
CQML: Aspect-oriented Modeling for Modularizing and
Weaving QoS Concerns in Component-based Systems

Sumant Tambe Akshay Dabholkar Aniruddha Gokhale
ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA

{sutambe,aky,gokhale}@dre.vanderbilt.edu

Abstract
Designing large, component-based systems with multiple quality of
service (QoS) concerns is a hard problem because these concerns
crosscut the system functional composition concerns and get tan-
gled with other para-functional concerns, such as deployment. Cur-
rent model-driven engineering (MDE) system design tools tend to
focus predominantly on system functional composition, and tightly
couple QoS modeling concerns with structural concerns. Moreover,
the tools are often component technology-specific although the no-
tion of composition and QoS are inherently platform-independent
resulting in multiple MDE tools that reinvent solutions to the same
problems.

This paper describes the Component QoS Modeling Lan-
guage (CQML), which is a reusable, platform-independent, aspect-
oriented modeling approach for separation of crosscutting concerns
for QoS properties. CQML is applicable to all those functional
composition modeling languages which conform to a small set
of invariant properties. The join point model of CQML enables
declarative QoS aspect modeling and automated weaving of QoS
concerns into the base modeling language. We evaluate the capa-
bilities of CQML for a variety of base modeling languages and
provide quantitative results indicating the modeling effort saved in
automating the weaving of QoS concerns.

Categories and Subject Descriptors D:Software [2:Software En-
gineering]: 2:Design Tools and Techniques

General Terms Modeling, Crossutting, Composition

Keywords AOM, MDE, DSML, QoS, Aspects.

1. Introduction
Recent advances in model-driven engineering (MDE) [22] have re-
sulted in MDE tool suites for designing large, component-based
software systems with multiple quality of service (QoS) require-
ments, such as predictable latencies, availability and security. Re-
cent successes with MDE tools in this area include the Embedded
Systems Modeling Language (ESML) [11] for avionics mission
computing, SysWeaver [3] for embedded systems, and our earlier
work on the Platform Independent Component Modeling Language
(PICML) [1] for a range of distributed, real-time systems. These

[copyright notice will appear here]

MDE tools provide support for component-based software engi-
neering (CBSE) [25] wherein systems can be modeled by compos-
ing multiple different components, each encapsulating a reusable
unit of functionality.

Despite the number of benefits of these MDE tools and tech-
niques, such as enhanced reusability and extensibility, however, de-
signing operational QoS-intensive systems remains a significantly
hard problem due to the multiple crosscutting para-functional prop-
erties (i.e., the secondary concerns) that must be satisfied simul-
taneously along with system functional composition (i.e., the pri-
mary concern). Figure 1 depicts a part of the para-functional con-
cern space we are interested in, which includes the dimensions of
QoS and deployment issues that are scattered across the primary
dimension of system functional composition, and are tangled with
each other.

Figure 1: Para-functional Concern Space in CBSE

As a concrete example, consider how the algorithms and tech-
niques used to enhance system availability – a QoS concern – in-
cluding one or more replication schemes, such as active or passive,
may have to be incorporated at different levels of granularity of sys-
tem functional composition e.g., on a per-component basis, across a
group of components, or across nested component groups. Replica-
tion inherently requires additional functional components that must
be added and composed. Depending on whether the replication
scheme used is active or passive, a group communication multi-
cast protocol with appropriate duplicate request/reply suppression
capability is required, or complex state synchronization schemes
are required to be added to the system functional composition di-
mension. This illustrates the scattering of the availability concern
(and QoS in general) across the system functional composition di-
mension.

1 2007/10/15



Scattering (or crosscutting) of availability (and in general QoS)
along the primary dimension of system functional composition is
not the only challenge. As depicted in Figure 1, the availability
concern impacts other para-functional system concerns, such as de-
ployment. A deployment is essentially a binding of a component or
group of components to a node of the system. The impact of the
availability concern on the deployment concern is also non trivial
since the deployment must now account for placing the replicated
functionality on the system resources such that the resulting avail-
ability of the overall system is maximized. This demonstrates the
tangling of the QoS and deployment concerns.

The impact of scattering and tangling of para-functional con-
cerns with system functional composition is non trivial for MDE
design tool users i.e., the system developers. First, they must reason
about the entire system design in the presence of the crosscutting
and tangled concerns. This is often the result of a MDE tool suf-
fering from the tyranny of dominant decomposition [20], wherein
the tool provides support for system composition and may also pro-
vide different views to provide a visual separation of concerns. Yet
the developers must still perform the onerous and often error-prone
task of adding substantial new elements to the system design to ad-
dress the para-functional concerns, and that too in a non intuitive
manner.

Second, these problems are compounded by the heterogeneity in
the available MDE tools. The variability in the semantics and pro-
gramming models of contemporary component platforms, such as
the CORBA Component Model (CCM), J2EE/EJB and .NET Web
Services often make the MDE tools platform-specific although they
all support the notion of system composition, QoS and deployment,
all of which are inherently platform-independent issues. This re-
quires system developers, who are domain experts, to use different
platform-specific MDE tools depending on the platform for which
their systems are designed.

This paper describes our solution to address these two limi-
tations of MDE design tools for CBSE. We describe the Com-
ponent QoS Modeling Language (CQML), which is a reusable
and platform-independent aspect oriented modeling (AOM) [7]
framework developed using the Generic Modeling Environment
(GME) [13]. CQML can work across a wide range of system func-
tional composition modeling languages (or base languages) as long
as they conform to a small set of invariant properties.

These invariant properties define the join point [12] model of
CQML, which promotes QoS concerns to first class entities, and
enables separation of concerns [20] and modularization for differ-
ent QoS properties into what we call declarative QoS aspects. It
enables the binding of QoS advice to the join points in the form of
QoS aspect models composed within the base modeling language.

We evaluate CQML by illustrating an example of an availabil-
ity QoS advice and how its impact on deployment planning can be
woven back automatically in the existing base models. We demon-
strate this capability across multiple base languages.

The remainder of this paper is organized as follows: Section 2
describes the design challenges for CQML; Section 3 describes the
AOM design of CQML; Section 4 evaluates the benefit of CQML
using a sample deployment planning tool for multiple composition
modeling languages; Section 5 describes related research; Section 6
discusses the benefits and limitations of CQML; and Section 7
describes concluding remarks outlining lessons learned and future
work.

2. CQML Design Challenges
Section 1 outlined two shortcomings of contemporary MDE tools
used in CBSE. Resolving these shortcomings in a reusable, platform-
independent modeling capability like CQML poses certain design
challenges, which we describe below.

2.1 Challenge 1: Platform-independent Support for
Declarative Aspects

It is well known [22] that MDE raises the level of abstraction at
which various properties of large systems including functional and
para-functional properties can be reasoned about. For component-
based systems, MDE tools will typically provide intuitive abstrac-
tions for system composition as shown in Figure 2 . Although a
higher level of abstraction is desirable, experience have shown that
without proper support for modularization and separation of con-
cerns, these tools suffer [7] from the tyranny of dominant decom-
position [20]. In other words, the system composition support pro-
vided by these MDE tools is often geared toward only one dominant
dimension of decomposition: the functional dimension.

Figure 2: Software Model of System Functional Composition in
CBSE

Several challenges stem from this limitation because of lack
of support for decomposition along the para-functional dimensions
such as QoS. For example, to assure high availability of systems,
constructing models that represent placement decisions is tedious
because the deployer has to make sure that availability require-
ments of the system are met. This is a serious case of scattering
at the modeling level. The tyranny of dominant decomposition at
the modeling level therefore results in the scattering and tangling
of para-functional concerns as shown in Figure 3.

Figure 3: Scattering and Tangling of Para-functional Concerns

To address this problem, the MDE framework must provide
support for modularizing different para-functional QoS concerns
so that the system developers are not required to deal with the
tangled system concerns that resemble the scenario depicted in
Figure 3. Since CQML is meant to be an AOM capability, the
modularization and subsequent weaving must be provided as a
design-time capability unlike the aspects provided by AspectJ as
an imperative programming capability. Thus, we are required to
express declarative QoS aspects in a modularized way, and define a
join point model [12] along the functional dimension of the system
that will enable system developers to bind the declarative QoS
aspect to well-defined join points in a model.

2 2007/10/15



Additionally, since QoS properties are generically applicable to
any component-based system, we require that CQML support this
modularization at a platform-independent level yet enable choosing
and activating the join points at the level of the underlying platform-
specific functional composition modeling language, which we call
a base language. In doing so we are required to identify the basic
set of invariant properties that the range of platform-specific base
modeling languages must support so that the join point model of
CQML will apply to it. Section 3.1 describes how we address this
challenge.

2.2 Challenge 2: Expressive Modularization of QoS
Concerns

To enhance the usefulness of the MDE design tools, system de-
signers should be able to leverage QoS modularization capabilities
of CQML integrated with the MDE tool, and express the intended
QoS requirements of the system using higher level intuitive, ab-
stractions. Successive changes to the intended system QoS require-
ments must be accomplished at the higher level of abstraction only.

Addressing expressive modularization of QoS concerns at the
modeling level requires careful design consideration. Figure 4
shows an example of a structural model of an avionics mission
computing application resulting from a lack of expressive power
and modularization at the modeling level.

Figure 4: Scattering of Availability Concern in the Avionics
Mission Computing Scenario

To overcome this problem, CQML should provide a modeler to
express only the desired QoS concerns separated out from other de-
tails and using intuitive notations. Such an expressive scheme must
be compatible with the join point model discussed in Section 2.1.
Furthermore, system developers often want to express several dif-
ferent QoS properties in the system. A modeling language cannot
be general enough to provide a plethora of QoS properties that may
be conceived in future. CQML should therefore provide an exten-
sible language so that the modeler can define new QoS properties
rapidly. Section 3.2 describes how we address this challenge.

2.3 Challenge 3: Automated Weaving of QoS Advice
An additional challenge faced by system developers is the need to
reason about various properties of the system after QoS concerns
have been modeled. Consider for example that the system devel-
oper is interested in reasoning about the impact of modeling the
availability concerns on the resulting deployment of the entire sys-
tem shown in Figure 4. The system designer is forced to perform
two actions.

First, the availability requirements modeled on the GPS compo-
nent forces the modeler to add the two replicas of the GPS compo-
nent in the structural view of the model. This complicates the rea-
soning since the availability requirements are getting tangled with
the structural dimension. Second, the system developer has to de-
termine a placement for replicas of the GPS component along with

other business components and then model the actual association
of components to nodes.

Both these actions are tedious and prone to errors. Moreover,
with increasing model size, it may become infeasible to manually
model these extra elements that are introduced by the QoS con-
cerns. Ultimately, however, having such an integrated model is de-
sired since most MDE tools provide a set of model interpreters
that can synthesize different artifacts for their platforms. For ex-
ample, MDE tools for component middleware platforms may pro-
vide model interpreters that synthesize the deployment and config-
uration metadata for their middleware platforms. This metadata is
usually made up of verbose XML and is not the right abstraction at
which the QoS-imposed metadata can be woven into. Therefore it
is advantageous to leverage existing model interpreters in the MDE
tools.

This requires that CQML should provide the means to automat-
ically weave in QoS-specific advice into the base models. Since
CQML operates at a platform-independent level, such a weaving
should be feasible at this level. There exist tools like C-SAW [6] to
weave in arbitrary modeling elements into existing models. How-
ever, this incurs a learning curve for system developers to under-
stand tools like C-SAW and its language called the Embedded
Constraint Language (ECL). Section 3.3 describes how we address
these challenges by leveraging C-SAW but by automatically gener-
ating the desired ECL scripts corresponding to the QoS concerns.

3. CQML: An AOM Approach to
Platform-independent QoS Modularization
and Weaving

In this section we describe the design of the Component QoS Mod-
eling Language (CQML), which is a platform-independent, aspect
oriented modeling (AOM) framework that allows component-based
system developers and designers to express QoS design intent at
different levels of granularity using intuitive visual representations.
CQML has been developed using the Generic Modeling Environ-
ment (GME) [13] toolkit. CQML is capable of separating QoS
modeling crosscutting concerns from the primary concern of sys-
tem functional composition supported by a multitude of platforms
because CQML depends only on the commonalities present across
the component-based systems. Some prominent examples of com-
ponent platforms are CORBA Component Model (CCM) and En-
terprise Java Beans (EJB). Figure 5 describes the AOM process of
CQML. In the remainder of this section we describe how CQML
supports this process.

3.1 Resolution 1: Platform-independent Support for
Declarative QoS Aspects

We now describe how CQML resolves Challenge 1 from Sec-
tion 2.1 by enabling the modularization of different para-functional
QoS concerns in a platform-independent manner.

3.1.1 Identifying Invariant Properties of Component-based
Structural Modeling Languages

Our focus is on general component-based systems, which are com-
posed using multiple components orchestrated to form application
workflows. A component can either be a single indivisible unit
of functionality or a collection of components assembled together
as a reusable and deployable unit. Semantically rich component-
based frameworks often have first class support for connectors and
ports along with components. The structural (i.e., functional) arti-
facts of a component-based system can be realized using the above-
mentioned primitives in a language specifically designed for mod-
eling system structure.

3 2007/10/15



Figure 5: Process Model for Reusing CQML for QoS Modularization and Weaving

Since CQML is aimed specifically at modularizing the tangled
and crosscutting para-functional properties (i.e., QoS properties in
our case) of component-based systems in a platform-independent
manner, CQML requires an underlying base composition modeling
language that allows construction and manipulation of component
models. Many platform-independent as well as platform-specific
component structural modeling languages, such as the Platform In-
dependent Component Modeling Language (PICML) [1] for Light-
weight CORBA Component Model [18] (LwCCM), J2EEML [27]
for Enterprise Java Beans, and Embedded Systems Modeling Lan-
guage [11] (ESML) for embedded systems exist today that capture
various composition semantics. In this paper we have focused on
languages developed in GME since CQML also uses GME though
the concepts behind CQML can be applied in other tool environ-
ments.

We refer to such an underlying component modeling language
as system composition modeling language or base language in
short. CQML leverages the system structural modeling capability
from the underlying base language. Existing as well as new base
languages can be enhanced with a capability to modularize QoS
concerns using CQML provided the underlying base language has
a first class support for components and connectors at a minumum.
The full range of modularization capabilities of CQML can be
leveraged if the base language has first class support for the ports,
assemblies and even deployment as described below.
Mandatory Structural Elements in the Base Language
• Component. A component embodies a reusable unit of func-

tionality (either as a monolithic entity or a hierarchical assem-
bly) that can be deployed independent of other components in
the system. The base language should treat components as a
first class entity.
• Connection. The system workflow comprising inter-operating

components is captured by connections in component-based
systems. The structural modeling language should therefore
treat a connection as a first class entity.

Optional Structural Elements in the Base Language
• Component Assembly is a mechanism of composing more

than one component in a hierarchical fashion. It is an important
scalability feature. An assembly is an important concept since
an availability concern can be bound to a group of components
in a hierarchical fashion. The notion of applying a single aspect
to a large part of the design is called prescriptive aspects [23].
• Port is an abstraction of an application-level typed communi-

cation endpoint exposed by a component or an assembly to es-
tablish one or more connections with other components. CQML

also supports a finer categorization of ports into input and out-
put ports.
• Method is a procedural abstraction to implement a particu-

lar business functionality. Many component-based composition
modeling languages have support for modeling methods.
• Deployment is a platform-specific representation of metadata

that encodes a mapping of components to physical nodes. The
base language may or may not have its own representation of
deployment. When it does not, it can borrow the deployment
model in CQML and optionally extend it as long as it remains
structurally compatible.
PICML, J2EEML, and ESML support all the mandatory entities

mentioned above and therefore these languages can play the role
of a base language for CQML as shown in Step 1 in Figure 5. In
Section 4 we show that for base languages that do not support all the
invariant properties mentioned above, they cannot fully leverage
the declarative QoS aspect modeling capabilities of CQML.

3.1.2 Abstract Join Point Model of CQML
CQML defines an abstract join point model based on the invariant
properties described earlier. The abstract form of the join point
model stems from the fact that it cannot exist without a concrete
instantiation of it in the underlying base modeling language. In
the next section we describe how a concrete instantiation is done
using a technique called metamodel composition. The invariant
properties that form the abstract join point model include the first
class entities namely: component, connector, port, method, and
assembly. These primitives in CQML are analogous to the idea of
join points in conventional AOP.

A collection of such join points is identified by the join point
model. Similar to the conventional join point model in AOP, these
primitives define a set of well-known points in the model to which
declarative QoS aspect can be bound. Figure 6 illustrates the ab-
stract join points of CQML. We call our aspects declarative be-
cause unlike conventional aspects, which modularize procedural
statements written in a base programming language such as Java,
our aspects are simple declarative annotations at the modeling level.

In CQML, the idea of pointcut expression is trivially present in
the form of a simple boolean condition such as whether a particular
component has declarative QoS aspect bound to it or not. It does
not require the full expressive power of a pointcut expression.

3.1.3 Instantiating a Concrete Join Point Model
The abstract join point model supported by CQML makes it feasi-
ble to provide separation of crosscutting and tangled concerns at a

4 2007/10/15



Figure 6: Abstract Join Points in CQML

platform-independent level. However, in order to realize these ca-
pabilities at the platform-specific level requires a concrete instan-
tiation of the abstract join point model. This is realized by com-
posing the metamodel of CQML with the metamodel of the base
language to create a composed language that has the capabilities
of both: the original base language and QoS modularization capa-
bility of CQML. Figure 7 shows an example of how composition
of two languages can be done using a straightforward inheritance
mechanism.

Figure 7: Instantiating Concrete Join Points using Inheritance

The real benefit of this approach comes from the fact that the
abstract join point model is not limited to a specific modeling
language. A different join point model can be created in another
base languages if it is composed using CQML. Another important
benefit of our solution is that CQML introduces a join point model
in the base composition language without affecting the original
syntax and semantics of the base modeling language. CQML can
be composed flexibly with the underlying base modeling language
even though it may not have all the basic primitives that CQML can
potentially use.

Using CQML with a base language with less number of prim-
itives gives rise to a smaller concrete joint point model. Similarly
composing CQML with a language with an exhaustive set of prim-
itives gives rise to a larger and stronger joint point model. In Sec-
tion 4 we show how CQML is composed with three different base
languages that have different modeling capabilities. Composing
CQML with them gives rise to different joint point models in each
composite language.

3.1.4 Composing CQML with a Base Modeling Language
There is a uniform approach for integrating CQML with the base
language as shown in Step 2 of Figure 5 subject to the constraint
that the base language support the invariant properties required
by CQML. The technique of integration is based on language
composition that operates at the meta level [14]. With the advent
of integrated meta programming and modeling environments, such
as GME [13], language composition has become practical.

A meta language is used for the specification of the abstract syn-
tax of a DSML. It is used to precisely express concepts, relation-
ships and integrity constraints. A model written in a meta language

is called a metamodel. The metamodel of CQML is composed with
the metamodel of the underlying base language to give rise to a
new composed language that has the capabilities of both the lan-
guages. In evaluation section we show composition of CQML with
PICML, J2EEML, and ESML giving rise to three composite lan-
guages: PICML′, J2EEML′, and ESML′.

3.1.5 Platform-independent QoS Modularization
Metamodel composition described above allows us to develop new
associations between first class entities of the individual languages.
To compose CQML with the base language, only one kind of re-
lationship is required to glue together the two languages: Type-
inheritance. CQML defines abstract types of the first class enti-
ties in the component paradigm: Method, Component, Connection,
Port, Assembly. These abstract types do not have semantics of their
own except being able to associate declarative QoS aspects with
them. Figure 8 shows a simplified UML class diagram of the meta-
model of CQML depicting how the metamodel composition gives
rise to an ability to bind declarative QoS aspects to the join points.

Figure 8: Simplified UML Class Diagram of the Meta-model of
CQML.

A very compelling analogy from the programming language
world for these abstract types in CQML is an interface in Java or
an abstract class in C++. The concrete structural elements in the
base language inherit from the abstract structural types. By virtue
of inheritance, all the roles and associations in which the abstract
base entities can participate in, the derived concrete types can also
participate. As governed by the principle of substitutability, the
modularized QoS properties can then be associated with derived
types as well.

The Figure 7 and the Figure 8 together show how QoS mod-
eling capability of CQML can be superimposed on a base struc-
tural language using meta level language composition and simple
inheritance mechanism. Using the join point model of CQML and
language composition, we address the challenge described in Sec-
tion 2.1

3.2 Resolution 2: Expressive Modularization of QoS
Concerns

Based on the minimal and optional characterization of the underly-
ing component composition language, CQML builds an extensible
QoS aspect modeling layer over it. CQML has an ability to bind
declarative QoS aspect to one or more of the invariant properties
of the underlying base language. CQML categorizes them into five
basic abstract types: Component-QoS, Connection-QoS, Port-QoS,
Assembly-QoS and Method-QoS as shown in Figure 8.

The above five abstract types constitute the generic QoS aspect
modeling framework in CQML. As the name suggests each abstract

5 2007/10/15



QoS is associated with its corresponding building block in the
composition language if available. CQML also allows a particular
QoS to participate in more than one category. In the following, we
describe each type of category in detail and show how different
concrete QoS aspects can simultaneously belong to more than one
of the categories.

3.2.1 Extensible Design of CQML
CQML can be extended with new concrete declarative QoS aspect
modeling capabilities by inheriting from a basic set of abstract
QoS types. To enhance CQML with a concrete QoS characteristic,
a language designer has to enhance the metamodel of CQML at
one or more well-defined points of extension represented by the
four basic abstract QoS types. The concrete QoS elements simply
derive from the abstract QoS elements defined in CQML depending
upon the category to which they belong. A language designer who
wants to add a new type of declarative QoS aspect to CQML has to
decide the category to which the new QoS aspect belongs. By doing
so the concrete modeling entities inherit the abstract syntax, static
semantics, relationships, and integrity constraints of the abstract
QoS entities defined in the meta-model of CQML.

These entities constitute the generic QoS aspect modeling
framework of CQML. Although designing a new language construct–
in this case a new QoS characteristic–is an extremely thoughtful
process, a significant portion of design decisions are already taken
for the language designer in the generic QoS modeling framework
of CQML. The reuse promoted by CQML design and its generic
QoS entities thus lends itself to easier component-based systems
modeling enhancements. It prevents reinvention of previously de-
signed artifacts for every new QoS concern that is added.

3.2.2 QoS Aspect Modeling Extensions in CQML
We now describe how CQML enables declarative QoS aspect mod-
eling for the five invariant building blocks provided by the under-
lying base language using our extensible design. Modelers cre-
ate system models with declarative QoS aspects associated with
components, ports, connections, assemblies, or methods as indi-
cated in Step 3 in Figure 5. The remainder of this section de-
scribes the details of the CQML concrete QoS aspect modeling
capabilities shown in Figure 9, which shows an example of three
different declarative QoS aspects associated to components. The
FailOverUnit is an availability aspect, PortSecurityQoS modular-
izes security aspect and NetworkQoS modularizes network level
QoS aspects. In Section 4.3 we show how the FailOverUnit declar-
ative aspect can be used to weave in availability related concerns in
the model using generative capabilities of CQML tool-suite.

Figure 9: Declarative QoS Aspect Modeling Capability of
CQML in Avionics Mission Computing Scenario

Component-QoS Aspect Modeling. In component-based sys-
tems, service providers often advertise their functionality with a

service level agreement that describes additional guarantees pro-
vided by the service in terms of some concrete QoS characteristics.
For example, the GPS component from Figure 9 has availability
requirements and therefore has a FailOverUnit declarative aspect
attached to it. CQML allows a modeler to capture the availability
aspect of the system through its concrete notation called “Fail Over
Unit” (FOU) described next.

A FailOverUnit (FOU) is used to capture the availability con-
cern of one or more components. A FOU is a concrete component-
QoS that enables control over the granularity of protected system
components, such as a single component or a collection of com-
ponents. A FOU captures different fault-tolerance attributes, such
as the degree of replication of a component and heart beat inter-
val. Based on the availability requirements captured in a FOU, the
deployment planning tool described in Section 4 computes a place-
ment for components that satisfies the requirements.

Without a first class notion of a FOU, the availability concern
gets tangled with other dimensions of system development. For
example, an alternative to FOU would be to model the replicas
of the components in the structural view of the system. This is an
example of tangling of QoS dimension with the structural view of
the system. FOU modularizes the availability concern, and prevents
its tangling with the structural dimension.

Connection-QoS Aspect Modeling. Components communicate
with each other using logical connections which enable the mod-
eling of system workflows. Quite often, connections themselves
have some QoS aspects. CQML allows connection QoS aspects to
be modeled. NetQoS and SecurityQoS are concrete examples of
connection-related QoS concerns in CQML.

The NetQoS element captures network level bidirectional band-
width requirements of remote procedure calls. Moreover, it cate-
gorizes the network traffic represented by connections in disparate
traffic classes such as Multi-Media (MM), High-Reliability (HR),
High-Priority (HP), and Best-Effort (BE). Such connection level
information can be leveraged in component-based systems to preal-
locate network resources between the physical hosts of the compo-
nents to provide network level QoS. NetQoS is an extension to the
generic connection QoS modeling capabilities of CQML derived
from the abstract Connection-QoS. This shows that the Connection-
QoS abstract element provides a join point to bind declarative QoS
aspect to connections.

Port-QoS Aspect Modeling. A Port allows components to expose
their functionality to other components and provides an end-point
for connections between components. Therefore, CQML allows
ports of a component to have QoS advice bound to them. Several
different QoS concerns can be associated with a port. An example
of a connection-QoS in CQML is SecurityQoS aspect. For exam-
ple, Figure 9 shows a Role Based Access Control (RBAC) model
that modularizes security related access control policies. The de-
tails of the RBAC security QoS aspect model are beyond the scope
of this paper. SecurityQoS is a concrete example of an extension
to the generic port related aspect modeling capabilities of CQML.
Similar to the Component-QoS and Connection-QoS, the Port-QoS
abstract element provides an extension point for potentially many
port related QoS.

Component Assembly-QoS Aspect Modeling. Component as-
sembly allows aggregation of one or more components and as-
semblies. Component assemblies enable hierarchical structuring of
the component-based system. Certain types of QoS that we have
shown associated with a monolithic component can also be asso-
ciated with an assembly. For example, an availability requirement
aspect can be associated with a component assembly rendering en-
tire assembly as a protected unit of functionality. As mentioned
earlier, FailOverUnit modularizes availability concern and avoids

6 2007/10/15



tangling of availability QoS concern with structural decomposition
concern. Without a FOU, entire assembly with all the contained
components and assemblies will need to be replicated thereby pol-
luting the structural dimension of the system. A FailOverUnit can
thus be a Component-QoS as well as Assembly-QoS. In similar
fashion multiple other component assembly QoS characteristics
can be defined in CQML with ease by leveraging the extension
points provided for a language designer.

Method-level QoS Aspect modeling. Component-based systems
often require a capability to model QoS or contract on the interfaces
or methods that are implemented by the components. CQML has an
abstract notion of a method and the abstract QoS associated with
it called Method-QoS. If the underlying base language has a first
class support for modeling interfaces and/or methods, the abstract
elements in CQML can be used to inherit the Method-QoS related
associations from it.

In summary, CQML provides concrete graphical syntax to as-
sociate declarative QoS aspects to different structural elements of a
component-based system at a higher level of abstraction with com-
plete separation from the structural concern. This design of CQML
helps us resolve the second challenge of providing an extensible
way of expressing QoS design intent in the form of declarative QoS
aspects.

3.2.3 Visualizing QoS Aspects
Visualization of QoS aspect models in CQML is quite flexible. Sys-
tem developers and designers often find it intuitive to visualize the
QoS characteristic annotations overlaid on top of a duplicate view
of the system structure. This is because often the functionality of
the system is the dominant dimension of decomposition and devel-
opers are often trained and skilled in manipulating the functional
aspect of the system. Overlaying QoS on top of structure helps im-
prove comprehensibility of the system as a whole along with its
secondary QoS concerns. Such a feature does not violate the prin-
ciple of separation of crosscutting concerns because the structural
view of the system with QoS concerns superimposed is not the pri-
mary view of manipulating system structure. While modeling the
modularized QoS concerns using CQML, the structure of the un-
derlying system is an optional feature and is not strictly necessary.

3.3 Resolution 3: Automated Generation and Weaving of
QoS Advice

We leverage the join point model of CQML and the ability to as-
sociate declarative QoS aspects to the structural elements of the
system to conduct platform-independent analyses of the structural
properties of the system. As mentioned in Section 2.3 several dif-
ferent analyses based on structural property analyses such as com-
ponent collocation optimization [1], properties of orchestration of
component workflow such as capturing end-to-end deadline, anno-
tating component path segments for monitoring, and deployment
planning [26]. The analysis phase is represented by Step 4 in Fig-
ure 5. In the evaluation section we show how we have used our de-
ployment planning tool that takes into account availability require-
ments modeled using CQML to generate a placement for compo-
nents that meet the availability requirements.

In MDE-based system development methodology, the model of
the system is the primary artifact for designing and reasoning about
it. Moreover, platform-specific metadata is created based on models
using the embedded tool support. In order to generate metadata
such as deployment descriptors for a specific platform, platform-
specific model must be populated. Therefore, any analysis tool that
produces results that can be represented by the modeling tool must
go back into the model.

For example, our deployment planning tool that gives a place-
ment of components on physical hosts should be viewable in the

deployment model of the underlying base language. It allows seam-
less continuation of the system development life-cycle. To achieve
this the deployment model of the underlying base language should
be structurally compatible with that of CQML’s. Adherence to a
common structure allows the CQML’s model weaver to push the
deployment planning results back into the model in a generic fash-
ion that is independent of the underlying base language.

We use the Constraint-Specification Aspect Weaver [6] (C-
SAW) and Embedded Constraints Language (ECL) to populate
the model with the result of the analysis tool. ECL allows modu-
larization of commonly required steps while modeling a particular
aspect. For example, in our case, populating the results of deploy-
ment planning tool is an aspect of modeling that can be modular-
ized using ECL. Aspects are further divided into strategies that can
be selectively applied on the models that meet some predicate. We
have developed generative capabilities to completely automate the
process of generating ECL code for weaving the deployment aspect
into the models. This eliminated the learning curve of the modeler
to understand how ECL works and simplifies his/her job.

3.3.1 Generative Capabilities of CQML Tool-suite

Figure 10: Architecture of CQML ECL Code Generator
This section describes in detail the capability of CQML tool-

suite to automatically weave models from descriptive QoS aspects
as indicated in the last step in Figure 5. Figure 10 shows the overall
architecture of the our generative tool called: ECL Code Generator.
ECL Code Generator is divided in three main parts: Instance Search
Engine, Deployment Planner, and the Code Generator.

Instance Search Engine It searches and collects the instances of
the important structural elements such as components, assemblies,
ports in a model. These structural elements are instances of the
types defined in the meta-model of the composite language. The
Instance Search Engine depends on the fact that the elements that
it collects are instances of the types that specialize the abstract ele-
ments defined in CQML. For example, in J2EEML′ SessionBean
should be a specialization of the AbstractComponent notion de-
fined in CQML. The output of Instance Search Engine is a set of
instances of concrete components. The Instance Search Engine fil-
ters out the platform-specific type information from the collected
components before passing them to the next stage of deployment
planning. The deployment planner has no knowledge of whether
the set of components is a set of LwCCM components or EJB beans
(session beans, entity beans) or any other type of platform-specific
component.

7 2007/10/15



Deployment Planner The deployment planner visits the avail-
ability models that are attached as declarative QoS aspects to the
set of components. Based on the component replication degree and
the placement metric [26], the planner generates placement for ev-
ery component and their replicas if any. The output of the planning
stage is a simple component to physical host mapping. The planner
is designed to be extensible so that more planning algorithms can be
used as different strategies to plug-in different planning algorithms.

Code Generator The code generator takes the component to
physical host mapping as an input and generates ECL code, which
is a modularized way of capturing manual actions required to do
deployment planning and modeling. An example of generated ECL
code and the BasicSP model in PICML’ is shown in Figure 11.

Figure 11: Generated ECL Code and PICML′ Deployment Plan
After Weaving

1 defines Deploy, Placement, Association;
2 strategy Association (dp,host,comp:model) {
3 dp.addConnection("Placement",comp,host);
4 }
5 strategy Placement () {
6 declare dp : model;
7 dp := rootFolder().findModel ("DP");
8 Association(dp, dp.findModel ("Host1"),
9 dp.addModel("Component","AirFrame"));

10 Association(dp, dp.findModel ("Host2"),
11 dp.addModel("Component","GPS_Replica2"));
12 Association(dp, dp.findModel ("Host2"),
13 dp.addModel("Component","NavDisplay"));
14 Association(dp, dp.findModel ("Host1"),
15 dp.addModel("Component","GPS"));
16 Association dp, dp.findModel ("Host3"),
17 dp.addModel("Component","GPS_Replica1"));
18 Association(dp, dp.findModel ("Host3"),
19 dp.addModel("Component","Timer"));
20 }
21 aspect Deploy () {
22 Placement();
23 }

Figure 12: Sample Generated ECL Code

ECL and C-SAW have been used [2] to modularize and auto-
matically weave the deployment planning concern for platform-
specific base languages. A drawback of this approach is that the
user of C-SAW still has to learn ECL and write ECL code in
terms of aspects and strategies to modularize the deployment mod-
eling concern. Our ECL generator completely eliminates the step
of writing ECL code and simplifies weaving by automatically gen-
erating ECL that does all the steps necessary to populate a de-
ployment plan model of CQML. Moreover, ECL generator works
across different different platform-specific composition languages.
To enable this it is necessary to decorate the generated ECL state-
ments with platform-specific type information. Figure 12 shows a

sample of generated ECL code from the component to host map-
pings generated by the deployment planner. Execution of the ECL
code shown above using C-SAW results in the deployment shown
in Figure 11. Note that type information is is filtered by the In-
stance Search Engine before deployment planning is done. The
ECL Code Generator decorates the generated ECL code with the
actual concrete platform-specific type of the components although
deployment analysis is performed without platform-specific details
of component types. The ECL generator retrieves this information
from the Instance Search Engine for each abstract component. The
generated ECL is then processed by the C-SAW aspect weaver to
populate the model.

This shows that the ECL generator is a powerful aspect code
generator for C-SAW that not only modularizes the deployment
planning concern but also automates it.

4. Evaluating CQML
This section describes our evaluation of CQML. First we deter-
mine the effort required to compose CQML on an underlying
base modeling language comparing it with effort required to re-
alize these capabilities directly in the base language. Second, we
demonstrate two platform-independent analysis capabilities within
CQML showing the automated weaving of analysis results.

4.1 Composability of CQML with Structural Modeling
Languages

To evaluate our approach we chose three component-based struc-
tural (de)composition languages: the Platform Independent Com-
ponent Modeling Language (PICML) [1] for Light-weight CORBA
Component Model [18] (CCM), J2EEML [27] for Enterprise
Java Beans, and the Embedded Systems Modeling Language
(ESML) [11] for embedded systems. The feature set of these lan-
guages varies greatly – PICML being the most feature-rich lan-
guage among the three.

There are many commonalities and differences among these
languages that stem from the differences in the underlying com-
ponent model that they model. All of them are component-based
system modeling languages and hence treat a component and as-
semblies (nesting of components and assemblies) as first class enti-
ties. For example, J2EEML and PICML support hierarchical com-
position of assemblies but ESML has a flat, single level notion of
an assembly. All the three languages support the notion of a con-
nection. The notion of provided interfaces (an implementation of a
particular interface) is present in PICML and ESML but not quite
explicit in J2EEML. It manifests itself in a weaker form of just a
set of invocable methods on a bean.

Similarly, the notion of required interfaces1 is present in PICML
and ESML but is absent in EJB and hence in J2EEML. The notion
of ports is present in all the three languages. In J2EEML the ports
manifest themselves as invocable beans in an assembly of beans.
Table 1 summarizes the similarities and differences between the
three languages. In summary, PICML turns out to be an umbrella
modeling language that has all the capabilities of the other two.

Using specializations to the join point model, we composed
CQML with the above three languages giving rise to three com-
posite languages: PICML′, J2EEML′, and ESML′. The specialized
join point model of the three composite languages varies because
of the varying structural capabilities of the three base languages.
Richness of the join point model determines the ability of the com-
posite language to attach declarative QoS aspect to the structural
elements in a model.

1 It describes a componentŠs ability to use an interface implementation
supplied by some external component.

8 2007/10/15



Supported Features PICML J2EEML ESML
Component, Methods, Yes Yes Yes

and Connections
Provided Interface Ports Yes No Yes
Required Interface Ports Yes No Yes
Hierarchical Assemblies Yes Yes No

Table 1: Comparison of Capabilities of Selected Three Modeling
Languages

Figure 13 and Figure 14 show the models of the avionics mis-
sion computing system created using the composite languages. For
example, in J2EEML′ QoS advice cannot be associated with a re-
quired interface port because there is no support for ports built in
to the base language. Similarly, in ESML, declarative QoS aspect
cannot be associated with nested assemblies because nesting of as-
semblies is not supported. The results indicate that CQML can flex-
ibly be composed with the base component-based structural com-
position languages to provide separation of QoS concerns from the
structural concerns.

Figure 13: QoS Advice Specification Capabilities of PICML′

Figure 14: QoS Advice Specification Capabilities of J2EEML′

4.2 Conducting Platform Independent Analysis
In this section we demonstrate how platform-independent QoS-
related analysis of structural properties can be conducted using
CQML, and how results can be woven back into the base structural
language. We focus on the availability analysis.

As described in Section 3, CQML allows us to write platform in-
dependent analysis tools without requiring model transformations
to suit the format expected by the analysis tool. We developed a
variant of our MDDPro [26] deployment planning tool to evaluate
the modeling and automation capabilities of CQML. Based on the
availability concerns that are captured in the application model, the
MDDPro deployment planning tool generates replicas of the pro-
tected components and runs a planner on them to decide a place-
ment. The planner is based on the Shared Risk Group [26] (SRG)

model that allows us to place replicas in a way that minimizes the
risk of simultaneous failure of replicated functionality. MDDPro
also enables plugging in different replica placement algorithms to
improve system availability.

To evaluate the support provided by CQML, we used the GPS-
based avionics scenario shown in Figure 4. We modeled this sce-
nario in the three different base languages with identical set of
declarative QoS aspects associated with them. We ran a variant
of MDDPro deployment planning tool on each model to generate
placement for the primary components and the replicas of the GPS
component. The planning tool generated three different ECL scripts
for three different base modeling languages. The generated ECL
scripts automate weaving of the results of deployment planning
back into the original model thereby eliminating human efforts.
We then used the C-SAW aspect weaver as a vehicle to execute the
generated ECL scripts and actually populate the deployment plan
models of the base language. Figure 11 shows the result of weaving
the deployment decisions back into a model of PICML′ language.
These results indicate that deployment planning can be done in a
platform independent way using CQML and CQML tool-suite can
be used to populate base language models with the deployment de-
cisions.

4.3 Evaluating Savings in Modeling Efforts by Using
CQML’s Automatic Weaver

In this section, we evaluate the capabilities of CQML to generate
aspect code in ECL and how we automate the weaving process us-
ing C-SAW [6] by automatically generating ECL code from the
component to host mapping given by the deployment planning tool.
Figure 13 shows a FailOverUnit attached to the GPS component.
The FailOverUnit declarative aspect indicates that 2 replicas (repli-
cation degree 2) are desired of the GPS component. Our ECL code
generator generates the necessary ECL code for C-SAW that de-
scribes where new components need to be created and the number
of connections between them. Figure 15 shows a PICML′ model
after weaving in the availability aspect into the structural view of
the system.

Figure 15: Result of Weaving Generated Components and Con-
nection in PICML′

Table 2 summarizes the savings in efforts due to automation
provided by the CQML tool-suite. The table shows how much
modeling effort is saved by generated ECL code if (1) only the
GPS component has FailOverUnit associated with it and (2) GPS,
AirFrame, and NavDisplay have a FailOverUnit associated
with them. The Figure 15 shows only the first case. The number of
connections between components grow multiplicatively [26] when
replication degree of components increases linearly.

It is clear from the table that without automatic ECL code
generation code capability of CQML tool-suite, the modeler would
have to manually create the components and connections between
them. Moreover, the modeler also must take deployment decisions

9 2007/10/15



Replication Generated FailOverUnit associated with Generated FailOverUnit associated with
Degree ECL LOC GPS Component ECL LOC GPS, AirFrame, and NavDisplay Components

Component Connections Ports Component Connections Ports
1 52 1 3 3 114 3 12 9
2 74 2 6 6 246 6 32 18
3 96 3 9 9 426 9 60 27

Table 2: Savings in Modeling Effort of Components, Connections, and Ports due to Automatic Generation

of the replicated components if the deployment planner is not used.
ECL code generator produces necessary aspect weaving code for
C-SAW to execute and thereby eliminating the manual steps.

5. Related Work
Capturing QoS specifications at design-time has long been a goal
of researchers [5, 28]. A prior effort, also called CQML [28],
is a platform-independent, general-purpose language for defining
QoS properties. CQML [28] allows both interface annotation as
well as component type annotation. CQML [28] has support for
UML integration based on a lightweight QoS profile and has QoS
negotiation capabilities. CQML [28] also supercedes almost all the
previous work on QoS specification languages including QML [5]
(QoS Modeling Language) and QuO [29] (Quality Objects).

Therefore, we limit our comparison of QoS specification lan-
guages to the CQML developed by Aagadel. Our CQML has been
designed to be superimposed on domain specific component-based
system composition modeling languages and not with interface def-
inition languages as in the case of Aagedal’s CQML. The latter al-
lows QoS annotations at type level (IDL interface and component
definition) only and therefore, cannot be used to specify QoS re-
quirements on components on a per-instance basis. Although, the
QoS specification capability in our CQML is not as general as in
Aadedal’s CQML, instance level QoS specification is possible in
our CQML. Tool support for Aagadel’s CQML does not inves-
tigate ways of providing separation of QoS concerns throughout
other stages of the system development lifecycle, such as deploy-
ment planning and configuration. In Section 4 we showed that our
CQML can successfully separate QoS concerns even in the later
stages of system life-cycle by means of automatic weaving of de-
ployment planning decisions into the base models.

Lightweight and heavyweight extensions for UML are possible
to create QoS profiles using extensibility mechanisms provided by
UML. Lightweight extensions use only the mechanism of stereo-
types, tagged values and constraints. Heavyweight extensions re-
quire modification to the UML metamodel, which is naturally more
intrusive than lightweight approaches. The OMG has adopted UML
profile [17] for schedulability, performance and time specifica-
tion, which is based on lightweight extensibility mechanisms of
UML. OMG has also adopted a more general profile for modeling
QoS [19]. This UML profile provides a way to specify the QoS on-
tology with QoS characteristics. It has support for attaching QoS re-
quirements to UML activity diagrams. A common feature between
these UML profiles and CQML is that both have first class sup-
port for QoS concerns. Compared to the lightweight mechanisms
of above-mentioned UML profiles, CQML requires heavyweight
metamodel level composition of two languages. A benefit of this
approach is that the full strength of he metaprogramming environ-
ment can be leveraged in the process. CQML has not been devel-
oped as lightweight profile for UML because UML being a general
purpose modeling language, it lacks a component model, which is
absolutely essential for successful reuse of CQML. In order to reuse

CQML, a richer and more domain (component platform)-specific
composition modeling language is necessary.

The SysWeaver [3] approach is a MDE-based technique for
developing real-time systems. It supports design-time timing be-
havior verification of real-time systems and also supports auto-
matic code generation and weaving for multiple target platforms.
In the SysWeaver approach, there is an explicit step where the sys-
tem functional model specified in Simulink must be translated into
SysWeaver model to perfrom different analyses. On the other hand,
we eliminate the need for transformation of platform-specific sys-
tem functionality models into analysis domain models. We expect
great savings in manual efforts where such automatic transforma-
tions are not provided or possible. Moreover, SysWeaver does not
address tangling of availability concerns into structural concerns.
The replicas of protected components need to be explicitly mod-
eled in the functional view of the Simulink model.

Another approach [4] for managing QoS is based on the QuO
framework. It is an aspect-based approach to programming QoS
adaptive applications that separates the QoS and adaptation con-
cerns from the functional and distribution concerns. It puts more
emphasis on encapsulating the system adaptation and interac-
tions as an aspect. But it is more applicable to the CORBA-based
platforms. The work described in [9] shows similarities between
network-level configurable protocols and aspects. Both of the
above mentioned approaches focus on lower-level OS and network
related QoS whereas CQML is an AOM approach that focuses on
the higher level platform-independent QoS concerns in component
based systems and provides intuitive, visual abstractions. These
lower-level concerns can be modeled as separate declarative QoS
aspects in CQML.

CEA-Frame [16] integrates MDE and AOM techniques to
model application variants in platform-independent terms and to
automatically transform PIMs to PSMs. The alternative application
variants are deployed using platform independent specifications,
called service plans. The service plans are known as deployment
plans in CQML. CQML takes a more platform independent ap-
proach without relying on PIM to PSM transformations and also
automates the weaving of the results of the deployment planning
back into the original models.

Finally, the model-level aspect weaving approach adopted by
CQML is similar to model transformations [10] based on graph
transformations [21]. In general, model weaving is considered to
be a special case of model transformation. Although model trans-
formation is more general, applying it to analysis such as deploy-
ment planning makes transformation rules extremely complex. A
procedural approach adopted by CQML is much more suitable for
this reason.

6. Discussion
This section discusses our thoughts on CQML and where it fits
within the scope of AOSD. Additionally it summarizes its benefits
and limitations along with our plans for further improvement.

10 2007/10/15



6.1 CQML in the AOSD Space
Separation of crosscutting concerns and the ability to weave these
concerns based on a join point model are the key concepts in
AOSD. CQML supports these key concepts by defining a join point
model based on which multiple para-functional crosscutting con-
cerns, notably QoS, of component-based systems can be modular-
ized. The specification of QoS is an integral artifact of any system
design process. The ability to modularize QoS concerns and reason
about their impact on the final characteristics of the system to be de-
ployed has always been an interesting research problem since QoS
is one of the many para-functional properties that crosscut the pri-
mary design concern of applications. To that end, we have demon-
strated how CQML allows different kinds of QoS-specific aspects
to be represented.

CQML also identifies the need to weave back the results of
the analysis (Step 4 of Figure 5) process into the original system
design so that any platform-specific tools associated with the base
framework can leverage these results seamlessly. This weaving
back of the results is done using the same join point model used
for modularizing and associating the para-functional concerns.

Since CQML operates at the level of MDE frameworks, it lies
in the category of aspect-oriented modeling (AOM) tools. CQML
cannot be considered as a general-purpose aspect language (GPAL)
since unlike GPALs like AspectJ, it deals primarily with para-
functional properties of component-based systems. At the same
time it is applicable to a range of structural modeling languages
that satisfy a small set of invariant properties. CQML is similar in
concept to a domain-specific aspect language (DSAL) [15] though
certain properties of DSALs, such as a language compiler, do not
apply to CQML.

6.2 Benefits of CQML
Following are the benefits of using CQML with MDE tools for
large-scale component-based system design.

a. Reuse: CQML provides a platform-independent approach to
modularize QoS concerns during system design that captures
well-known patterns and practices in QoS specification. This
eliminates the need to reinvent the wheel for the modelers
of platform-specific languages, which results in a substantial
savings in effort and improved productivity as shown in Table 2.

b. Extensibility: Designers of the base language can add their
own declarative QoS aspect models and extend the existing
set of declarative QoS aspect modeling support in CQML in
a seamless fashion because of its extensible design.

c. Modularity: CQML modularizes the crosscutting QoS concerns
into platform-independent declarative aspects which enhances
reuse, extensibility and automation while also giving rise to a
model-level DSAL [15].

d. Generative capability: CQML generates model weaving code
in ECL for the deployment aspect, which can otherwise be very
tedious and error-prone to write and validate manually. It also
eliminates the learning curve to use AOM weavers, such as C-
SAW.

e. Leverage platform-specific model interpreters: The artifacts au-
tomatically woven back into the system models can be seam-
lessly used by existing model interpreters associated with the
base modeling language. For example, if deployment informa-
tion or additional replicas are woven back into the original sys-
tem composition model, an existing deployment plan generator
can use this additional information to synthesize the descriptor
metadata that is understandable by the component platform.

f. Restricted set of analysis: In its current form CQML provides
first-class platform independent notions of the system struc-

tural building blocks, which lends well for performing struc-
tural analyses, such as deployment planning (as demonstrated
in Section 4), simple schedulability analysis such as rate mono-
tonic scheduling, footprint optimizations such as component fu-
sion [1] to minimize footprint and improve performance, and
security policy domain based system partitioning.

g. Extensible to other para-functional concerns: Although CQML
deals primarily with QoS issues, our framework is general
enough to be extended to other para-functional properties, such
as the configuration concern.

6.3 Limitations of CQML and Future Work

a. Lack of sophisticated analyses: Complex analyses such as real-
time schedulability, reliability, and stability analyses cannot be
performed using the current features of CQML. These analy-
ses are dependent on overall system behavior and the behav-
ior of its individual components, and therefore use other for-
mal analysis domain models such as I/O automata, Stateflow,
petri nets among others. The structural abstraction support in
CQML is generally inadequate to perform analyses based on
the above mentioned formal models in a platform-independent
manner. We are investigating how the metamodel composition
techniques can be used to add behavior and QoS to the struc-
tural models. We are also working on determining what kind
of and how much data can be extracted using just the existing
join point model and metamodel reflection. This will enable us
to determine how we can use this data to feed external analysis
tools (e.g., AIRES [8], VEST [24]).

b. Simultaneous multi-QoS management: CQML at the moment
lacks support for analyzing the tradeoffs between multiple QoS
dimensions, such as fault tolerance, security, and timeliness.
However we do demonstrate CQML’s capabilities by analyz-
ing the impact of availability provisioning on the deployment
planning aspect of the system. Our current work-in-progress in-
cludes analyzing the impact of replication on real-time schedu-
lability and analyzing the impact of replication of confidential
data and components on the security of the overall system.

7. Concluding Remarks
Large-scale component-based systems often incur secondary para-
functional concerns comprising quality of service (QoS), and de-
ployment planning, which crosscut the primary concern of system
functional composition. The scattering and tangling of these sec-
ondary concerns impede comprehensibility, reusability and evolu-
tion of component-based systems. A Model-Driven Engineering
(MDE)-based approach holds promise to address these challenges
because it raises the level of abstraction at which the systems are
designed and reasoned about. The complexity of system design in-
curred due to the crosscutting concerns, however, is not eliminated
even at a higher level of abstraction because of lack of the right
MDE-level modularizing abstractions and join point models.

This paper provided three key contributions to address the chal-
lenges in MDE tools for component-based system development.
First, it described a reusable, platform-independent Component
QoS Modeling Language (CQML) that defines a common join
point model for component-based system modeling languages to
attach declarative QoS aspects. CQML allows separation of cross-
cutting QoS concern from the functional composition concern of
the system. We showed how availability and security policy model-
ing concerns are modularized in CQML using FailOverUnit and
SecurityQoS. Second, we showed that CQML allows the devel-
opers to design and develop QoS-based structural analysis tools
once and apply them to multiple platforms-specific composition

11 2007/10/15



modeling languages. This obviates the need for transformations of
platform-specific models to target analysis domain models to per-
form QoS analysis. Finally, we demonstrated automatic weaving of
analysis decisions generated by a deployment planning tool back
into the platform-specific models.

The capabilities of CQML are available in open source from
the CoSMIC tool web site at www.dre.vanderbilt.edu/
cosmic.

References
[1] Krishnakumar Balasubramanian. Model-Driven Engineering of

Component-based Distributed, Real-time and Embedded Systems.
PhD thesis, Department of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, September 2007.

[2] Krishnakumar Balasubramanian, Aniruddha S. Gokhale, Yuehua Lin,
Jing Zhang, and Jeff Gray. Weaving deployment aspects into domain-
specific models. International Journal of Software Engineering and
Knowledge Engineering, 16(3):403–424, 2006.

[3] Dionisio de Niz, Gaurav Bhatia, and Raj Rajkumar. Model-Based
Development of Embedded Systems: The SysWeaver Approach. In
Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’06), pages 231–242, Washing-
ton, DC, USA, August 2006. IEEE Computer Society.

[4] Gary Duzan, Joseph Loyall, Richard Schantz, Richard Shapiro,
and John Zinky. Building adaptive distributed applications with
middleware and aspects. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development,
pages 66–73, New York, NY, USA, 2004. ACM Press.

[5] Svend Frolund and Jari Koistinen. Quality of Service Specification
in Distributed Object Systems. IEE/BCS Distributed Systems
Engineering Journal, 5:179–202, December 1998.

[6] Jeff Gray, Ted Bapty, Sandeep Neema, Douglas C. Schmidt,
Aniruddha Gokhale, and Balachandran Natarajan. An approach
for supporting aspect-oriented domain modeling. In Proceedings
of the 2nd International Conference on Generative Programming
and Component Engineering (GPCE’03), pages 151–168, Erfurt,
Germany, September 2003.

[7] Jeffrey Gray, Ted Bapty, and Sandeep Neema. Handling Crosscutting
Constraints in Domain-Specific Modeling. Communications of the
ACM, pages 87–93, October 2001.

[8] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. Shin. A
Model-Based Approach to System-Level Dependency and Real-
time Analysis of Embedded Software. In Proceedings of the IEEE
Real-time and Embedded Technology and Applications Symposium
(RTAS’03), pages 78–85, Washington, DC, May 2003. IEEE.

[9] Matti Hiltunen, François Taïani, and Richard Schlichting. Reflections
on aspects and configurable protocols. In AOSD ’06: Proceedings
of the 5th international conference on Aspect-oriented software
development, pages 87–98, New York, NY, USA, 2006. ACM Press.

[10] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph
Transformation in the Formal Specification of Model Interpreters.
Journal of Universal Computer Science, 9(11):1296–1321, 2003.
http://www.jucs.org/jucs_9_11/on_the_use_of.

[11] Gabor Karsai, Sandeep Neema, Ben Abbott, and David Sharp. A
Modeling Language and Its Supporting Tools for Avionics Systems.
In Proceedings of 21st Digital Avionics Systems Conf., Los Alamitos,
CA, August 2002. IEEE Computer Society.

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages 220–242, June
1997.

[13] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg
Nordstrom, Jonathan Sprinkle, and Gabor Karsai. Composing

Domain-Specific Design Environments. IEEE Computer, pages
44–51, November 2001.

[14] Ákos Lédeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi, and
Miklos Maroti. On Metamodel Composition. In Proceedings of the
2001 IEEE International Conference on Control Applications (CCA),
pages 756–760, Mexico City, Mexico, 2001. IEEE.

[15] C. Lopes, R. Filman, T. Elrad, M. Aksit, and S. Clarke. Aspect-
Oriented Programming: A Historical Perspective. In Aspect-Oriented
Software Development. Addison Wesley, 2004.

[16] Sten Lundesgaard, Arnor Solberg, Jon Oldevik, Robert France, Jan
Øyvind Aagedal, and Frank Eliassen. Distributed Applications and
Interoperable Systems (J. Indulska and K. Raymond Eds.), chapter
Construction and Execution of Adaptable Applications Using an
Aspect-Oriented and Model Driven Approach. Springer LNCS,
Berlin / Heidelberg, 2007.

[17] Object Management Group. UML Profile for Schedulability,
Performance, and Time Specification, Final Adopted Specification
ptc/02-03-02 edition, March 2002.

[18] Object Management Group. Light Weight CORBA Component Model
Revised Submission, OMG Document realtime/03-05-05 edition, May
2003.

[19] Object Management Group. UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and Mechanisms Joint
Revised Submission, OMG Document realtime/03-05-02 edition, May
2003.

[20] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Proceed-
ings of the International Conference on Software Engineering, pages
107–119, May 1999.

[21] Grzegorz Rozenberg. Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations. World Scientific
Publishing Company, jan 1997.

[22] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

[23] John A. Stankovic, Prashant Nagaraddi, Zhendong Yu, Zhimin
He, and Brian Ellis. Exploiting Prescriptive Aspects: A Design
time Capability. In EMSOFT ’04: Proceedings of the 4th ACM
International Conference on Embedded Software, pages 165–174,
New York, NY, USA, 2004. ACM Press.

[24] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang
Lu, Zhendong Yu, Marty Humphrey, and Brian Ellis. Vest: An
aspect-based composition tool for real-time systems. In RTAS
’03: Proceedings of the The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, page 58, Washington, DC,
USA, 2003. IEEE Computer Society.

[25] Clemens Szyperski. Component Software — Beyond Object-
Oriented Programming - Second Edition. Addison-Wesley, Reading,
Massachusetts, 2002.

[26] Sumant Tambe, Jaiganesh Balasubramanian, Aniruddha Gokhale,
and Thomas Damiano. MDDPro: Model-Driven Dependability
Provisioning in Enterprise Distributed Real-Time and Embedded
Systems. In Proceedings of the International Service Availability
Symposium (ISAS), Durham, New Hampshire, USA, 2007.

[27] Jules White, Douglas C. Schmidt, and Aniruddha Gokhale. Simpli-
fying autonomic enterprise java bean applications via model-driven
development: a case study. Journal of Software and System Modeling,
2007.

[28] Jan Øyvind Aagedal. Quality of Service Support in Development of
Distributed Systems. PhD thesis, University of Oslo, Oslo, March
2001.

[29] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural
Support for Quality of Service for CORBA Objects. Theory and
Practice of Object Systems, 3(1):1–20, 1997.

12 2007/10/15


