
Assessing Contemporary Modularization Techniques for
Middleware Specialization

Akshay Dabholkar
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
aky@dre.vanderbilt.edu

Aniruddha Gokhale
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
gokhale@dre.vanderbilt.edu

ABSTRACT
Middleware specialization is a technique to prune middleware fea-
tures that are deemed unnecessary by the application domain, and
to optimize and customize the relevant features to obtain domain-
specific semantics within the middleware. Although contemporary
modularization techniques, such as aspect-oriented programming
(AOP) and feature-oriented programming (FOP), have been used
in middleware specialization, there is a lack of a taxonomy that can
assess the strengths and weaknesses of these techniques. To ad-
dress these limitations, this paper develops a taxonomy that orga-
nizes contemporary modularization approaches applied to the prob-
lem of middleware specialization within a unified framework. The
taxonomy helps assess the applicability of multiple modularization
techniques used in concert for specializing system software such as
middleware.

Categories and Subject Descriptors
H.4 [Middleware]: Specialization; D.2.8 [Software Engineering]:
[complexity measures, performance measures]

1. INTRODUCTION
A number of applications based on distributed, general-purpose

middleware platforms, such as J2EE/EJB, .NET Web Services and
CORBA, must specialize these middleware to satisfy their func-
tional and quality of service (QoS) requirements. Middleware spe-
cialization is a technique to prune middleware features that are
deemed unnecessary by the application, and to optimize and cus-
tomize the relevant features to obtain domain-specific semantics
within the middleware.

Many prior research efforts in middleware specialization have
used different modularization techniques, such as Aspect-oriented
Programming (AOP) [10] and Feature-oriented Programming (FOP)-
[23]. For example, AOP is used to develop resource-efficient sys-
tem software [14] and context-specific specilized middleware [13],
to bypass middleware layers [20], to define fine-grained middle-
ware architectures that can be seamlessly refined [8], and even in
dynamic specialization [4]. Modularization techniques have also
been used in concert [35] with model-driven development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACoM OOPSLA ’08 Nashville, TN, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Although different modularization techniques have shown how
middleware can be specialized, there is a general lack of a taxon-
omy that helps to assess the strengths and weaknesses of modular-
ization techniques when used individually or in concert. To address
these limitations, this paper develops such a taxonomy which is de-
rived from a survey of many research efforts, and is broadly clas-
sified along three dimensions of application development: feature-
dependent, paradigm-dependent and lifetime-dependent. This tax-
onomy assesses the applicability of a specific technique for a par-
ticular context in middleware specialization. Such a taxonomy can
also provide guidelines in specializing other kinds of systems soft-
ware including operating systems and databases.

To effectively present the taxonomy and assessment of contem-
porary modularization techniques, we have organized the remain-
der of this paper as follows: Section 2 proposes our three-dimensional
taxonomy of middleware specialization techniques. Section 3 brings
forth a brief discussion on the different middleware specialization
techniques and provides an assessment of their combinations through
qualitative evaluations and guidelines for applying them. Finally,
Section 4 concludes the paper and suggests possible future research
directions.

2. TAXONOMY OF MODULARIZATION TECH-
NIQUES FOR MIDDLEWARE SPECIAL-
IZATION

In this section we develop a taxonomy for assessing the differ-
ent modularization techniques used in middleware specialization.
We surveyed multiple research efforts on middleware specializa-
tion that use different modularization techniques, which in turn can
be categorized with respect to the type of specialization it provides.

2.1 Survey of Modularization techniques used
in Middleware Specialization

Lohmann et. al. [14] argue that AOP is well suited for the de-
velopment of fine-grained and resource-efficient system software
product lines where overhead due to the dynamic binding and dis-
patch of object-orientation is not acceptable when aspects beat ob-
jects. FACET [8] identifies the core functionality of a middleware
framework and then codifies all additional functionality into sepa-
rate aspects. The advantage of using AOP is that the hooks and call-
backs that were needed using standard object oriented techniques
for adding functionality to existing code are no longer required.
This removes the need to preconceive where the variation points
of the code are needed and also removes the need to refactor large
amounts of existing code to insert these hooks after the fact leading
to better modularization.

Modelware [35] advocates the use of models and role-based as-

pect views and aspect libraries to separate intrinsic functionalities
of middleware (i.e., a set of coherent components free of crosscut-
ting concerns) from extrinsic ones (i.e., domain variations). This
separation effectively lowers the concern density per component
and fosters the coherence and the reuse of the components of mid-
dleware architectures. Devanbu et. al. [20] adopted AOP to enable
bypassing layers of middleware to avoid the rigid layer processing
performed by middleware that can lower overall system through-
put, and reduce availability and/or increase vulnerability to security
attacks. Their focus is to enable developers of middleware-based
applications to conveniently adopt a bypassing design pattern (or
bypassing style) (with good tool and run-time support) to speed-up
applications, without having to write intricate, low-level, inherently
non-portable code.

AOP, however, requires the specification of the middleware func-
tionality which implies a broader knowledge of the structures and
the application functionality. To support the runtime identification
of the application needs and the dynamic specialization of the mid-
dleware according to the application requirements, Aspect Open-
Orb [4] uses AOP to customize the reflective middleware. Aspects
that are not in the application code can be dynamically inserted us-
ing the meta-object protocol of computational reflection.

FOCUS [13] describes how context-specific specializations can
be automated and applied to optimize excessive generality in general-
purpose middleware used for product-line architectures thereby im-
proving throughput, average- and worst-case end-to-end latencies
and predictability without affecting portability, APIs, or applica-
tion software implementations while preserving interoperability.

The survey presented above enables us to develop a taxonomy
as shown in Figure 1. The taxonomy can be broadly classified
along three dimensions of application development: (1) feature-
dependent, (2) paradigm-dependent, and (3) lifetime-dependent.
The remainder of this section delves into the details of each di-
mension.

Figure 1: Three Dimensional Taxonomy of Middleware Spe-
cialization Research

2.2 Feature-Dependent Specialization
Feature-oriented programming (FOP) captures the variants of a

base behavior though a layer of encapsulation of multiple abstrac-
tions and their respective increments that together pertain to the

definition of a feature [16]. FOP decomposes complex software
into features which are the main abstractions in design and imple-
mentation. They reflect user requirements and incrementally refine
one another. FOP is particularly useful in incremental software de-
velopment and software product lines (SPLs).

The specialization of a middleware platform along the feature-
dependent dimension consists of composing it according to the
features/functionalities required by the hosted applications. This is
a dynamic process that consists of augmenting/inserting new fea-
tures as well as pruning/removing unnecessary features. We distin-
guish between feature pruning and feature augmentation special-
ization strategies as follows:

2.2.1 Feature Pruning
Feature pruning is a strategy applied to remove features of the

middleware to customize it. In this case the original middleware
provides a broad range of features but many are not needed for a
given use case. These unwanted features are pruned from the orig-
inal middleware. This approach is taken by FOCUS [13] where
unnecessary features are automatically removed from general pur-
pose middleware through techniques such as memoization to pro-
vide optimizations for DRE systems.

2.2.2 Feature Augmentation
Feature augmentation is a strategy applied when the specializa-

tion is grounded via the insertion of new features, either because
the original middleware did not support it or the middleware is
composed out of building blocks [1, 3, 30]. The latter variety of
middleware platforms are designed to overcome the limitations of
monolithic architectures. Their goal is to offer a small core and to
use computational reflection to augment new functionalities.

In Section 2.4.2, AOP can be used to compose middleware plat-
forms where the middleware core contains only the basic func-
tionalities [8, 35]. Other functionalities that implement specific
requirements of the applications are incrementally augmented in
the middleware by the weaver process, when they are required and
decrementally pruned when they are not required.

2.3 Lifetime-Dependent Specialization
One approach to classify specialization techniques is based on

the time scale at which it is implemented: pre-postulated and just-
in-time [36]. Figure 2 shows this dimension of our taxonomy.
If middleware specialization is performed during the application
compile or startup time, we designate it pre-postulated/static spe-
cialization. For example, EmbeddedJava (java.sun.com/products/
em\-beddedjava) minimizes the footprint of embedded appli-
cations during the application compile time. Similarly, if the mid-
dleware specialization is performed during the application run time,
we designate it just-in-time/dynamic specialization. For example,
MetaSockets [25] load adaptive specialization code during run time
to adapt to wireless network loss rate changes. Notice that in Fig-
ure 2, dynamism increases from left to right.

2.3.1 Pre-postulated Specialization
Pre-postulated or Static specialization tailors the middleware be-

fore knowing its exact application use case. This process tries to
identify the general requirements of possible future applications
and defines the middleware configuration that will be used by the
applications. It is further divided into customizable and config-
urable middleware.

• Customizable specialization enables adapting the middle-
ware during the application compile/link-time so that a de-
veloper can generate specialized (adapted) versions of the ap-

Figure 2: Lifetime-Dependent Middleware Specialization

plication. Note that a customized version is generated in re-
sponse to the functional and environmental changes realized
after the application design-time. Examples of specialization
mechanisms provided by customizable middleware are static
weaving of aspects [10], compiler flags, and precompiler di-
rectives [11]. QuO [38] and EmbeddedJava are examples of
customizable middleware.

• Configurable specialization enables adapting the middle-
ware during the application startup time thereby enabling an
administrator to configure the middleware in response to the
functional and environmental changes realized after applica-
tion compile time during its deployment or startup. Some
examples of specialization mechanisms provided by config-
urable middleware include CORBA portable interceptors [19],
optional command-line parameters, for example, to set socket
buffer-size, and configuration files such as ORBacus config-
uration file (www.orbacus.com).

2.3.2 Just-in-time (JIT) Specialization
Just-in-time (JIT) or Dynamic specialization occurs at run time

by identifying the requirements of the running application and cus-
tomizing the middleware according to the application needs. It can
be further classified into tunable and mutable middleware.

• Tunable Specialization enables adapting the middleware af-
ter the application startup time but before the application is
actually being used. Doing so enables an administrator to
fine-tune the application in response to the functional and en-
vironmental changes that occur after the application is started.
Examples of specialization mechanisms provided by tunable
middleware are ”two-step” specialization approaches (includ-
ing static AOP during compile time and reflection during run
time) employed by David et. al [6] and Yang et. al [34],
the component configurator pattern [27] used in Dynamic-
TAO [12], and the virtual component pattern [5] used in TAO
and ZEN middleware.

• Mutable Specialization is the most powerful type of mid-
dleware specialization that enables adapting an application
during run time. This specialization is also called Adaptive
Specialization. Hence, the middleware can be dynamically
specialized while it is being used. The main difference be-
tween tunable middleware and mutable middleware is that
in the former, the middleware core remains intact during the
tuning process whereas in the latter there is no concept of
fixed middleware core. Therefore, mutable middleware are
more likely to evolve to something completely different and
unexpected. Examples of specialization techniques provided
by mutable middleware are reflection [3], late composition
of components [11], and dynamic weaving of aspects [34].

2.4 Paradigms-Dependent Specialization

Numerous advances in programming paradigms have also con-
tributed to middleware specialization techniques. Although many
important contributions have been made in this area, a review of the
literature shows that four paradigms, in addition to object-oriented
paradigm, play key roles in supporting middleware specialization:
computational reflection [4], component-based design [29], aspect-
oriented programming [10], and feature-oriented programming [23].

There are other approaches such as program slicing, partial eval-
uation, policies, automatic tuning of configuration parameters that
enable customization of system software. However these approaches
are more fine-grained in the sense that they are used to manipulate,
customize and verify the correctness of individual programs. How-
ever, each of these approaches can be utilized through the more
coarser-grained approaches that are being considered in this paper.

2.4.1 Computational Reflection
Computational reflection [4] refers to the ability of a program to

reason about, and possibly alter, its own behavior. Reflection en-
ables a system to open up its implementation details for such anal-
ysis without compromising portability or revealing the unnecessary
parts. As depicted in Figure 3, a reflective system (represented as
base-level objects) has a self representation (represented as meta-
level objects) that is causally connected to the system meaning that
any modifications either to the system or to its representation are
reflected in the other.

Figure 3: A Reflective System with Causally Connected Meta-
level

The base-level part of a system deals with the normal (func-
tional) aspects of the system whereas the meta-level part deals with
the computation (implementation) aspects of the system. The meta-
level contains the building blocks responsible for supporting reflec-
tion. The elements of the base-level and that of the meta-level are,
respectively, represented by base-level objects and meta-level ob-
jects. A meta-object protocol (MOP) [9] is a meta-level interface
that enables systematic (as opposed to ad hoc) inspection and mod-
ification of the base-level objects and abstraction of the implemen-
tation details.

Computational reflection is an efficient and simple way of insert-
ing new functionalities in a reflective middleware. Thus, it is neces-
sary only to know components and interfaces. The next generation
middleware [3, 7] exploits computational reflection to customize
the middleware architecture. Reflection can be used to monitor the
middleware internal (re)configuration [24]. The middleware is di-
vided in two levels: base-level and meta-level. According to Fig-
ure 3, the middleware core is also represented by base-objects and
new functionality is inserted by meta-objects. Figure 4 shows that
the meta-level is orthogonal to the middleware and to the applica-
tion. This separation allows the specialization of the middleware
via extension of the meta-level.

2.4.2 Aspect Oriented Programming (AOP) Techniques

Figure 4: Reflective Middleware

Kiczales et al. [10] realized that complex programs are com-
posed of different intervened crosscutting concerns (properties or
areas of interest such as QoS, energy consumption, fault tolerance,
and security). While object-oriented programming abstracts out
commonalities among classes in an inheritance tree, crosscutting
concerns are still scattered among different classes thereby compli-
cating the development and maintenance of applications.

AOP [10] applies the principle of “separation of concerns” (SoC) [21]
during development time in order to simplify the complexity of
large systems. Later, during compile or run time, an aspect weaver
can be used to weave different aspects of the program together to
form a program with new behavior. AOP proponents argue that dis-
entangling the crosscutting concerns leads to simpler development,
maintenance, and evolution of software. Naturally, these benefits
are important to middleware specialization. Moreover, AOP en-
ables factorization and separation of crosscutting concerns from the
middleware core [28], which promotes reuse of crosscutting code
and facilitates specialization.

In the context of middleware, we refer to AOP approaches as ex-
isting software platforms that expose hooks for applications using
these platforms, to adapt, alter, modify, or extend the normal exe-
cution flow of a service requested. Non-functional features (mon-
itoring code, logging, security checks, etc.) can be transparently
woven into the middleware code paths or unnecessary features can
be pruned through bypassing code paths or middleware layers. In
that sense, the CORBA portable interceptor (PI) mechanisms, al-
though not explicitly positioned as an aspect-oriented approach,
belong to this category. Using AOP, customized versions of mid-
dleware can be generated for application-specific domains. Yang
et al. [34] and David et al. [6] both provide a two-step approach
to dynamic weaving of aspects in the context of middleware spe-
cialization using a static AOP weaver during compile time and
reflection during run time. Other recent examples explicitly po-
sitioning themselves as aspect-oriented approaches are the JBoss
AOP approach (www.jboss.org) and the Spring AOP approach
(www.springframework.org).

2.4.3 Model-Driven Engineering (MDE)
MDE is an emerging paradigm that integrates model-based soft-

ware development techniques (including Model-Driven Develop-
ment [26] and the OMG’s Model Driven Architecture) with QoS-
enabled component middleware to help resolve key software de-
velopment and validation challenges encountered by developers of
large-scale distributed, real-time and embedded (DRE) middleware
and applications. In particular, MDE tools can be used to specify
requirements, compose DRE applications and their supporting in-
frastructure from the appropriate set of middleware components,
synthesize the metadata, collect data from application runs, and
analyze the collected data to re-synthesize the required metadata.
These activities can be performed in a cyclic fashion until the QoS
constraints are satisfied end-to-end.

Conventional middleware architectures suffer from insufficient
module-level reusability and the ability to adapt in the face of func-
tionality evolution and diversification. As reported in [35], ”intrin-
sic” and ”extrinsic” properties interact non-modularly in conven-
tional middleware architectures. Consequently, middleware archi-
tects are faced with immense architectural complexities because the
concern density per module is high. The code-level reusability of
the ”common abstractions” is also drastically reduced because the
generality of intrinsic components is restricted by the ”extrinsic”
properties in the face of domain variations. A contributing factor to
this complexity, is that the code-level design reusability in conven-
tional middleware architectures is incapable of adequately dealing
with ”change” in two dimensions: time (functional evolution) and
space (functional diversification).

The reusability in conventionally developed software components
is insufficient due to the lack of explicit means to effectively distin-
guish intrinsic and extrinsic architectural elements. Conventional
middleware architectures also lack effective means to reuse ”ex-
trinsic” properties, especially ones that are crosscutting [10] in na-
ture, i.e., not localized within modular boundaries. Conventional
architectures have fallen short of doing so because they are inca-
pable of componentizing and reusing crosscutting concerns as ana-
lyzed in [37]. Being able to componentize and to reuse these func-
tionalities tremendously facilitates the construction of middleware
systems. To tackle the aforementioned problems, Zhang et. al. [35]
propose a new architectural paradigm called Modelware which em-
bodies the ”multi-viewpoints” [18] approach.

3. ASSESSMENT OF MODULARIZATION
TECHNIQUES FOR MIDDLEWARE SPE-
CIALIZATION

In this section we use our taxonomy to assess the strengths and
weaknesses of various modularization approaches used for special-
izing middleware. We then develop a framework for systematic and
automated middleware specialization that provides guidelines for
middleware application developers to reason about, optimize, cus-
tomize and tune the middleware according to their domain-specific
requirements.

3.1 Qualitative Evaluation of the Middleware
Specialization Taxonomy

In the following we use a combination of artifacts of individual
dimensions of our taxonomy to assess the pros and cons of various
modularization techniques when applied to middleware specializa-
tion.

Table 1 summarizes our assessment of different modularization
techniques. We briefly discuss below each paradigm with respect
to the lifetime dimension of the taxonomy

1. Pre-postulated Specializations: FOP, AOP and MDE are
widely used at design-time and compile-time respectively to
perform feature augmentation and pruning. Although fea-
ture modules – the main abstraction mechanisms of FOP –
perform well in implementing large-scale software building
blocks, they are incapable of modularizing certain kinds of
crosscutting concerns [2]. This weakness is the strength of
aspects. Caesar [15], AFMs [2] combine FOP with AOP
to overcome the shortcomings of “purely hierarchial” fea-
ture specifications in FOP. However, reflection has limited
application during the pre-postulated phases except during
deployment it could be used to inspect the target platform
features before the application is deployed.

Table 1: Evaluation of the Combinations of Dimensions

COMBINATIONS USE CASES STRENGTHS WEAKNESSES RELATED WORK
Pre-postulated Weave/Prune at compile-time Transparency without Code Bloating FACET, CLA, FOCUS,

+ AOP affecting core Bypassing Layers,
AspectOpenORB

Pre-postulated Weave/Prune only known Elegant design Runtime specializations not DTO, CLA, Modelware
+ MDE features possible

Pre-postulated Inspect target platform Useful during Difficult to predict runtime AspectOpenORB, DTO
+ Reflection features deployment conditions
Just-in-time Dynamic weaving of features Dynamic Adaptation Requires native platform JAsCo, PROSE, Abacus

+ AOP support
Just-in-time Self-healing/correcting Validation of Incur runtime overhead Models@Runtime

+ MDE systems Specializations
Just-in-time Introspect runtime application Dynamic Adaptation Can cause unpredictable AspectOpenORB
+ Reflection features & reconfiguration behavior
AOP + FOP ISD and SPLs Better modularization Runtime specializations AFMs, Caesar

of crosscutting features not possible, cause conflicts
FOP + MDE SPLs Better composition Runtime specializations FOMDD [31]

of features not possible, cause conflicts
AOP + Reflection Composition based on On-demand feature May cause conflicts AspectOpenORB

application requirements weaving
AOP + MDE + Design/Weave/Prune valid Systematic, correct Safe specializations is Research Needed

FOP + Reflection features combinations specialization process challenging

2. Just-in-time Specializations: AOP has few use cases at just-
in-time where dynamic weaving of feature aspects could be
set up with the help of native compile-time platform support,
such as Java Virtual Machine (JVM) [22]. JAsCo [32] is an
adaptive AOP language used to specialize Web Services im-
plementations [33] whereas PROSE [17] and Abacus [36] are
just-in-time aspect-based middleware. Beyond design-time,
MDE cannot be applied since it relies mainly on predeter-
mined system feature requirements. However, it can con-
figure dynamic augmentation or pruning of features at run-
time. Recently models at run-time has been used for self-
healing systems. The principles from those domains need
to be applied for specializing middleware dynamically based
on models. Computational reflection can be used to support
the runtime introspection of the application and perform dy-
namic augmentation and pruning of features to adapt its in-
ternal implementation and reconfigure itself depending upon
the dynamic conditions prevalent at run-time. However, This
enables support for more powerful dynamic specializations
which are useful for power and resource management, and
dynamic adaptation as in wireless sensor networks, embed-
ded systems, etc.

3.2 Guidelines for Middleware Specialization
We now provide guidelines for middleware specialization using

our taxonomy. We use the lifecycle dimension as the dominant
dimension since it imparts a systematic ordering to the process of
performing middleware specialization. We believe the guidelines
can apply to any systems software, such as an operating system,
web server or a database management system.

1. Development-time specializations: During development-time
the middleware developer can program the application code
with features that need to be loaded at initialization-time and
features that can be swapped in/out at run-time through strate-
gies. MDE and AOP based techniques are more effective

to program development-time specializations. In this phase,
feature-augmentation should be the goal.

2. Compile-time specializations: Compile-time specializations
can be used to transparently weave-in (augment) or weave-
out (prune) features code. AOP is the key enabler for per-
forming compile-time specializations.

3. Deployment-time specializations: Deployment-time special-
izations mainly address target platform-specific concerns such
as type of data transport, database drivers, etc. The middle-
ware features are matched to make optimal use of the under-
lying platform feature constraints. Special tools which per-
form the task of setting up the deployment can use reflection
to query the platform features and use AOP to transparently
change the underlying bindings or supply the required con-
figuration parameters when launching applications.

4. Initialization-time specializations: Feature configuration is
performed at initialization-time using the configuration pa-
rameters that are pre-programmed either at development-time
and/or compile-time or supplied during the application startup-
time.

5. Run-time specializations: At run-time, features can be swapped
in or out using either reflection or dynamic aspect weaving
depending upon the conditions prevalent after the application
is executing. However, too much dynamism can lead to un-
predictable application behavior leading to unstable special-
izations that are difficult to verify for safety criticality and
correctness. To benefit from mutable middleware, we should
harness its power using techniques such as safe specializa-
tion. So most of the dynamic feature swapping needs to be
statically programmed before hand.

6. Integrated specializations: Since no single modularization
technique can specialize middleware over all phases of the
application lifetime, multiple techniques need to be applied
and validated in unison starting with MDE and AOP at pre-
postulated time whereas computational reflection at just-in-

time. It is important to restrict feature changes at run-time
that conflict with the design-time feature configurations. Ap-
plying overlapping specializations may cause inconsistencies
in the applications. This is the same problem as the feature
interaction problem in pattern recognition that needs to be
addressed in middleware specialization also. Inconsistency
can be caused when FOP, AOP or MDE augments a depen-
dent feature set during pre-postulated phases but reflection
prunes one of the features from the set during just-in-time
phases which may lead to unpredictable runtime behavior
and failures. Inconsistencies can also occur within the same
life-time phase. Hence, tools and techniques are needed to
validate specializations when multiple customization tech-
niques are applied in tandem not only within a phase but
across entire application lifetime.

7. Optimal specializations: Finally specialization tools should
not only validate but also optimize various feature changes
so that they are not only consistent but satisfy the quality of
service (QoS) requirements of the applications.

4. CONCLUDING REMARKS
Prior research has shown the usefulness of different modular-

ization techniques to handle middleware specialization challenges.
Yet there does not exist a common vocabulary that unifies these
efforts. This paper addresses this challenge by developing a three-
dimensional taxonomy for middleware specialization. We use this
taxonomy to provide a qualitative assessment of the strengths and
weaknesses of the modularization techniques. We also provide
guidelines for application or middleware developers who are in-
terested in specializing the middleware on how best to use this tax-
onomy in their project.

Finding an optimized and adaptive middleware specialization so-
lution using current state-of-the-practice middleware specialization
approaches is not an easy task. A developer needs to know all
available middleware approaches and should spend a lot of time
and money to find the optimized solution. Developing tools, tech-
niques and high-level paradigms which can be assimilated into a
catalog of specialization patterns that assist a developer in this te-
dious process is a useful research area that promotes development
of adaptive software. Inventing domain-specific specialization pat-
tern languages can serve as guidelines for the synthesis of such
tools. Moreover, validating the safety of specialization approaches
is hard. Our current work focuses on this dimension of the re-
search.

5. REFERENCES
[1] Gul A. Agha. Introduction. Communications of the ACM,

45(6):30–32, 2002.
[2] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.

Software Engineering, IEEE Transactions on,
34(2):162–180, March-April 2008.

[3] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas.
An Architecture for Next Generation Middleware. In
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing, pages 191–206, London, 1998. Springer-Verlag.

[4] Nélio Cacho and Thaís Vasconcelos Batista. Using AOP to
Customize a Reflective Middleware. In OTM Conferences
(2), volume 3761 of Lecture Notes in Computer Science,
pages 1133–1150. Springer, 2005.

[5] Angelo Corsaro, Douglas C. Schmidt, Raymond Klefstad,
and Carlos O’Ryan. Virtual Component: a Design Pattern for
Memory-Constrained Embedded Applications. In
Proceedings of the 9th Annual Conference on the Pattern
Languages of Programs, Monticello, IL, September 2002.

[6] Pierre-Charles David, Thomas Ledoux, and Noury M.N.
Bouraqadi-Saadani. Two-step Weaving with Reflection using
AspectJ. OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object-Oriented Systems, October 2001.

[7] Fábio M. Costa and Gordon S. Blair. A Reflective
Architecture for Middleware: Design and Implementation. In
ECOOP’99, Workshop for PhD Students in Object Oriented
Systems, June 1999.

[8] Frank Hunleth and Ron K. Cytron. Footprint and Feature
Management Using Aspect-oriented Programming
Techniques. In Proceedings of the Joint Conference on
Languages, Compilers and Tools for Embedded Systems
(LCTES 02), pages 38–45. ACM Press, 2002.

[9] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow.
The art of metaobject protocol. MIT Press, Cambridge, MA,
USA, 1991.

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. In Proceedings
of the 11th European Conference on Object-Oriented
Programming, pages 220–242, June 1997.

[11] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan.
Towards Highly Configurable Real-time Object Request
Brokers. In Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing (ISORC),
Newport Beach, CA, March 2002. IEEE/IFIP.

[12] F. Kon, M. Roman, P. Liu, J. Mao, T Yamane, L. Magalhaes,
and R. Campbell. Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB. In
Proceedings of the Middleware 2000 Conference. ACM/IFIP,
April 2000.

[13] Arvind Krishna, Aniruddha Gokhale, Douglas C. Schmidt,
John Hatcliff, and Venkatesh Ranganath. Context-Specific
Middleware Specialization Techniques for Optimizing
Software Product-line Architectures. In Proceedings of
EuroSys 2006, pages 205–218, Leuven, Belgium, April 2006.

[14] Daniel Lohmann, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. Lean and Efficient System Software
Product Lines: Where Aspects Beat Objects. Transactions on
AOSD II, 4242:227–255, 2006.

[15] Mira Mezini and Klaus Ostermann. Conquering aspects with
caesar. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages
90–99, New York, NY, USA, 2003. ACM.

[16] Mira Mezinia and Klaus Ostermann. Variability
Management with Feature-oriented Programming and
Aspects. SIGSOFT Softw. Eng. Notes, 29(6):127–136, 2004.

[17] Angela Nicoara, Gustavo Alonso, and Timothy Roscoe.
Controlled, systematic, and efficient code replacement for
running java programs. SIGOPS Oper. Syst. Rev.,
42(4):233–246, 2008.

[18] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A
framework for expressing the relationships between multiple
views in requirements specification. IEEE Trans. Softw. Eng.,
20(10):760–773, 1994.

[19] Object Management Group. Interceptors FTF Final
Published Draft, OMG Document ptc/00-04-05 edition,

April 2000.
[20] Ömer Erdem Demir, Prémkumar Dévanbu, Eric Wohlstadter,

and Stefan Tai. An Aspect-oriented Approach to Bypassing
Middleware Layers. In AOSD ’07: Proceedings of the 6th
international conference on Aspect-oriented software
development, pages 25–35, New York, NY, USA, 2007.
ACM Press.

[21] David L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Communications of the
ACM, 15(12), December 1972.

[22] Andrei Popovici, Gustavo Alonso, and Thomas Gross.
Just-in-time Aspects: Efficient Dynamic Weaving for Java.
In Proceedings of the 2nd International Conference on
Aspect-oriented Software Development, pages 100–109,
Boston, Massachusetts, 2003.

[23] Christian Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Mehmet Aksit and Satoshi Matsuoka,
editors, ECOOP’97—Object-Oriented Programming, 11th
European Conference, volume 1241, pages 419–443,
Jyväskylä, Finland, 9–13 1997. Springer.

[24] Manuel Roman, Roy H. Campbell, and Fabio Kon.
Reflective Middleware: From Your Desk to Your Hand.
IEEE Distributed Systems Online, 2(5), July 2001.

[25] S. Sadjadi, P. McKinley, and E. Kasten. Architecture and
operation of an adaptable communication substrate, 2003.

[26] Douglas C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[27] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, Volume 2.
Wiley & Sons, New York, 2000.

[28] Gregory T. Sullivan. Aspect-oriented programming using
reflection and metaobject protocols. Commun. ACM,
44(10):95–97, 2001.

[29] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Professional, December 1997.

[30] Anand Tripathi. Challenges Designing Next-Generation
Middleware Systems. Communications of the ACM,
45(6):39–42, June 2002.

[31] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature
oriented model driven development: A case study for
portlets. In ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, pages 44–53,
Washington, DC, USA, 2007. IEEE Computer Society.

[32] Wim Vanderperren, Davy Suvée, Bart Verheecke,
María Agustina Cibrán, and Viviane Jonckers. Adaptive
Programming in JAsCo. In AOSD ’05: Proceedings of the
4th International Conference on Aspect-oriented Software
Development, pages 75–86, Chicago, Illinois, 2005.

[33] Bart Verheecke and MarÃ a Agustina CibrÃąn. Aop for
dynamic configuration and management of web services. In
In Proceedings of 2003 International Conference on Web
Services, page 2004, 2003.

[34] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M.
Sadjadi, and P. K. McKinley. An aspect-oriented approach to
dynamic adaptation. In WOSS ’02: Proceedings of the first
workshop on Self-healing systems, pages 85–92, New York,
NY, USA, 2002. ACM.

[35] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen.
Generic Middleware Substrate Through Modelware. In

Proceedings of the 6th International ACM/IFIP/USENIX
Middleware Conference, pages 314–333, Grenoble, France,
2005.

[36] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen.
Towards Just-in-time Middleware Architectures. In AOSD
’05: Proceedings of the 4th international conference on
Aspect-oriented software development, pages 63–74, New
York, NY, USA, 2005. ACM Press.

[37] Charles Zhang and Hans-Arno Jacobsen. Resolving Feature
Convolution in Middleware Systems. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, pages 188–205, New York, NY, USA, 2004.
ACM.

[38] John A. Zinky, David E. Bakken, and Richard Schantz.
Architectural Support for Quality of Service for CORBA
Objects. Theory and Practice of Object Systems, 3(1):1–20,
1997.

