first briefly describe the AspectJ
which is a AOSD technology and then show how we used AspectJ
to resolve the challenges outlined earlier.

3.1 AspectJ AOSD Technology
AspectJ [7] is a general purpose aspect-oriented extension to Java.
The aspect-oriented constructs support the separate definition of
crosscutting concerns that affect several units, of a system. This
separation of concerns allows better modularity, avoiding tangled
code and code spread over several units thereby improving system
maintainability. AOP [8] does for crosscutting concerns what OOP
has done for object encapsulation and inheritance by providing lan-
guage extensions and mechanisms that explicitly capture crosscut-
ting structure. This makes it possible to program crosscutting con-
cerns in a modular way and achieve the usual benefits of improved
modularity: simpler code that is easier to develop and maintain, and
that has greater potential for reuse.

We have applied AspectJ to resolve the crosscutting concerns
in L-Store. We used the AspectJ Development Tool (AJDT) on the
Eclipse IDE for our R&D.

3.1.1 Transaction Control and Persistence
L-Store is a Java based distributed file storage application. This ap-
plication needs to store file information i.e., meta data information
of the stored files into database server. This metadata server is used
by large number of users and is designed to support millions of
transactions. As we described in Section 2.2.1, because of lack of
persistence there could be loss of updates, inconsistency of data
and dirty reads. So it is essential for a database transaction to be
persistent and all database dependent applications to guarantee the
ACID properties [4] i.e., atomicity of operations, data consistency,
isolation when performing operations, and data durability even if
the system fails.

To address these challenges, there was a need to make some
modifications to some part of original L-Store core code to imple-
ment transaction control. Originally in every operation provided by

3 2007/1/23

L-Store, there was a call to database connect and release. The cou-
pling with the primary concern was such that in order to provide
transaction control we had to modify some of the methods which
ended up establishing and releasing connection to the database. In
the code snippet below we show parts of the original L-Store code
before the secondary concerns were modularized.

1: public void HandleRequest() throws Exception {
2: String parent = br.readLine();
3: String newDir = br.readLine();
4:
5: try {
6: Connection dbConn = null;
7: dbConn = DbUtil.getDBConnection();
8: DbLstore.insert_directory(dbConn,
9: parent, newDir);
10: bw.write(LStoreRequests.ALL_OK);
11: bw.write(LStoreRequests.EOR);
12: bw.flush();
13: } catch (SQLException sqle) {
14: throw new Exception ("Error creating
15: directory: " + sqle);
16: } finally {
17: DbUtil.releaseDBConnection(dbConn);
18: }

In the above code we see that for every method there is a sepa-
rate getDBConnection() method call (line 7). This method call is
used to creating database connection and here it is used in insert_
directory method (line 8) and then releaseDBConnection
(line 17) is called. The modularization of transaction control as
an aspect is required for lines 7 through line 17 since otherwise
any intermediate failures will result in inconsistencies. So to avoid
this database inconsistency for every call to database we introduced
an aspect called transaction control as shown in the code snippet
below.

1: /**
2: * This aspect is for transaction control
3: * of database connection
4: */
5: public aspect TransactionControl {
6:
7: /**
8: * On call of methods that match this pointcut
9: */
10: pointcut transactionMethod
11: (Connection conn)
12: :call(public static * *.*.*.DbLstore.*(..))
13: && args(conn, ..);
14:
15: /**
16: * Placeholder for transaction policies
17: */
18: Object around(Connection conn)
19: :transactionMethod(conn){
20: Object res = null;
21: try{
22: conn = DbUtil.getDBConnection();
23: res = proceed(conn);
24: commitTransaction(conn);
25: DbUtil.releaseDBConnection(conn);
26: }catch(SQLException qle){
27: rollbackTransaction(conn);
28: System.out.println ("Rolled back
29: transaction");
30: }
31: return res;
32: }
33: }

In the above code snippet line 5 is the TransactionControl
aspect created to handle transaction control of database. Line 10 is
the pointcut named transactionMethod. It picks out the set of

join points i.e., the well defined points in the program flow where
the database connection is required. It will pick all the methods of
DbLstore library having arguments as database connection. DbL-
store is a database library used by L-Store application for database
related connections. So, whenever these methods of DbLStore li-
brary are called, we need a database connection.

Whenever a method needing database connection is called in
the application code it is detected by the aspect and provides the
necessary database connection. For example, this aspect code (line
22) will establish database connection. This database connection
is passed on to the methods of DbLstore using ‘proceed(conn)’
(line 23) where ‘conn’ is the database connection. This database
connection is used in the method being called and then if everything
is fine it will commit the transaction (line 24) and then release the
database connection(line 25).

But if any kind of failure or any exception is raised it is caught
in the same advice and the database transaction is rolled back (line
27). This common algorithm is modularized into an aspect and
woven into the code base automatically by the weaving tools. In
TransactionControl aspect, rollbackTransactions() and
commitTransaction() are the methods that invokes the java.
sql.Connection.commit() and java.sql.Connection.rollback()
methods.

3.1.2 Database Connection Pooling
In order to optimize database connection pooling we used AspectJ
to add database connection pooling. As discussed in Section 2.2.2
there are various constraints in bypassing traditional database con-
nection pooling drivers when not required, and these issues can be
overcome by using aspectized database connection pooling [10].

In this approach, a pre-existing driver-supported connection
pooling will act as the secondary pooling strategy because AspectJ
will be used to override the default connection pooling strategy.
This type of connection pooling is easy to use. Database connection
pooling functionality generated by AspectJ is customized accord-
ing to needs of application. Using AspectJ we can provide connec-
tion pooling for only those modules where the benefits of improved
speed outweighs the cost of extra space [10]. This implementation
of database connection pooling is based on [10]. The advantage of
this scheme is that only selected clients will be impacted by the
new strategy, which can be driven by modifying a pointcut to select
any number of packages and classes in an application. At any time,
if the specialized strategy is not needed, an advice can nullify the
effect.

Two types of pointcuts are designed in this case:
Connection creation: This pointcut (see code snippet below) is

used to capture all the join points where an L-Store primary concern
needs a database connection from the pool instead of creating a new
one.

1: pointcut connectionCreation()
2: : call(public static Connection
3: org.lstore.util.DbUtil.getDBConnection());

Connection destruction: This pointcut (see code snippet be-
low) is used to capture all the join points where the connection is
returned to the pool of database connections instead of destroying
it.

1: pointcut connectionRelease
2: (Connection connection)
3: : call(public void org.lstore.util.
4: DbUtil.releaseDBConnection(Connection))
5: && target(connection);

4 2007/1/23

The above two pointcuts will be used in the following manner.
First, we create an advice for the connection pooling logic for any
database connection to use it from a pool instead of creating a new
one. This advice is called connectionCreation and is shown
below.

1: Connection around()
2: : connectionCreation() {
3:
4: Connection connection= null;
5: try{
6: connection = connPool.getPoolConnection();
7: if (connection == null) {
8: connection = proceed();
9: connPool.registerPoolConnection
10: (connection);
11: }
12: }catch(SQLException e){
13: //Handle exception
14: }
15: return connection;
16: }

The next advice is to put the connection back to the pool after
using it as seen in the pointcut connectionRelease below. In
this database connection release aspect we use the “around” advice
indicating the condition when the aspect must be applied.

Whenever core methods or the transaction control aspect try
to release any database connection this advice will try to put the
connection into the connection pool and on failure, it will use
“proceed” to release database connection.

1: void around(Connection connection)
2: : connectionRelease(connection) {
3:
4: if (!connPool.putPoolConnection(connection))
5: proceed(connection);
6: }

3.1.3 Authentication and Authorization:
Section 2.2.3 describes how security is a one of the major crosscut-
ting concern which can be addressed by aspect oriented techniques
very well. For authentication we did not use any AOSD techniques
so we do not discuss this issue, however, aspects were required for
authorization.

We implemented a very basic preliminary access control. To
authorize users and to keep track of what are the users’ rights we
decided to use the Policy Machine model. A Policy Machine model
(PM) [5] is a standardized access control mechanism and requires
changes only in its configuration in the enforcement of arbitrary
and organization specific attributes-based access control policies.
Some of the enforceable policies are combinations of different
access control policy instances like Role-Based Access Control
(RBAC), Multi-Level Security (MLS) and Identity-Based Access
Control (IBAC).

To address the crosscutting challenges with authorization, as a
proof of concept, we started with the basic idea of Identification
Based Access Control (IBAC) policy in L-Store. In future we plan
to implement the entire PM. IBAC is a very straightforward access
control mechanism where the owner of the resource can set access
control. Most of the file systems like Unix and NTFS use this type
of access control. For authorization, most of the access control
was done using proper entity relation between database tables. The
database table relationship is designed in such way that it follows
IBAC. In Figure 1 we can see that a user can have read or write
permissions for files. If the user is the owner of the directory by
default it can upload, stat, list or download file. If a user is not the

owner of the file it cannot perform all these operations. A user can
grant permissions to any other user to access file for either read or
write.

Figure 1. Identification Based Access Control configuration

For this secondary concern we had to add some code directly
into core code. Following are the code snippets showing some part
of code to check permissions of the user logged in. This aspect
was called every time a user performs some system call like make
directory, add user, change permission, grant permissions of object,
etc.

1: Object around(BaseTransaction tran)
2: :execution(public * org.lstore.core.
3: BaseTransaction.perform(..)) && this(tran){
4:
5: try {
6: if(tran.verifyAccess())
7: return proceed(tran);
8:
9: } catch(Exception ex) {
10: ex.printStackTrace();
11: }
12: return LStoreRequests.createBasicReply(false);
13: }
14:

In this code snippet we see an advice which is called on execu-
tion of the “perform” method of any transaction. For all transaction
we verify access rights (line 6) and if authorized, the transaction
proceeds with the actual functionality but if the authorization fails,
a reply (line 12) to client is sent indicating unauthorized access.
As a side effect of addressing these challenges exception handling
is also addressed as in the verifyAccess method (line 6) or in
proceed (line 7) which is the call for original functionality.

3.1.4 Logging and Exception Handling:
Logging and Exception Handling are the most common examples
to use aspects. They are an inherent crosscutting concern and tend
to spread across entire application code. Exception handling was
already provided in L-Store but everywhere these exceptions were
implemented differently and inconsistently since they were imple-
mented by different people at different stages of development.

In order to generalize all the exceptions we used softened ex-
ception handling of AspectJ. For exceptions which are not handled
those exceptions are caught by using ‘after throwing’ advice. We
also created some aspects to trace, profile and debug application
code.

4. Related Work
The implementation of secondary concerns like logging, exception
handling, transaction control, security as crosscutting concerns is
not new. All these crosscutting concerns have been modularized
in prior research, however, predominantly applied to enterprise
computing. Our R&D demonstrates how these principles can be
seamlessly applied to the domain of high performance computing.

There has been substantial prior research using AspectJ [9] for
various crosscutting concerns but most of these research artifacts
concentrate on one or at most two crosscutting concerns at a time on
a particular system. The domain we are concentrating on requires
us to manage multiple crosscutting concerns simultaneously.

5 2007/1/23

In their papers [3] and [11], aspect oriented techniques have
been used to modularize security aspects in an object oriented ap-
plication. Other important concerns, such as transactional control,
have also been addressed using AOSD techniques. For example,
in their work [12] the authors implemented distribution and persis-
tence aspects in a web based information system. The transaction
control concern we addressed in this research is similar to these
related works except that our work is demonstrated in the context
of high performance computing and moreover, in the context and
presence of multiple, simultaneous and different crosscutting con-
cerns.

In the field of parallel-distributed systems, the use of AOSD is
very limited. In the work [6] the authors have used AspectJ for sep-
arating crosscutting concerns like concurrency and parallelization
concerns from core functionality. The authors demonstrate how the
tangling of such concerns directly into scientific core functionality
leads to increase in development complexity and decrease of code
reuse. If readily portable parallel code is desired, it must be easy to
change the scheme employed for achieving high-performance e.g.,
adapting the code to suit computer clusters or supercomputers; code
tangling, of any form, makes this difficult.

5. Conclusion
This paper presented a case study illustrating how aspect oriented
software development (AOSD) is useful to resolve the tangled con-
cerns in the L-Store distributed storage management system used
by high performance applications. We demonstrate the use of As-
pectJ, which is a Java-based AOSD tool, to address the crosscutting
challenges arising from issues that were orthogonal to the primary
design concerns of L-Store, such as persistence of transactions,
database connection pooling, authorization, and exception handling
and logging.

Often times application developers do not think “ahead of time”
and miss some important but secondary design considerations,
which when addressed later result in them getting tangled across
the entire code base. Such code tangling makes it extremely diffi-
cult to maintain and extend the software. AOSD techniques provide
the means to factor out and modularize these crosscutting concerns,
which can be seamlessly and selectively woven into the fabric of
the software.

Lessons Learned
There are many concerns like logging and exception handling
which are perfect examples of concerns that can be cleanly sep-
arated out from the primary concerns, and plugged into the fabric
of the application code base. There are however other secondary
concerns that cannot be cleanly separated out from the core logic
because of the tight integration with the core functionality. For ex-
ample for security and transaction control we had to modify the
system code to some extent.

Some of the limitations of aspect oriented programming we
learned during this work are that it can sometimes increase the
complexity in the design of the basic architecture since factoring
out some secondary concerns is hard due to the need for minor but
invasive changes in existing code base.

The problem is even more prominent when the modularization
of secondary concerns and additional development of primary con-
cerns goes on in parallel. In our case we had to deal with a situation
where application developers were restructuring the code base as
we were modularizing the secondary concerns, which impacted our
effort since it affected the conditions when the aspects were to be
woven in.

Irrespective, AOSD helps in the overall reduction of code tan-
gling and increases the separation of concerns.

Acknowledgments
This research was supported in part by a grant from the National
Foundation (NSF) CNS-SMA-0509296.

References
[1] A. Bassi, M. Beck, G. Fagg, T. Moore, J. S. Plank, M. Swany, and

R. Wolski. The internet backplane protocol: A study in resource
sharing. In International Symposium on Cluster Computing and the
Grid, Berlin, Germany, May 2002.

[2] M. Beck, Y. Ding, T. Moore, and J. S. Plank. Transnet architecture
and logistical networking for distributed storage. In Workshop on
Scalable File Systems and Storage Technologies, San Francisco, CA,
USA, September 2004.

[3] B. De Win, B. Vanhaute, and B. De Decker. How aspect-oriented
programming can help to build secure software. Informatica,
26(2):141–149, 2001.

[4] R. Elmasri and S. B. Navathe. Fundamentals of database systems
(2nd ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City,
CA, USA, 1994.

[5] D. F. Ferraiolo, S. Gavrila, V. Hu, and D. R. Kuhn. Composing
and combining policies under the policy machine. In SACMAT ’05:
Proceedings of the tenth ACM symposium on Access control models
and technologies, pages 11–20, New York, NY, USA, 2005. ACM
Press.

[6] B. Harbulot and J. R. Gurd. Using AspectJ to separate concerns
in parallel scientific Java code. In K. Lieberherr, editor, Proc. 3rd
Int’ Conf. on Aspect-Oriented Software Development (AOSD-2004),
pages 122–131. ACM Press, Mar 2004.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with aspectj. Commun. ACM,
44(10):59–65, 2001.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. In ECOOP ’01: Proceedings
of the 15th European Conference on Object-Oriented Programming,
pages 327–353, London, UK, 2001. Springer-Verlag.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[10] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Program-
ming, chapter 13. Manning Publications Co., Greenwich, CT, USA,
2003.

[11] V. Shah and F. Hill. An aspect-oriented security framework: Lessons
learned. In B. De Win, V. Shah, W. Joosen, and R. Bodkin, editors,
AOSDSEC: AOSD Technology for Application-Level Security, Mar
2004.

[12] S. Soares, E. Laureano, and P. Borba. Implementing distribution
and persistence aspects with aspectj. In Proceedings of OOPSLA’02,
Object Oriented Programming Systems Languages and Applications.
ACM Press, November 2002.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In Proceedings of the ACM SIGCOMM ’01 Conference, San
Diego, California, August 2001.

[14] A. Tackett, B. Brown, L. Dawson, S. de Ledesma, D. Kaul,
K. McCaulley, and S. Pathak. Qos issues with the l-store distributed
file system, Oct 2006.

[15] B. Vanhaute, B. D. Win, and B. D. Decker. Building frameworks in
aspectj. Budapest, Hungary, 2001.

6 2007/1/23

