
FedACA: An Adaptive Communication-Efficient
Asynchronous Framework for Federated Learning

Shuang Zhou, Yuankai Huo, Shunxing Bao, Bennett Landman and Aniruddha Gokhale
Dept of Computer Science and Dept of Electrical and Computer Engineering

Vanderbilt University, Nashville, TN, USA
{shuang.zhou,yuankai.huo,shunxing.bao,bennett.landman,a.gokhale}@vanderbilt.edu

Abstract—Federated Learning (FL) is a type of distributed
machine learning, which avoids sharing privacy and sensitive
data with a central server. Despite the advances in FL, cur-
rent approaches cannot provide satisfactory performance when
dealing with heterogeneity in data and unpredictability of system
devices. First, straggler devices can adversely impact convergence
speed of the global model training. Second, for model aggregation
in traditional FL, edge devices communicate frequently with a
central server using their local updates. However, this process
may encounter communication bottleneck caused by substantial
bandwidth usage. To address these challenges, this paper presents
an adaptive, communication-efficient and asynchronous FL tech-
nique called FedACA comprising feedback loops at two levels.
Our approach contains a self-adjusting local training step with
active participant selection to accelerate the convergence of the
global model. To reduce the communication overhead, FedACA
supports an adaptive uploading policy at the edge devices, which
leverages the model similarity and L2-norm differences between
the current and previous local gradient. It also utilizes contrastive
learning to tackle data heterogeneity by regularizing the local
training if the local model has deviated from the global model and
helps with the model similarity measurement in the uploading
policy. Extensive experiments on a benchmark comprising three
image datasets with non-independent and identically distributed
(non-i.i.d) data show that FedACA adapts well to the straggler
effect in asynchronous environments and also provides significant
reductions in communication costs compared to other state-of-
the-art FL algorithms.

Index Terms—Federated Learning, Communication Efficiency,
Self-adaptation, Straggler Mitigation, Contrastive Learning

I. INTRODUCTION

Deep learning models are data hungry—they perform better
when trained on a large and representative dataset [1]. How-
ever, increasingly data are isolated at distributed locations with
relatively smaller sizes (e.g., medical images or data collected
from mobile devices). Collecting and sharing data between
different facilities is often impractical due to data privacy
concerns and intellectual property issues [2], [3].

To that end, Federated Learning (FL) [4], [5] has emerged
as a form of distributed training that enables multiple edge
devices (clients) to jointly participate in learning a model
without exchanging local data among each other. Moreover, FL
aims to fit a global model across diverse edge devices without
continuously transferring massive amounts of collected data
between edge devices of the network or from edge to back-
end servers for processing.

There, however, is one major challenge in contemporary
FL solutions. For example, FedAvg [5] and its extensions [4],

[6], [7] use a synchronous protocol where all the updates
are incorporated for global model aggregation in each global
epoch. This synchronous approach can become less efficient
since the central server needs to wait for all updates from
clients [8]. Due to heterogeneity in the system and unpre-
dictable network delays, manifestation of lagging devices (i.e.,
stragglers, stale workers) is inevitable. These laggers not only
result in unpredictably long waiting times for the server but
also significantly slow down convergence of the global model.

To address this challenge, prior work has proposed asyn-
chronous FL techniques [8]–[10], which allow the server to
perform model aggregation without waiting for the slow de-
vices to complete their local computation. However, a number
of issues still remain unresolved. First, the model aggregation
step may magnify the straggler effect under the situation where
updated models are trained from different global epochs of
which some updates may be too stale to provide up-to-date
model parameters.

Second, asynchronous FL requires that edge devices send
a full model update back to the server. For large models,
communication bottleneck can occur due to asymmetric trans-
mission speeds in the internet: the uplink speed is typically
much slower than downlink speed. For instance, the US
median speed for mobile devices was reported as 61.06 Mbps
download vs. 8.40 Mbps upload [11]. Unlike synchronous
FL where only a certain fraction of selected edge devices
participate in each global iteration, the bottleneck becomes
worse in asynchronous FL approaches since the number of
participants is not stable: there remains a chance that the server
can easily become a communication bottleneck when large
numbers of clients update the model simultaneously.

Third, selecting participants (i.e., clients or edge devices)
for FL is challenging. Each participant locally processes its
own non-i.i.d (non-independent and identically distributed)
data which can degrade the performance of FL [12]. In
current client selection algorithms [5], [13], the server selects a
fraction of edge devices randomly or depending on their value.
However, such approaches neglect the asynchronous condition:
any non-delayed edge device has a higher opportunity to be
chosen since it is always under the state of idle (not working)
and others will always be acted as laggers. Unbalanced selec-
tion can result in model deviations from the target distribution.

To overcome these challenges, we ask the following ques-
tions: Can we develop an asynchronous federated learning

framework with communication efficiency? Can the approach
be robust and mitigate the effect of stragglers when the
network status is not stable? To that end, this paper pro-
poses FedACA: an Adaptive, Communication-efficient and
Asynchronous FL technique by focusing on improving ac-
curacy performance and reducing communication costs in
asynchronous FL under the circumstance when there are
unpredictable transmission latencies in the network.

To achieve communication efficiency, we utilize the band-
width between the edge devices and servers effectively. In
contrast to existing schemes [5] where edge devices reply
with the actual gradient to the server, in our approach, the
edge devices will not send their actual weights if they are
deemed to be a non-informative update due to failing to reach
a predefined threshold. We develop a dynamic strategy for
computing the threshold value using contrastive learning and
computing the norm of the difference between the models.
Communication efficiency is also improved by properly select-
ing the participants: if the edge devices are more informative,
they have a higher chance to contribute in later rounds.

Moreover, compared to other asynchronous FL methods
which aggregate the global model as soon as receiving an
update, our approach lets the central server start aggregation
at any time by leaving a certain percentage of the edge clients
who are deemed as “laggers” (i.e., stragglers). To handle these
lagging devices due to overloads and/or network latencies, we
introduce a time-based aggregation method which introduces
a factor to represent the timeliness of the devices. Finally, we
also propose an adaptive protocol to choose the local step size
for each edge device to eliminate the chance that some of them
always get determined as laggers.

We present FedACA, a novel adaptive, communication-
efficient and asynchronous federated learning framework that
updates the global model asynchronously across epochs. The
main contributions in this paper are:

• We propose a series of strategies for adaptively control-
ling the stragglers in asynchronous situations by intro-
ducing a time-related factor to mitigate the impact of
stragglers on model aggregation across global epochs.

• We propose a dynamic local epoch adaptation strategy
by letting the server determine the local epoch on each
device to balance the training time on every edge device.

• To solve the non-i.i.d data issues and achieve communi-
cation efficiency, we design a new learning strategy and
update policy using model similarity computation based
on contrastive learning since edge devices only transmit
their updates if they satisfy the informative threshold.

• We evaluate FedACA on three datasets suitable for
federated learning including CIFAR-10, CIFAR-100 and
Fashion-MNIST. We show FedACA outperforms state-
of-the-art FL solutions in convergence, is robust to the
presence of straggler devices, and is communication
efficient through reduction in communication cost by at
least 75% to reach the target accuracy.

The rest of the paper is organized as follows: In Sec-
tion II, we preliminarily introduce related works and compare

FedACA with prior efforts; The proposed method, FedACA,
is presented in Section III; Section IV provides details of our
experimental setup; In Section V, we present the results of our
proposed scheme on three datasets; and Section VI concludes
this paper along with its limitations and directions for future
work.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief background on syn-
chronous FL and asynchronous FL. We then present related
efforts comparing them to our work on FedACA.

A. Federated Learning

FL is a type of distributed machine learning where privacy
preservation of data at local sites is critically important. There
are two primary types of FL:

Synchronous Federated Learning: The most common
type of FL uses the synchronous approach. Federated aver-
aging (FedAvg) [5], a classic case of synchronous FL, was
designed to perform synchronous optimization in federated
settings. FedAvg operates in the following manner: First, a
central server distributes the current global model to the edge
devices (clients). Second, the clients then update their models
locally by independently performing E epochs of training
the global model on their local datasets with the stochastic
gradient descent (SGD) optimizer. Third, the local models are
subsequently sent to a central server. Last, the server averages
the model weights and repeats the steps above.

Asynchronous Federated Learning: Asynchronous train-
ing [6] [14] is widely used in traditional distributed learning to
eliminate the influence of stragglers [6], [14], [15]. Recently,
several works have taken advantage of asynchronous training
and combined it with federated learning terming this approach
as “Asynchronous FL.” Compared to the synchronous FL,
asynchronous FL is much more efficient in making the best
use of all clients’ computational resources.

Wait-free communication and computation [9], [16], [17]
are some recent asynchronous FL approaches that address the
straggler problem. However, these frameworks spontaneously
lead to higher communication frequency which results in
higher bandwidth usage and thereby costs. Also, handling
asynchronous procedures may cause unnecessary storage us-
age. For example, [10] introduces their server-side optimiza-
tions by using tier-based weight strategies. However, the server
needs to keep and maintain the updates from each tier in order
to average the updated weight, which increases storage costs.

Compared to these efforts, in FedACA we study a collabo-
rative, asynchronous FL framework to achieve bandwidth and
storage savings by only updating with the most informative
models when the server starts a new global epoch randomly.

B. Communication Efficiency

Approaches to achieving communication efficiency can be
summarized into two categories: (1) reducing the communi-
cation frequency and (2) reducing the communication costs,
particularly to the uplink.

Fig. 1: Illustration of the Update Procedure in FedACA between the server and one client. The server aggregates after waiting
for a random time and shows client n as one of the selected clients.(Note: The time when client n replies may not be in the
current global iteration)

To reduce the communication frequency, threshold and node
selection methods are widely used independently or jointly.
The work in [5] and its extensions [4], [6], [7] reduce commu-
nication frequency by working with partial client participation.
Threshold methods are used by computing a threshold metric
(i.e., a control variable) [18], [19]. Only the clients who satisfy
this threshold are permitted to upload their model.

To reduce the communication overhead in FL, a primary
approach is to minimize the model parameter size in uplink.
Model compression at the clients for uploading is one of
the widely used methods. Approaches like Sparsification [20],
and quantization methods [21], [22] can be used to reduce
the communication overhead. Another method is to upload a
subpart of the upload model parameters [23], [24].

These prior efforts are developed only for synchronous
frameworks and do not take the straggler issues into con-
sideration. They still face longer waiting times and slower
convergence speeds. Our algorithm aims to find a solution to
address communication efficiency using asynchronous FL.

C. Contrastive Learning of Representations

Contrastive learning is widely used in semi-supervised or
unsupervised learning. SimCLR [25] is a typical contrastive
learning framework where the key idea is to reduce the
distance between the representations of positive pairs (e.g.,
different augmented views of the same image), and increase
the distance between the representations of negative pairs (e.g.,
augmented views from different images).

That is, given an image x, SimCLR creates two augmented
views (i, j) of image x: xi, xj . In the model, a base encoder
network f(�) extracts representation vectors h from augmented
views. Then a projection head g(�) is used to map represen-
tations vector h to z. The model is trained by minimizing
the loss function for a positive pair. The loss function for the
positive pair of samples (i, j) is defined as:

li,j = −log
exp((sim((zi, zj)/τ)∑2N

k=1 Ik ̸=iexp((sim((zi, zk)/τ)

where sim(v, u) = u⊤v/ ∥u∥ ∥v∥ denotes a cosine similar-
ity function and τ denotes a temperature parameter.

Approaches [26]–[28] that combine contrastive learning
with FL have recently emerged as an effective approach to
tackle the non-i.i.d problem where the local data cannot rep-
resent the overall distribution. Under non-i.i.d data scenarios,
with the help of contrastive learning, the clients can control
the drift between local and global model and fully utilize this
knowledge to correct the local training. MOON [27] proposes
a design of model-based comparative learning to solve non-
i.i.d data problems by maximizing the consistency between
the current local model learning representation and the global
model learning representation. Besides the unsupervised learn-
ing, supervised learning also can be benefited from contrastive
learning by incorporating the label information to compose
positive and negative images.

In FedACA, instead of focusing on the semi-
supervised/supervised learning setting, we take advantage of
representation differences to save the communication cost by
filtering the non-informative update. We set up a dynamic
threshold with the help of similarity computing in contrastive
learning.

III. FEDACA METHODOLOGY

In this section, we present our adaptive FedACA approach
with MAPE-K [29] feedback loops at two levels as shown in
Figure 1. Using the asynchronous FL approach, the learning
process concurrently executes on a centralized server and a set
of clients. To avoid the drawbacks of synchronous FL, we run
the server in asynchronous steps by randomly terminating the
global iteration. To mitigate the impact of stragglers, we set
up a scheme with a series of strategies on server explained in
Section III-B. To minimize the communication cost overhead,
we develop a thresholding algorithm to let the clients decide
whether to ignore this update and not reply back to the server
as described in Section III-C.

A. System Model and Problem Statement

We assume a computing system with a central server,
possibly deployed in the cloud, and K clients (also called
devices) at the edge, denoted as C1, ..., CK . Each client Ck has
its own local dataset Dk used in model building that is subject
to privacy concerns and hence the need for federated learning.
pk is the proportion of the kth client in the global model
aggregation process such that pk ≥ 0 and

∑K
k=1 pk = P .

Effectively, it reflects the time-based weight of the client at
that instant. Our goal is to find a global model W over the
combined dataset D ≜

⋃
Dk by aggregating at the server with

the aim to reduce the global training convergence overhead,
maintain high enough accuracy and preserve privacy.

The objective is to minimize the optimization problem in
Equation (1):

avgmin
W

{
L(W) =

K∑
k=1

pk
P
Lk(W)

}
, (1)

where Lk(W)
def
=

∑
i∈Dk

li(W ; (xi, yi)), is the local empir-
ical loss of client k and li(W ; (xi, yi)) is the corresponding
loss function for data sample (xi, yi).

B. Procedures on Central Sever

Since we use the asynchronous approach, the server will
cache all updates and aggregate the global model after a
random period of time at the end of each global epoch instead
of waiting for all the client updates. Local models from clients
that arrive later are allocated to the subsequent global iteration.
We set W t+1 to be the global model and wt

k to be the local
model from client k at epoch t.

We also define the structure of the message to transmit
information between server and the clients. The message
includes the weight (the weight in the update message can
be the actual gradient or NONE if it is non-informative), local
threshold, local loss value which is related to the similarity
between the global representation and local representation
(Loss), timestamp (TS) and local training step (Step):

MSG = [Weight, [Threshold], Loss, TS, Step] (2)

Algorithm 1 illustrates all the processes at the central server.
The main procedures that execute on the central server are:

1) Client Selection: At the beginning of each global it-
eration, the participant selection strategy in FedACA allows
the server to choose clients for this training epoch. The
server maintains a list v of model representation similarity
measurements between each client and at the server:

v = [Sim(rw1
, rW1

), Sim(rw2
, rW2

)..., Sim(rwK
, rWK

)],
(3)

where Sim(rwi
, rWi

) is processed at each client and retrieved
from the message via the Threshold field. The purpose here
is to select those clients depending on the representation
similarity between the local model and the global model. For

all those clients whose model has less similarity, they have a
higher chance of getting involved in this epoch. The details
on client selection appear in Lines 31–35 of Algorithm 1.

Algorithm 1: Process at the Server
Input: K clients, number of local rounds N, number of

global epochs E, pre-defined threshold th,
pre-defined step s, similarity list v

Output: Updated Global Model F (w)
1 Initialize global model w and time-related weight list

p = [p1, ..pK]
2 for t = 1: E do
3 Select a subset Ct of total clients C:

Ct = ClientSelection(K, p);
4 Assign the time-related factor to Ct:
5 for k in Ct do
6 ptk = ptk ∗ α;
7 Send wt

k, th
t
k, s

t
k to Client k

8 end
9 Randomly choose a value T to be the waiting time.

10 while Server waits time > T do
11 Receive feedback otk and wt

k from client k:
12 if k has no actual updates then
13 wt

k = W t ∗ σ + wt−1
k ∗ (1− σ)

14 end
15 if k is a straggler then
16 wt

k = wt
k ∗ ω +W t ∗ (1− ω)

17 ptk = ptk ∗ 1/α;
18 stk = st−1

k −max {1, log(τ − x)}
19 else
20 stk = stk + 1
21 end
22 end
23 Server Updating:
24 for k in C do
25 ptk ←

pt
k∑K

k=1 pt
k

;

26 W t+1 ←
∑K

k=1 p
t
k ∗ wt

k ;

27 tht+1 ←
∑K

k=1 otk
K ;

28 end
29 Back to the beginning of Server Process;
30 end
31 Function ClientSelection(C, v):
32 sort(v);
33 Select Ctop: for clients in Top nth of v
34 Select Cre: fraction c of remaining clients
35 return C = Ctop + Cre

2) Time-related Factor: We introduce a time-related factor
by using the proportion pk from Algorithm 1. The server dy-
namically adjusts pk by overwriting the corresponding values
assigned to the chosen clients using a straightforward idea: for
those participants which start and finish local training in this
iteration, they are assigned with a higher value. This factor will
be continuously adjusted in each global iteration as follows:

• After the server selects participants, we use a constant
value α (α > 1) to represent these clients shown in
Equation (4):

pk = pk ∗ α, (4)

• To maintain consistency in the model updating scheme,
if the update is considered as coming from a lagger, it
will be penalized which is reflected from pk: pk will be
divided by α:

pk =

{
pk/α, Stragglers
pk, Otherwise , (5)

• After the model aggregation, we normalize all time-
related factors pk with P , where pk = pk/P, and
P =

∑K
k=1 pk (Line 28 in Algorithm 1).

3) Weight Modification: Whenever the server receives an
update, the update will be examined along two with aspects:
whether it is a straggler or not, and whether it contains actual
model parameters or not. For the stragglers, since its model is
trained based on a previous global model, there is a need to
keep up with the current state. For the update which does not
contain an actual weight, we need to estimate how the updates
will appear in the current epoch. To that end, the server will
perform weight modification in two steps:

1. Straggler Control: The server will retrieve the
timestamp to determine whether the update is a straggler. To
address the staleness, we use τ to denote the latency. Besides
the time-related factor reduction, for the straggler, it follows
up the most up-to-date global model W t. We merge the
updated weights wt

k with W t corresponding to their staleness
(arrival delay) factor ω. The details of the first step are per
Equation (6):

wt
k =

{
wt

k, From current epoch
wt

k ∗ ω +W t ∗ (1− ω), Otherwise , (6)

where ω = 1
a−τ ∗ ω, a is a constant value.

2. Model Estimation: The server will retrieve the
Updated weight to determine whether it contains the real
model parameters. If the server only receives a negative-
acknowledgment message – the NONE message – since the
clients do not transmit the actual update, the server will
estimate their parameters wt

k in collaboration with the global
model W t and previous local model wt−1

k . The details of the
second step are per Equation (7):

wt
k =

{
wt

k, Update = actual model
W t ∗ σ + wt−1

k ∗ (1− σ), Update = ”NONE”
,

(7)
where wt−1

k = W t if t = 1.
4) Dynamic Local Training Epoch: In traditional FL, e.g.,

FedAvg [5], a local epoch is a fixed number which illustrates
the number of iterations through client’s local training. Due
to the data and local computation heterogeneity or network
delay, choosing a perfect local epoch number for each client
is challenging.

In FedACA, the server assigns local training step size st

at global epoch t for each client dynamically to balance their
local training time. For the “punctual” clients, which are those
that reply in the same epoch, their updates lead to synchronous
updates. We increment st by 1 to increase their training time
(Line 18 in Algorithm 1). When the client k is marked as
“straggler”, the server will subtract x, which is given by x =
max {1, log(τ − x)} depending on the latency τ from its local
training step size stk (Line 16 in Algorithm 1) and predefined
value x. The newest local training step size will be transmitted
along with the global model and other information once client
k is selected.

5) Cross-Epoch Adaptive Aggregation: FedACA uses a
new cross-epoch, weighted aggregation heuristic: the received
models are trained which start from different epochs. After
adjusting the weight w and time-related factor p (Line 13-21
in Algorithm 1), we define the function of our aggregation at
the tth global epoch as shown in Equation (8):

f t(w) =

K∑
k=1

ptk
P t
∗ wt

k, (8)

Unlike FedAvg [5] and other approaches [12], [30], which
aggregate the global model corresponding to the size of the
local dataset or just average the local model, we let the server
dynamically adjust the proportion of each local update which
illustrates its significance in global model.

C. Training on Local Clients

For the local model training, our scheme aims to improve
the communication efficiency of asynchronous FL by let-
ting the most informative updates make contributions. In the
following, we present the local training objective and the
training procedure. Then, we discuss the relation to contrastive
learning. Finally, we discuss our informative update scheme.

As shown in Algorithm 2, the processes for each client
consist of two parts: local learning and informative update
determination.

1) Local Training Objectives: The global model is sent to
selected clients at start of each global epoch training process.
Each client needs to perform its local computing depending
on this global model. For this, after receiving the latest model,
each client updates the model with its own local dataset. Our
local training framework is designed as a simple and effective
approach based on FedAvg [5], with slight modifications in
the local training phase.

Our local training (Line 1-10 in Algorithm 2) is based on
an intuitive idea: the global model coming from the server is
an aggregation of all local updates and hence has a better and
fairer view in training than every single local model especially
under the scenarios where the client data typically follows a
non-i.i.d. distribution. One of our local objectives is to keep
the local model close to the received global model during the
training to limit the impact of local variable updates in further
model aggregation. To illustrate the distance reduction, we
minimize the model similarity between the global model and
local model.

Algorithm 2: Process at the Edge Devices
Input: Local rounds N, global model W t, temperature

m, learning rate η, weight variance threshold1
Orep, representation variance threshold2 Hrep,
hyper-parameter β, local dataset D

Output: wt, ot, H
1 Receive local epoch N and global weight Wt, start

time from server.
2 for i = 1: N do
3 for each batch b = {x, y} in D do
4 lbase = CrossEntropyLoss(Fwt(x), y)
5 neg = rwt(x), rwt−1(x)
6 pos = rwt(x), rW t(x)

7 lcon = −log exp(sim(pos)/m)
exp(sim(pos)/m)+exp(sim(neg)/m)

8 loss = β ∗ lcon + (1− β) ∗ lbase
9 wt = wt − η▽ loss

10 Hx,y,i = Hx,y,i + sim(neg)/m
11 end
12 end
13 ot =

∥∥wt+1 − wt
∥∥
2
;

14 H = avg(Hx,y,i)
15 if (ot < Orep & H < Hrep) then
16 Return (NONE, [ot, H], loss, start time, N) to

server;
17 Update Hrep = H , Orep = O
18 else
19 Return (wt, [ot, H], loss, start time, N) to server;
20 Update Hrep = H ∗ 0.9, Orep = O
21 end
22 Open for the next local training.

Another local objective is to maximize the local model
difference between current epoch and previous epoch since
we want to utilize each chance for uploading when the main
communication cost is to transmit the model parameters. In
FedACA, we increase the distance between the local model
from current epoch and previous epoch to enforce the newest
model is far from the previous.

Particularly, we can achieve these two objectives using
contrastive learning. As we mentioned in Section II-C, the
learning purpose is to train models by minimizing the distance
between representations of positive pairs and maximizing the
distance between negative pairs [25].

The local objective is realized by minimizing the loss
function. Suppose client k receives model wt from the server.
During the training, we define the total loss in Equation (10):

loss = β ∗ lcon + (1− β) ∗ lbase, (10)

where β is a hyper-parameter to control the weight of con-
trastive loss and base loss.

For every input x, the base function lossbase is given as:

lbase = CrossEntropyLoss(Fwt
i
(x), y), (11)

The contrastive loss function lcon is given as:

lcon = −log exp((sim(pos)/m)

exp(sim(pos)/m) + exp(sim(neg)/m)
, (12)

where the neg is equivalent to pair of representation of x
from the current local model rwt

k
(x) and the representation of

x from the last local model rwt−1
k

(x), pos is equivalent to the
pair of representation of x from the current local model rwt

k
(x)

and the representation of x from the global model rWt(x).
The local objective then is to minimize:

E{x,y}∼Dk
[βlcon(w;W ; (x)) + (1− β)lbase(w; (x, y))] ,

(13)
2) Informative updates: After local training, an informative

update strategy is implemented. Our purpose is to detect non-
informative models and avoid uploading them, thereby reduc-
ing unnecessary communication costs. Each client measures
its update depending on the informative level, which is the
dissimilarity between local model in current and past epochs
and decides whether to communicate with its updates or not.

The policy of informative determination is based on two
schemes (Line 13-14 in Algorithm 2):

• comparison of the cosine similarity between current local
model representation Rt and previous local model repre-
sentation Rt−1 to an adaptive threshold H .

• comparison of the l2 norm of the difference between the
local model wt and previous local model wt−1 to another
adaptive threshold ot.

For the first scheme in informative determination, we take
advantage of the contrastive loss function on negative pairs,
which in our scenarios is representation of current local model
and representation of previous local model. The first value H is
computed by averaging the cosine similarity of representation
for all inputs.

For the second scheme, we compute the norm of the
difference between the current and previous local model:

ot =
∥∥wt − wt−1

∥∥
2
, (14)

Since the norm of the gradients and the model similarity
are expected to decrease along with the training progress
especially near the optimal point, a dynamic threshold is more
appropriate to filter the non-informative updates by limiting
the number of dropping updates. So we keep track of Hrep

and o. At the end of the local training, the threshold value
will be updated compared to the trained result (Line 14-19 in
Algorithm 2). The client will not transmit its actual update
back to the server only if it satisfies the two schemes above.
After these processes mentioned above, the client will finally
make its own decision and reply back to the server with its
information.

IV. EXPERIMENTAL SETUP

To demonstrate the effectiveness and robustness of
FedACA, we present the details of our experimental setup.

(a) CIFAR-10 (b) CIFAR-100 (c) Fashion-MNIST

Fig. 2: The data distribution of each party using non-i.i.d data partition. The color bar denotes the degree of the data samples.
Each rectangle represents the number of data samples of a specific class in a certain party.

(a) CIFAR-10 (b) CIFAR-100 (c) Fashion-MNIST

Fig. 3: Test accuracy comparison of different FL methods on non-i.i.d. CIFAR-10, CIFAR-100 and Fashion-MNIST datasets.
The accuracy results for certain running time (in seconds) as specified in the X-axis’ labels.)

A. Datasets

We evaluated FedACA using three different datasets suitable
for federated learning.

• CIFAR-10: The CIFAR-10 [31] dataset consists of
60,000 32 × 32 color images in 10 classes, with 6000
images per class. Of these, 50,000 are training images
and 10,000 test images.

• CIFAR-100: The CIFAR-100 [31] dataset has 60,000 32
× 32 colour images in 100 classes with each class having
600 images.

• Fashion-MNIST: Fashion-MNIST [32] is a dataset that
contains a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28×28 grayscale
image, associated with a label from 10 classes.

We use Dirichlet distribution to generate the non-i.i.d train-
ing data partition among devices as shown in prior work [33].
For each class j, we sample pj ∼ DirK(β) where DirK(β) is
the Dirichlet distribution and β is the concentration parameter
(0.5 by default). We allocate pj,k proportion of the instances
of class j of the complete dataset to batch j and due to the
small value of β, some batches may lack of an entire subset
of classes. In our experiment, CIFAR-10 and Fashion-MNIST
will be divided into 10 clients and CIFAR-100 will be divided
into 8 clients.

After such a non-i.i.d partition strategy, the number of
classes and samples at each client vary from each other. The
data size in each edge device ranges from 1000 to 8400
with a standard deviation of 2242 on CIFAR-10 and CIFAR-
100, and 1100 to 9000 with a standard deviation of 2489
on Fashion-MNIST. The data distributions among clients in
default settings are shown in Figure 2.

B. Comparative Methods

To demonstrate the effectiveness of FedACA, we compare
it with state-of-the-art federated learning algorithms:

• FedAvg [5] is the most commonly used synchronous FL
approach.

• FedProx [30] is the synchronous federated learning
framework with a proximal term on the local objective
function to mitigate the data heterogeneity problem. It can
handle stragglers due to system heterogeneity by applying
different local epochs for clients.

• FedAsync [15] is used as a baseline asynchronous
FL approach which updates the global model by
weighted averaging. To present the best result, we follow
FedAsync’s [15] strategy by adding a polynomial term
to the weighting function as an adaptive mixing hyper-
parameter: Sa(t− τ) = (t− τ + 1)−a.

C. Implementation Details

The proposed FedACA and baselines are all implemented
in PyTorch [34] and evaluated on three instances on Google
cloud. We deploy the FL server exclusively on a server
instance without GPU. The clients are divided into two sets
and each of the subsets is implemented on the client instance
with two 16-core CPUs, 60GB of main memory and one
NVIDIA K80 GPU. Each client gets assigned one CPU core.

D. Training Details

Hyperparameters. For FedACA and all state-of-the art
approaches, the batch size is set to 16 and the number of local
epochs is set to 10 for every dataset. We tuned the value of
the Stochastic Gradient Descent (SGD) optimizer and got the
best learning rate λ as 0.001. The SGD weight decay is set to
0.01 and the SGD momentum is set to 0.9. We empirically
select a fraction C of clients for FedAvg and FedProx as
0.5 and 0.6 after making the trade-off between number of
participants and accuracy performance. For FedAsync model,
we set ρ = 0.01 and a = 0.5. For FedACA, we tune β from
0.001, 0.01, 0.1and0.9 and select 0.1 for the best result.

Straggler Simulation. To simulate the stragglers and un-
stable network situations, we add a random offset value to be
the latency at each client’s side. Since the processing time at
local is varied corresponding to its model parameter size and
dataset size, to illustrate that the latency is non-negligible, the
network delay accounts for at least 10% of total processing
time. We set the latency between 0 to 50 seconds for CIFAR-
10 and Fashion-MNIST and 0 to 200 for CIFAR-100.

Models. For CIFAR-10 and Fashion-MNIST, we use a
convolutional neural network (CNN) network. The network
architecture includes two 5x5 convolution layers, each with
32 and 64 filters, followed by 2x2 max pooling and two fully
connected layers with ReLU activation (the first with 120 units
and the second with 84 units). For CIFAR-100, we use ResNet-
18 [35] as the base encoder. For all datasets, we add 2-layer
MLP with an output size of number of the classes to be the
project header.

V. EXPERIMENTAL RESULTS

A. Accuracy Comparison

Table I presents the results of the prediction performance
and the variance of the test accuracy on all the datasets
comparing FedACA to the baseline approaches. We report the
best test accuracy after each training process converges within
a global running time budget: 6000s, 42000s and 8000s.

Across all datasets, FedACA outperforms the best baseline
FL method, FedAsync, by 4.20% to 8.04%. FedAvg and
FedProx do not perform well within the specified time budgets
on the highly unbalanced and non-i.i.d datasets and have no
effective way to deal with stragglers. In particular, FedACA
outperforms the worst baseline method, FedAvg, by 11.58%
to 15.32%.

Using the same new epoch starting scheme as FedAsync,
our method achieves higher accuracy than FedAsync for the
same running time for all the experiments. Also, FedACA

TABLE I: The best prediction accuracy and average variance
of test accuracy among all devices of FedACA and the other
baselines on all datasets with non-i.i.d. case in the specified
time budget. The best results are highlighted in bold font.

Method CIFAR-10
(Time=6000s)

CIFAR-100
(Time=42000s)

Fashion-MNIST
(Time=8000s)

FedAvg 58.42%±0.21% 46.62%±0.51% 79.35%±0.15%
FedProx 62.18%±0.23% 53.25%±0.43% 79.15%±0.24%

FedAsync 63.28%±1.91% 58.47%±1.33% 81.75%±0.33%
Our method 67.48%±0.26% 66.51%±0.32% 89.51%±0.13%

exhibits significantly lower accuracy variance with the non-
i.i.d of data distribution. The reasons that we achieve better
performance are:

• during the local model training, our local loss func-
tion which involves constrastive loss focuses on keeping
smaller distances between the local model and the global
model and larger distances between previous local model
and current local model, and

• our method’s time-related weighted aggregation heuristic
at the server can more effectively mitigate the influence
from straggler clients from past epochs.

B. Robustness to Stragglers

To illustrate the robustness of our approach to stragglers, we
compare the convergence speed and prediction accuracy over
time. The performance difference as a function of running
time can be noticed from the convergence timeline figure
shown in Figure 3. Figure 3 shows that FedACA has the
fastest convergence speed in the presence of network latency
fluctuations and laggers. The dataset size among all clients
varies significantly: the largest one is 10x compared to the
smallest one. Since every client has the same computation
capacity, the computation time for the largest dataset was
multiple times larger than the smallest.

In Table III we report the entire training time of synchronous
approaches: FedAvg and FedProx, and asynchronous FL ap-
proaches: FedACA and FedAsync, to achieve the target test
performance. As discussed previously, to simulate the unstable
connection in the network, we add network delays to each edge
device for a random value.

As seen in Table III, for synchronous FL approaches,
they have the highest computation time cost across all four
benchmarks. For example, to achieve an accuracy of 60% for
the Cifar-10 using CNN model, FedAvg and FedProx spend
5.05x and 3.34x longer time than FedACA, respectively. The
presence of stragglers inevitably leads to longer training times
for every global epoch since the aggregation has to wait to
receive from the slowest node to finish its local training.
This also results in slowness of the model convergence to the
optimal solution.

In asynchronous FL, we make sure that over 20% of the
total edge devices to have staleness. For asynchronous FL
approaches, compared to FedAsync, which spends at least
2.34x longer time to reach the goal, FedACA shows impressive
time cost reduction due to our dynamic local training step size

(a) CIFAR-10 (b) CIFAR-100 (c) Fashion-MNIST

Fig. 4: Impact of FedACA’s compression precision on the prediction performance and the communication cost across all dataset.
2-class dataset. All results are plotted with the average of every 40 global rounds.

TABLE II: Amounts of data (Bytes) transferred between edge
devices and server to reach the target accuracy on all non-i.i.d.
datasets. The best results are highlighted in bold font.

Method CIFAR-10
(acc. = 0.6)

CIFAR-100
(acc. = 0.5)

Fashion-MNIST
(acc.= 0.8)

FedAvg 275040.93 – 128845.39
FedProx 213156.23 8.3*1e6 140234.48

FedAsync 111436.76 8.5*1e6 143452.98
Our method 50193.25 2.8*1e6 24345.14

and edge device selection strategy. The client selection method
gives the edge devices which model is less similar to the global
model a higher chance of getting selected in the next epoch.
The adaptive local training epoch modification decreases the
training time variance among all devices.

C. Communication Efficiency

We next further compare the communication cost in terms
of the amount of data uploaded and downloaded via network.
Table II shows the amount of data transferred between the edge
clients and the server to reach the target accuracy. To better
illustrate how our approach outperforms in communication
efficiency, Figure 4 shows the prediction performance and
communication cost for the different approaches as a function
of the number of global iterations.

As seen in Figure 4, FedAvg and FedProx incur the higher
overall communication cost – at least about 1.5x FedACA,
since they both use the same synchronous updating mech-
anism by communicating with a certain fraction of clients.
Specifically, to obtain a certain target accuracy as illustrated
in Table II the amount of data transferred between edge devices
and main server under FedAvg and FedProx is at least 3.1x
of FedACA.

Compared to FedAsync, FedACA performs better since it
has a lower communication rate by dropping the less infor-
mative updates at the edge devices. By adapting the threshold
in each round based on the edge devices’ norm update, the
dropping rate will not increase obviously near the optimal as
we discuss in Section III-C2 which impacts the test accuracy.

VI. CONCLUSIONS

This paper describes FedACA, which is an adaptive and
asynchronous FL technique comprising feedback loops at two
levels that overcome communication bottlenecks and straggler
problems in prior efforts. To alleviate the communication
bottleneck, FedACA adapts the communication rates between
the edge devices and the centralized server by calculating
the cosine similarity and L-2 norm between the local model
parameters and the global model parameters, and allowing
only those local updates to propagate from edge to server
whose values of the L2 norm and similarity are greater than
the adaptive threshold. To mitigate the influence of stragglers,
FedACA supports an adaptive participant selection and local
training epoch variation. Empirical evaluations comparing
FedACA with three contemporary FL solutions on three non-
i.i.d datasets show that FedACA significantly reduces the
communication cost, handles stragglers and speeds up model
convergence while maintaining acceptable accuracy.

Our work only considers the situation that the number of
edge devices remains unchanged and neglects the probability
that edge devices could be frequently offline during the train-
ing process in the real network. Also, this is still an open issue
to build efficient communication methods with the changing
datasets at the edge devices which lead to the unstable model
domain. For future work, a promising direction is to further
implement the asynchronous FL procedure on online learning
conditions with changing devices and datasets.

TABLE III: The time(s) takes for each FL method to reach a target accuracy of N. (Note that FedAvg will reach to the 60%
accuracy later in CIFAR-10 which are not shown in the Fig.2, the test accuracy timeline curves. FedAsync is not able to reach
the target accuracy for CIFAR-100, thus is omitted.) The best results are highlighted in bold font.

CIFAR-10 CIFAR-100 Fashion-MNIST
N = 0.50 N = 0.55 N = 0.60 N = 0.40 N = 0.45 N = 0.50 N = 0.60 N = 0.70 N = 0.80

FedAvg 3029.09 5014.36 7483.23 33289.57 47823.69 — 2314.39 2798.01 6658.25
FedProx 1821.76 3169.45 4933.05 18732.95 24509.20 30333.23 1506.45 2004.11 6658.74
FedAsync 1801.45 2367.45 3501.01 17053.92 17502.35 26062.92 393.56 537.09 2422.65
FedACA(ours) 762.90 879.49 1478.26 5002.14 6724.47 9024.41 187.34 243.09 743.08

ACKNOWLEDGMENTS

This work was supported in part by NSF ITE #2040462.
Any opinions, findings, and conclusions or recommendations
in this paper are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint
arXiv:1801.00631, 2018.

[2] Y. Qu, S. Yu, W. Zhou, S. Peng, G. Wang, and K. Xiao, “Privacy of
things: Emerging challenges and opportunities in wireless internet of
things,” IEEE Wireless Communications, vol. 25, no. 6, pp. 91–97, 2018.

[3] H. Xiong, H. Zhang, and J. Sun, “Attribute-based privacy-preserving
data sharing for dynamic groups in cloud computing,” IEEE Systems
Journal, vol. 13, no. 3, pp. 2739–2750, 2018.

[4] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[6] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[7] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[8] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated
gradient for communication-efficient distributed learning,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[9] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 2020, pp.
15–24.

[10] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “Fe-
dat: a high-performance and communication-efficient federated learning
system with asynchronous tiers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–16.

[11] “Speedtest market report,” http://www.speedtest.net/reports/united-
states/, accessed: 2022-04.

[12] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for on-device
federated learning.” 2019.

[13] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in 15th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
21), 2021, pp. 19–35.

[14] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,”
in International Conference on Machine Learning. PMLR, 2017, pp.
4120–4129.

[15] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[17] G. Damaskinos, R. Guerraoui, A.-M. Kermarrec, V. Nitu, R. Patra,
and F. Taiani, “Fleet: Online federated learning via staleness awareness
and performance prediction,” in Proceedings of the 21st International
Middleware Conference, 2020, pp. 163–177.

[18] M. Ribero and H. Vikalo, “Communication-efficient federated learning
via optimal client sampling,” arXiv preprint arXiv:2007.15197, 2020.

[19] N. Singh, D. Data, J. George, and S. Diggavi, “Sparq-sgd: Event-
triggered and compressed communication in decentralized stochastic
optimization,” arXiv preprint arXiv:1910.14280, 2019.

[20] J. Wang, M. Kolar, N. Srebro, and T. Zhang, “Efficient distributed learn-
ing with sparsity,” in International Conference on Machine Learning.
PMLR, 2017, pp. 3636–3645.

[21] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[22] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.

[23] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE transactions on neural networks and
learning systems, vol. 31, no. 10, pp. 4229–4238, 2019.

[24] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,
“Communication-efficient federated learning with adaptive parameter
freezing,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021, pp. 1–11.

[25] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[26] F. Zhang, K. Kuang, Z. You, T. Shen, J. Xiao, Y. Zhang, C. Wu,
Y. Zhuang, and X. Li, “Federated unsupervised representation learning,”
arXiv preprint arXiv:2010.08982, 2020.

[27] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 10 713–10 722.

[28] X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang, and Z. Zhang,
“Fedproc: Prototypical contrastive federated learning on non-iid data,”
arXiv preprint arXiv:2109.12273, 2021.

[29] A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, vol. 31, no. 2006, pp. 1–6, 2006.

[30] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[31] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[32] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[33] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, 2020.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

