
Automating Systems QoS Design using Model
Transformations

Amogh Kavimandan and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University

Nashville, TN
{amoghk, gokhale}@dre.vanderbilt.edu

ABSTRACT
We describe Quality of service pICKER (QUICKER), a model-
driven QoS mapping toolchain for supporting the design
and evolution of application QoS. QUICKER automates the
mapping of QoS requirements onto platform-specific QoS
configuration options by (1) choosing appropriate subset of
QoS options for given QoS policies and (2) assigning val-
ues to each of these selected QoS options. QUICKER also
provides support for validating the generated QoS configu-
rations and resolving any dependencies between them.

Categories and Subject Descriptors
D.1.2 [Automatic Programming]: Program Transforma-
tion

General Terms
Middleware Configuration Design

Keywords
Model-driven development, model tansformations, compo-
nent middleware, web services, SOA, CCM

1. INTRODUCTION
Service Oriented Archictures (SOA) such as Web Services

(WS) and Component middleware technologies such as En-
terprise Java Beans (EJB) and CORBA Component Model
(CCM) have raised the level of abstraction for the applica-
tion developers by separating functional and non-functional
aspects during application software development lifecycle.
Such systems software technologies can be used by the ap-
plication developers to (1) allocate CPU, network and Op-
erating System (OS) resources a priori, for various system
building blocks, (2) specify event registration, delivery, and
filtering mechanisms for asynchronous communications be-
tween the application functional building blocks, (3) (re-
)configure, and (re-)deploy target applications, and (4) mar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’07 November 5-9, 2007, Atlanta, Georgia.
Copyright 2007 ACM [to be supplied] ...$5.00.

shal/demarshal communication requests, configure transac-
tional and persistence properties of applications. In an effort
to support a wider range of target application domains, these
systems software technologies have evolved into a highly con-
figurable and customizable systems software platforms that
provide a number of configuration mechanisms to satisfy
non-functional requirements of applications in each of these
target domains. Owing to such a flexibility however, the size
of the system software configuration space (i.e., the configu-
ration mechanisms suited for an application and their appro-
priate value set) becomes large. A comprehensive knowledge
of various configuration options, their inter-dependencies,
and how they impact application-level requirements is crit-
ical to correctly perform configuration of the systems plat-
form. Failure to carefully map policies to low-level config-
uration options will lead to a sub-optimal system software
configuration degrading the overall application performance,
or worst run-time errors that are costly and difficult to de-
bug.

This poses a significant challenge for application develop-
ers who are seldom experts at performing optimal configu-
ration of the systems platform for their application.
Our Solution. We have developed QUality of Service pIC-
KER (QUICKER), a model-driven engineering (MDE) QoS
mapping toolchain to support QoS design of the implemen-
tation systems software(s). QUICKER provides a system
composition language to enable application developers to
annotate applications with QoS policies i.e., QoS require-
ments of applications. The current implementation of QUI-
CKER supports QoS configuration of applications imple-
mented using CCM and WS systems software platforms.
It also defines model transformations to automatically map
these application QoS policies to a set of platform-specific
QoS configuration options that are required to satisfy the
specified QoS policies. Finally, QUICKER uses generative
techniques to synthesize model-checking input of the ap-
plication to verify various QoS options generated through
model transformations.

2. MODEL-DRIVEN QoS MAPPING FOR
SYSTEMS SOFTWARE PLATFORM

Figure 1 shows the model-driven QUICKER toolchain for
supporting the design and evolution of application QoS. We
discuss various capabilities of the toolchain in this section.
Challenge 1: Capturing application QoS policies. As
already stated, application developers are domain experts
with a thorough understanding of the application business
logic but often lack the knowledge about QoS configuration

1

Legend

Systems Composition Language

QoS Policy
Meta-Model

Assembly
Meta-Model

Package
Meta-Model

Model
Transformation

Analysis Tools

Application Developer

CQML

QoS
Configuration
Meta-Model

A
pp

lic
at

io
n

C
on

fig
ur

at
io

n
E

vo
lu

tio
n

GReAT

Graph Rewriting Rules

G G’

G G’

G G’

G G’ G G’ G G’

Systems Compisition Language

QoS Policy
Meta-Model

Assembly
Meta-Model

Package
Meta-Model

in
st

an
ce

of

CQML

QoS
Configuration
Meta-Model

CQML
Models

in
st

an
ce

of

QUICKER Meta-models
Existing Composition

Meta-models

Application-
level QoS

requirements

Application
Models

Figure 1: Model-driven QUality of service pICKER
(QUICKER) Toolchain

space of the systems platform to optimally configure the sys-
tems platform for their respective applications.
Solution: Domain-specific QoS policy specification
using QUICKER. We have developed a QoS Policy DSML
that allows specification of desired application QoS policies.
The QoS Policy meta-model shown in Figure 1 models the
QoS Policy DSML, and has the semantics of the applica-
tion QoS requirements. By focusing on what is expected
from the application (i.e., application QoS requirements)
rather than how the application QoS may be achieved (i.e.,
low-level platform-specific QoS options), QUICKER enables
easier and intuitive application QoS specification.
Challenge 2: Identifying the set of platform-specific
QoS options from application policies. Once applica-
tion QoS policies are captured using the QoS Policy DSML,
these policies still need to be mapped onto correct platform-
specific QoS options. Current solutions to resolve this chal-
lenge are ad-hoc, i.e., manually identifying the QoS options
from the given application QoS policies. An application typ-
ically goes through several iterations during its software de-
velopment cycle (and possibly, during its maintenance cycle,
in order to incorporate new requirements). Without auto-
mated tool support, particularly for large-scale applications,
it is time consuming, error prone and in some cases infeasible
for application developers to correctly configure the systems
software for a given application QoS policy set.
Solution: Automated QoS policy mapping through
model transformations. We have defined transformation
algorithms using GReAT [1] toolchain that translate the
QoS policies into detailed, platform-specific QoS configura-
tion options. QUICKER model transformations define rules
that perform the following activities: (1) choosing an ap-
propriate subset of QoS options that high-level application
QoS policies map to, and (2) choosing valid values for each
of these QoS options to perform QoS configuration of the
systems platform. As shown in Figure 1, transformations
are defined in terms of meta-models, and thus can be used
repeatedly for any application models that conform to the
QoS Policy DSML. The generated QoS options are them-
selves models to allow for further analysis/transformations.
Challenge 3: Validating platform-specific QoS op-
tions. QoS options for an application may be associated at
various levels of granularity at the implementation systems

platform. For example, RT-CCM configuration options have
component-level associations, RT event channel service op-
tions have asynchronous connection-level associations, and
WS Reliable Messaging options have port-level (i.e., event
source and/or event sink) associations. Depending on their
associations, QoS options are often dependent on each other
and hence a change in value of one QoS option may affect
many other QoS options [2]. Thus, such dependencies must
be resolved before the application can be prepared for de-
ployment. Again, manual approaches to resolving such a de-
pendency are limited in their applicability and do not scale
as the size of the application increases.
Solution: Use model-checking to validate (gener-
ated) QoS options. QUICKER extends the Bogor Input
Representation (BIR) [3] with new constructs that enable
specification and model-checking of system properties more
closely to the domain of implementation platform. Using
these extensions, a systems platform-based application can
be expressed in terms of BIR and the properties of the appli-
cation(i.e., QoS options) can be validated using the model-
checking framework. QUICKER uses generative techniques
on the models of QoS options in order to synthesize: (1) in-
put to Bogor model-checking framework in order to model-
check the QoS options, and (2) descriptors in middleware-
specific format that are required to configure application
QoS before deployment.

3. CONCLUDING REMARKS
Ad-hoc, manual approaches to mapping application QoS

to valid platform-specific QoS options are tedious, error-
prone and do not scale with the size of application. In this
paper we discussed QUICKER, a model-to-model transfor-
mation toolchain that provides an automated, scalable, and
reusable approach to the QoS mapping challenge. QUICKER
provides intuitive modeling abstractions to facilitate appli-
cation QoS policy specification and model transformation
algorithms that map these QoS policies to the platform-
specific QoS options that will ultimately achieve the desired
application QoS. QUICKER is available as open-source from
www.dre.vanderbilt.edu/CoSMIC/.

4. REFERENCES
[1] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the

Use of Graph Transformation in the Formal
Specification of Model Interpreters. Journal of
Universal Computer Science, 9(11):1296–1321, 2003.

[2] Amogh Kavimandan, Krishnakumar Balasubramanian,
Nishanth Shankaran, Aniruddha Gokhale, and
Douglas C. Schmidt. QUICKER: A Model-driven QoS
Mapping Tool for QoS-enabled Component Middleware.
In Proceedings of the 10th IEEE International
Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, Santorini Island,
Greece, May 2007.

[3] Robby, Matthew Dwyer, and John Hatcliff. Bogor: An
Extensible and Highly-Modular Model Checking
Framework. In Proceedings of the 4th Joint Meeting of
the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), Helsinki,
Finland, September 2003. ACM.

2

QUICKER
Policy DSML Model

Transformation
Options
DSML Model Checker Target Platform

High-level Application Requirements Application-specific QoS Configuration Options

QoS Mapping of requirements to QoS options using GReAT Bogor Input Representation of Application

Figure 2: QUality of service pICKER (QUICKER)

APPENDIX
A. DEMONSTRATION DETAILS

Our demonstration will use a representative application
scenario to show the automation capabilities of QUICKER
open-source model-driven toolchain. The QUICKER toolchain
and the overall QoS mapping process is shown in Figure 2.
In particular, our demonstration will illustrate the following
three functionalities of the toolchain:

• QoS Policy domain specific modeling language (DSML)
which is used by the application developer to describe
the application QoS requirements.

• QoS Policy Mapping which translates the user-specified
application QoS requirements into middleware-specific
configuration options.

• Generative capabilities in QUICKER which generate
model-checking input from the application model and
deployment artifacts that are required to ultimately run
the application using runtime infrastructure of middle-
ware platform(s).

A.1 Modeling Capabilities in QUICKER
Firstly in this section of the demonstration, in order to

motivate the need for a model-driven approach to QoS map-
ping, we will explain the application scenario used, and why
automation of QoS design and evolution for such a represen-
tative scenario is critical. We will give a brief overview of
Generic Modeling Environment (GME) that is used as the
meta-programmable framework for development of our QoS
Policy DSML in QUICKER.

Next, we will explain the DSML shown in Figure 3 and
its support for modeling QoS requirements in various QoS
dimensions (such as Real-time CCM, event channel service,
WS-notification, WS-Reliable Messaging) and middleware
platforms (such as Web Wervices and CCM). We will demon-
strate these modeling capabilities by developing a QoS model
of the application that captures its QoS requirements com-
pletely in one QoS dimension. For example, Figure 4 shows
Real-time CCM requirements of an application modeled us-
ing QoS Policy DSML.

Finally, we will compare this model against QoS speci-

Real-time CCM and
Event Channel QoS
dimensions meta-

models in QUICKER

Figure 3: QoS Policy DSML

fication using low-level, platform-specific configuration op-
tions (either using a DSML, or textual declarative XML-
like notation) to show that modeling application QoS using
QUICKER is considerably simpler than existing approaches.

A.2 Automated Translation of QoS require-
ments to platform-specific QoS Options

In this section, We will give an overview of Graph Trans-
formation and Rewriting (GReAT) model transformation
toolchain used for automated mapping of QoS requirements.
We will also explain the challenges involved in mapping appl-
ication-level QoS requirements to middleware mechanisms,
i.e., middleware configuration options required to realize
these requirements.

Next, we will show how QUICKER uses model transfor-
mations defined using GReAT that automatically translate
application-level QoS policies into a subset of implementa-
tion platform-specific QoS options. This translation involves
not only choosing the right set of QoS options from applica-
tion requirements but also using appropriate values for these
options such that the requirements can be satisfied. We ex-
plain a sample transformation rule as shown in Figure 5 in
order to exemplify the semantic translation of a specific ap-
plication QoS policy into a (set of) platform QoS option(s).
QUICKER model transformations generate QoS options as
models as shown in Figure 6, such that they can be used
further by other analysis/transformation tools.

A.3 Generative Capabilities in QUICKER
Finally, the demonstration presents the generative capa-

bilities of QUICKER. QUICKER Model interpreters devel-
oped for QoS Policy DSML are used in this step to synthe-
size:

• Input to Bogor model-checking framework. As part
of the QUICKER toolchain, we have developed exten-
sions to Bogor that allow application specification and
model-check application properties more closely to im-
plementation middleware, we have defined composite
constructs in Bogor that represent application struc-
ture and properties (i.e., QoS options) as though they
were native BIR constructs.

• Deployment Descriptors in middleware-specific format.
In preparation of application deployment, the runtime

3

Sample modeling
element in QoS Policy

DSML and its
(modifiable) attributes

Parts browser in
GME showing
supported QoS
Policy elements

Application model in
QoS Policy DSML

Figure 4: Application Model specifying Real-time
CCM Requirements

Real-time CCM
policies translation

using GReAT

QoS Mapping rule for
choosing correct options for a
(user-specified) QoS Policy

Figure 5: GReAT-based Model Transformations for
QoS Policy Translation

Figure 6: Transformation-generated Platform-
specific QoS Options

infrastructure of the middleware would use these ap-
plication descriptors such that application QoS can be
configured.

The complete QUICKER QoS Policy DSMLs, GReAT-
based model transformations, and model interpreters are
part of the CoSMIC toolchain and are available as open-
source from http://www.dre.vanderbilt.edu/CoSMIC.

4

