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Abstract—The Internet of Things (IoT) is gaining popularity as
it offers to connect billions of devices and exchange data over the
internet. However, the large-scale and heterogeneous IoT network
environment brings serious challenges to assuring the quality of
service of IoT-based services. In this context, Software-Defined
Networking (SDN) shows promise in improving the performance
of IoT services by decoupling the control plane from the data
plane. However, existing SDN-based distributed architectures are
able to address the scalability and management issues in static
IoT scenarios only. In this paper, we utilize multiple M/M/1
queues to model and optimize the service-level and system-level
objectives in dynamic IoT scenarios, where the network switches
and/or their request rates could change dynamically over time.
We propose several heuristic-based solutions including a genetic
algorithm, a simulated annealing algorithm and a modified
greedy algorithm with the goal of minimizing the queuing and
processing times of the requests from switches at the controllers
and balancing the controller loads while also incorporating
the switch migration costs. Empirical studies using Mininet-
based simulations show that our algorithms offer effective self-
adaptation and self-healing in dynamic network conditions.

Index Terms—Switch Migration Problem (SMP), Software-
Defined Networking (SDN), Internet of Things (IoT), Queuing
Model, Load Balancing, Resource management.

I. INTRODUCTION

The Internet of Things (IoT) is gaining popularity and
acceptance in many applications, such as smart cities, smart
homes, and smart healthcare [1]. This is evident from a
2021 Gartner survey indicating about 25 billion endpoints
already connected as part of different IoT deployments [2].
Cisco also forecasts that there will be 500 billion IoT devices
connected by 2030 [3]. Despite these promising trends, IoT
still faces many challenges stemming from the large-scale and
heterogeneous network environments in which they operate.

In traditional IoT deployments, the control plane and data
plane of IoT networks are tightly coupled as shown on
the left side of Figure 1. Many technical limitations stem
from this approach, such as lack of scalability, poor resource
management, and expensive network devices, that have pushed
the operations of traditional IoT networks into stasis. To fix
these deficiencies, the Software-Defined Networking (SDN)
paradigm offers a promising alternative as illustrated on the
right side of Figure 1. SDN decouples the data plane from

the control plane, which helps mitigate the lack of net-
work scalability and resource management issues. A logically
centralized control plane allows network administrators to
install, configure and update network devices seamlessly by
running network applications, thereby significantly reducing
maintenance errors that can otherwise be caused by manual
configurations.

Fig. 1: Traditional network vs. Software Defined Network (SDN).

Early efforts [4], [5], [6] on SDN technology deployments
used one physically centralized controller. However, issues of
scalability and reliability emerged with a single centralized
controller. With increasing network traffic, this approach could
hardly meet the growing demands from the users. Furthermore,
an individual controller could easily become a single point
of failure. To solve these issues, logically centralized but
physically distributed controllers were introduced as a more
scalable and reliable approach to SDN [7], [8], [9].

Despite these promising directions, in larger-sized network
topologies or networks with fluctuating dynamics, such as in
IoT, it becomes difficult for SDN developers to determine how
many controllers to deploy and where to place them in the net-
work to address the dynamically changing conditions. Heller
et al. [10] first introduced the Controller Placement Problem
(CPP), which incorporated minimizing the average and worst-
case latency between the controllers and the switches, as well
as maximizing the number of nodes within a latency bound.
Besides defining and quantifying CPP, they also showed that
the problem is worth further investigation. Subsequent work,
such as in [11] and [12], delivered a number of solutions
to minimize latency from different sources and to balance



the network packet load, resulting in significantly improved
network performance.

Despite these prior research efforts, the solutions they
proposed operated only under the static assumptions, which
ignored the dynamic nature of the network. Due to the explo-
sive growth of IoT devices we are witnessing, however, the
distribution of traffic load is always uneven. The unbalanced
traffic in the data plane may cause unpredictable delays on
essential communication services and real-time applications.
Thus, SDN-based network services [13], [14], [15] are applied
to monitor and mitigate the traffic in the data plane. While the
network services do bring benefits to the data plane, they also
result in additional traffic on the control plane. To address
this issue, Wang et al. [16] introduced the Switch Migration
Problem (SMP), which aims to use live switch migration
to improve the performance and scalability in distributed
controllers. However, many existing studies [16], [17], [18]
that consider the SMP approach focused only on minimizing
the switch migration cost without considering the latency
between the controllers and the switches.

Addressing these challenges, particularly in IoT scenarios
where human intervention is not always feasible, requires
autonomic self-healing and self-adapting solutions. To that
end, this paper provides such a solution based on a multi-
objective optimization approach that minimizes the latency,
balances the controller loads and reduces the switch migration
cost all at once, and thereby comprehensively and effectively
solves the switch migration problem in dynamic IoT networks.

The primary contributions of our work that distinguish them
from prior related works are as follows:
• We consider a multi-objective approach to solving the

SMP in dynamic scenarios, which includes autonomically
adding/deleting switches to/from the network topology
and increasing/decreasing the switch request rates.

• We incorporate objectives that capture both service-level
and system-level performance, which includes switch-
controller latency, controller load balancing, and switch
migration cost.

• We formulate an optimization problem while using mul-
tiple distributed M/M/1 queues [19] to build our network
model and Little’s law [20] to analyze the queuing and
processing times of the switch requests on controllers.

• We propose three heuristic-based solutions, including a
genetic algorithm, a simulated annealing algorithm, and
a modified greedy algorithm, to solve the formulated SMP
problem that is codified in a self-healing and self-adapting
systems software solution.

• We evaluate the performance of the proposed algorithms
using Mininet-based simulations, and the results show
that they are able to offer solutions that can effectively
adapt to dynamic network conditions.

The rest of this paper is organized as follows. Section II
provides a brief overview of the related work. The formal
problem description is presented in Section III. In Section IV,
our three heuristic algorithms are described and explained,
followed by the system architecture in Section V. The per-

formance evaluations are presented in Section VI. Finally,
Section VII offers concluding remarks alluding to future work.

II. RELATED WORK

This section compares our work to relevant prior efforts. The
previous study [21] classified the load balancing method into
a static group and a dynamic group. In static scenarios, load
balancing is one of the important objectives of solving CPP.
In dynamic scenarios, a switch migration based approach is
usually used to balance the controller loads. Thus, we consider
load balancing in both CPP and SMP.

A. Controller Placement Problem (CPP)

After the CPP problem was proposed, extensive literature
has been published due to the significant interest in solving
CPP. A comprehensive survey [22] shows that recent efforts
concentrate on a single objective. To minimize the end-to-
end latency and queue latency, Wang et al. [11] proposed a
clustering-based network partition algorithm, which shortens
the maximum end-to-end latency between the switches and
controllers. In addition to the control latency, researchers have
considered more critical system metrics in SDN, such as
resilience, reliability and load balancing.

To improve resiliency, Guo et al. [23] introduced interde-
pendence network analysis into CPP. They proposed a new
resilience metric that calculates the number of nodes that
survive in the steady stage of a cascading failure. Since control
load is a critical factor, Yao et al. [24] defined the Capacitated
Controller Placement Problem, which takes into consideration
the load on controllers. They proposed a new k-center strategy
combined with dynamic controller provisioning or dynamic
scheduling. The strategy is able to reduce the number of
controllers and the load of the maximum loaded controller.

Some of the existing works focus on optimizing multiple
performance metrics simultaneously. To minimize the switch-
controller latency and balance the controller load at the same
time, Bo, et al. [25] proposed a two-stage solution. First,
they employ a multi-objective genetic algorithm to obtain
the connection relationship between controllers and switches.
After applying the algorithm, the network is partitioned into
a specified number of controllers. Second, a minimum delay
algorithm is used to find an optimal location which uses
minimum sum of the distance to all switches in its partition. To
maximize network reliability and controller load balance abil-
ity, and to minimize latency between controllers and switches,
Zhang et al. [12] formulated this multi-objective problem
into a mathematical model. They used the Adaptive Bacterial
Foraging Optimization algorithm to solve the optimization
objective function derived from the model.

B. Switch Migration Problem (SMP)

The study in [16] introduced SMP and solved it by using
a two phase greedy algorithm, which includes load detection
and migration action generation. The approach is able to im-
prove migration efficiency. However, the approach ignored the
control latency, which is one of the critical objectives in SMP.



The work in [17] proposed a switch migration protocol, which
improves system service-level performance. But this protocol
increases the controller response time when the packet arrival
rate exceeds a threshold.

In summary, the previous approaches comprising only a
single objective focus ignored the effects of other objectives
while the approaches involving multiple objectives focused
only on the static scenario. In contrast, our work falls in the
multiobjective category that can handle dynamic changes in
an autonomic manner. Therein we propose an approach that
is able to balance the controller loads by addressing multi-
objective SMP in dynamic scenarios.

III. PROBLEM DESCRIPTION

Our work focuses on developing self-healing and self-
adapting solutions for the Switch Migration Problem (SMP) in
SDN used in IoT scenarios. In this section, we will formally
describe our system assumptions, introduce our network model
and formulate the optimization problem.

A. System Assumptions on IoT Deployments

We assume an asynchronous distributed system to design
our SMP solution in SDN. We make the following assumptions
in this work.
• Our system is representative of large-scale Local Area

Networks (LANs) for IoT systems.
• Our deployed solution is capable of monitoring controller

loads, analyzing switch request rates, and generating and
executing switch migration plans.

• In the network, each switch connects to at most one
controller and the switch can be reassigned from one
controller to another.

• We focus on the workload that handles the packet-in event
at the controllers, which according to previous studies
(e.g., [26], [27]) is the primary task for controllers.

• The dynamic scenarios we consider in this work include
adding/deleting switches to/from the network and increas-
ing/decreasing the switch request rates. These scenarios
also include switch failures.

B. Network Model

Heterogeneous IoT devices generate various kinds and
volumes of data, which lead to network congestion, thereby
affecting the service-level performance. A critical factor that
impacts IoT performance is the amount of queue build-up in
switches. Some previous studies have used the M/M/1 and
M/M/N queuing models to schedule Emergency packets (E-
packets) and Regular packets (R-packets) on the switch side
in IoT scenarios [28], [29]. We choose the M/M/1 queueing
model for its simplicity to schedule the packet-in event on
the controller side. Specifically, our work uses M/M/1 queues
to model the queuing latency of the requests based on the
controller load, and the processing latency based on controller
service rate. M/M/1 queuing was also used to model the
SDN’s OpenFlow architecture as it was applied successfully

to analyze the queuing latency [11]. Moreover, a detailed di-
agnosis of IoT traffic flow by flow indicates that the workload
of IoT follows Poisson distribution [30]. In IoT, the flows
representing requests can arrive from independent switches,
with the interval of arrival time and the server processing
time constituting a negative exponential distribution. Thus, the
arriving requests follow a Poisson distribution and hence a
M/M/1 approach is justifiable.

We assume there are n switches and m controllers in our
system. The request flow rate of the ith switch is denoted by
λi. The total flow request rate is λ =

∑n
i=1 λi. Thus, there are

m M/M/1 queues in our system. Every controller has a queue.
The centralized scheduler will assign the incoming request
flows from the n switches to the m controllers’ queues. This
scheduler runs in the application layer, where a switch migra-
tion plan will be generated. Then, the individual controllers
will process the request flows from their respective queues
until the controller-to-switch assignment changes. Here, we
assume that all the controllers have the same service rate that
is denoted by µ. The controller placement decision is indicated
by a binary variable xij , where xij = 1 means that the ith

switch is connected to the jth controller. This service model
between switches and controllers is shown in Figure 2.

Fig. 2: The service model between switches and controllers.

Table I shows the list of notations used in the problem
formulation.

TABLE I: LIST OF NOTATIONS

Symbol Meaning

si ith switch, total n switches
cj jth controller, total m controllers

λi request rate of ith switch

µ service rate of all controllers

X
the controller to switch assignment matrix;
xij = 1 means that ith switch is connected to
jth controller, xij ∈ {0, 1}, ∀i, j

θj load of jth controller

θ average load of all controllers



C. Problem Formulation

Assuming that the request flow arrivals follow a Poisson
process with

∑n
i=1 λi < mµ, and λi’s are mutually indepen-

dent, the load of the jth controller can be represented by:

θj =

n∑
i=1

λixij (1)

and the average load among all controllers is given by:

θ =
1

m

m∑
j=1

θj (2)

Applying Little’s law, the expected waiting time before a
request from a switch is served can be represented by:

Wq =
θj

µ(µ− θj)
(3)

and the expected end-to-end response time, which is the sum
of the request queuing time and the controller service time, is
represented by:

Ws = Wq +
1

µ
=

1

µ− θj
(4)

In this work, we aim to minimize both a service-level ob-
jective and a system-level objective. Specifically, the service-
level objective is the average latency of all the requests
represented by the end-to-end response time while the system-
level objective is the balance of all the loads on the controllers
represented by their variance. The following illustrates the
problem formulation:

min F (X) =
1

n

n∑
i=1

m∑
j=1

xij
µ− θj

+
1

m

m∑
j=1

(θj − θ)2 (5)

s.t.
n∑

i=1

λixij < µ,∀j (6)

m∑
i=1

xij = 1,∀i (7)

xij ∈ {0, 1},∀i, j (8)

Eq. (5) aims to minimize both the average end-to-end
response time and the variance in the controller loads. Eqs. (6)-
(8) represent the constraints. As mentioned before, a) for each
controller, the sum of the request rates from all placed switches
should be less than the controller’s processing rate µ; b) each
switch can only be connected to one controller at a time; and
c) the controller placement decision is encoded in a matrix xij
with binary elements.

While the above formulation only captures the static scenar-
ios, dynamic scenarios due to changes in network conditions
could arise that include the following:
• Adding new switches: When the number of the switches

increases and causes additional load from the new
switches to the system.

• Deleting existing switches: When the number of
switches decreases thereby causing unbalanced loads
among the controllers. This also includes switch failures.

• Increasing request rates: When some switches’ request
rates increase thereby causing performance degradation
or unbalanced loads among the controllers.

• Decreasing request rates: When some switches’ request
rates decrease thereby causing unbalanced loads among
the controllers.

Due to these dynamic changes in the network, an existing
placement may no longer be able to provide good system-
level and service-level performance thereby requiring switch
migration decisions. To adapt to these dynamic fluctuations,
we also consider reducing the switch migration cost formu-
lated in Eq. (9) as another metric, where X ′ = {x′ij} denotes
the new decision after switch migration while X = {xij}
denotes the old decision before migration.

G(X,X ′) =

∑n
i=1

∑m
j=1(x′ij − xij)2λi∑n

i=1

∑m
j=1 xijλi

(9)

It is defined as the fraction of the sum of affected switch
request rates and the sum of all the switch request rates. The
affected switches can be the new switches that are added to
the system or the reconnected switches. In the latter case, the
switches are those that are still in the system but need to be
reconnected to other controllers for load balancing. This metric
measures the impact on the switch requests during switch
migration.

IV. HEURISTIC ALGORITHMS FOR SWITCH MIGRATION
PROBLEM

A prior study has proven that SMP is an NP-hard prob-
lem [31]. Hence, to solve our formulated switch migration
optimization problem effectively at run-time as part of an
autonomic self-healing and self-adapting systems software,
we developed three heuristic algorithms for balancing the
controller loads under dynamic traffic conditions in IoT. This
section describes these heuristics in detail.

A. Genetic Algorithm (GA)

GA is an adaptive heuristic search strategy inspired by
natural evolution [32]. GA is designed to simulate a natural
selection by introducing some random genetic operators. Se-
lection, crossover, and mutation are the main operators of GA.
Algorithm 1 shows the pseudocode of GA while the pipeline
of GA is illustrated in Figure 3 with a simple example.

The algorithm starts from a population of a randomly
generated controller-to-switch assignments and the number
of generations. In each generation, k assignments will be
randomly chosen to have a tournament. Tournament Selection
(TS) is a selection strategy used for selecting k switch-to-
controller assignments from a possible assignments population
set as shown in Figure 3. The winner of the tournament, which
has the best fitness by applying Eq. (5), will be chosen as a
parent. Then, the parents will participate in the crossover and



Fig. 3: Illustration of the GA pipeline with a simple example.

the mutation to generate child assignments. The crossover and
the mutation are presented in Figure 3.

In the crossover, we will randomly choose two points in
both parent assignments and swap the switch assignments
between the two points. In the mutation, we randomly generate
a number for each child assignment. If this random number
is less than the mutation rate r, we will choose one random
switch in the child assignment and reassign it to a random
controller. The population will be updated by the child assign-
ments by the function UPDATE POPULATION SET(X0, Xbest,
Xc1, Xc2, Pn, p) in Algorithm 1, where X0 represents the
initial assignment; Xbest represents the assignment which has
the best fitness so far; Xc1, Xc2 are two children assignments;
Pn is the population set, and p is the number of possible
assignments. Both Eq. (5) and Eq. (9) will be applied within
the function. The algorithm terminates when the number of
generations is met. In our evaluation, we set the population
size to be 3mn and the number of generations to be 6mn.
Also, the number of randomly selected assignments in the
tournament is set as k = m and the mutation rate is set as
r = 0.02. The simulation results show that these parameters
lead to fast convergence and GA is able to provide a good
solution to the problem.

B. Simulated Annealing Algorithm (SA)

SA is another efficient global search optimization algo-
rithm [33]. It is inspired by the annealing process in metal-
lurgy, where a material is heated to a high temperature quickly
and cooled slowly. Algorithm 2 depicts the pseudocode of SA
used to solve our problem.

The algorithm starts with a high temperature ti, a final
temperature tf , a temperature decrease rate r, an iteration
number, and an initial switch-to-controller assignment X0. In
each basic iteration, the algorithm considers its neighboring
switch-to-controller assignment, which is generated by the
function CREATE NEW ASSIGNMENT(X0) in Algorithm 2.
This function will generate a neighboring assignment by
randomly swapping the switch-to-controller connections in
the old assignment. Then, the algorithm will evaluate the
neighboring assignment by using Eq. (5). If the neighboring
assignment has better performance, the algorithm will accept

it immediately and update the best assignment so far by
applying Eq. (9); otherwise, the algorithm will accept the
neighboring assignment according to the Metropolis rule of
probability [34], as indicated in line 22 of Algorithm 2. This
will enable SA to jump out of a local optimum where most
algorithms get stuck. When the iteration number is met, the
algorithm will decrease the temperature according to r as
shown in line 26 of Algorithm 2. In our evaluation, we set
the high temperature to be 10m and the final temperature to
be 10−8. The iteration number is set as iteration = n and
the decrease rate is set as r = 0.98. The results of evaluation
show that SA is able to efficiently find an approximate global
optimum.

C. Modified Greedy Algorithm (MG)

Finally, we present a modified greedy algorithm to adapt
to the dynamic nature of the network. The algorithm is a
modification of well-known greedy algorithm for static load
balancing [35] and aims to minimize the switch migration cost
while reducing the end-to-end response time and the variance
of controller loads. Algorithm 3 shows the pseudocode for
this modified greedy algorithm. MG is automatically triggered
whenever any controller’s utilization exceeds 80%.

The algorithm works again in an iterative manner given a
load-balancing threshold and a “maxIteration” number. In each
iteration, we first find a controller cj that has the maximum
load as shown in Algorithm 3 line 6. Then, among all the
switches that connect to cj , we find a switch sjr with the
minimum load so as to reduce the switch migration cost.
Finally, we migrate sjr from cj to a controller c′j that has the
minimum load among all controllers to achieve load balancing.
We define δ to be the average absolute difference between the
controller loads and the average load, as shown in line 11
of Algorithm 3, and it characterizes the uneven distribution of
the switch request rates. The maximum number of iterations is
used to avoid an infinite loop, which can happen when multiple
placements achieve the same objectives. The above steps are
then repeated until either δ falls below the threshold or the
maximum number of iterations is reached. In the evaluation,
we set the value of the threshold to be 3%µ and the maximum
number of iterations to be n.



Algorithm 1: Genetic Algorithm
Input: A initial controller to switch assignment in X0

matrix, the number of population p, the number
of generation g, a population set
Pn = {X1, X2, . . . , Xp} of p possible
controller to switch assignments, a mutation
rate mr

Output: A controller to switch assignment in Xbest

matrix
1 Function Update_Population_Set(X0, Xbest,

Xc1, Xc2, Pn, p):
2 Pn.append(Xc1);
3 Pn.append(Xc2);
4 while len(Pn) 6= p do
5 Remove a controller to switch assignment,

which has the worst fitness from Pn by
applying Eq. (5);

6 end
7 Find the controller to switch assignment X , which

has the best fitness from Pn by applying Eq. (5);
8 if Xbest == X0 then
9 Xbest ← X;

10 end
11 else if G(X0, X) ≤ G(X0, Xbest) then
12 Xbest ← X;
13 end
14 return Xbest;
15 End Function
16 Function Main(X0, Pn, p, g, mr):
17 Xbest = X0;
18 for j ← 1 to g do
19 children size = 0;
20 while children size < p do
21 Select Xfather, Xmother by a tournament

process;
22 Generate Xc1, Xc2 by applying a crossover

operator and a mutation operator;
23 Pn,Xbest ←

UPDATE POPULATION SET(X0, Xbest,
Xc1, Xc2, Pn, p);

24 children size = children size+ 2;
25 end
26 end
27 return Xbest;
28 End Function

V. SYSTEMS SOFTWARE ARCHITECTURE

A self-healing/self-adaptive solution will require effective
monitoring and dissemination of instrumented properties to
the decision making logic. To that end, our autonomic adaptive
approach for controller load balancing is codified in a systems
software whose architecture is depicted in Figure 4. Effectively
it illustrates the Monitor-Analyze-Plan-Execute (MAPE) loop
manifested in our system design that are key to developing an

Algorithm 2: Simulated Annealing Algorithm
Input: A initial temperature ti, a final temperature tf ,

the current temperature tc, a iteration number
iteration, a temperature decrease rate r, a
initial controller to switch assignment in X0

matrix
Output: A controller to switch assignment in Xbest

matrix
1 Function Create_New_Assignment(X0):
2 temp = random.randint();
3 if temp%2 == 1 then
4 Randomly swap 2 rows in X0;
5 else
6 Randomly swap 3 rows in X0 in cyclic form;
7 end
8 return X0;
9 End Function

10 Function Main(ti, tf , tc, iteration, r, X0):
11 tc = ti;
12 Xbest = X0;
13 while tc > tf do
14 for j ← 1 to iteration do
15 Xnew ←

CREATE NEW ASSIGNMENT(X0);
16 if F (Xnew) < F (X0) then
17 X0 ← Xnew;
18 if Xbest == X0 then
19 Xbest ← Xnew;
20 end
21 else if G(X0, Xnew) ≤ G(X0, Xbest)

then
22 Xbest ← Xnew;
23 end
24 end
25 else if

exp(F (X0)− F (Xnew)/tc) > random()
then

26 X0 ← Xnew;
27 end
28 end
29 t = t ∗ r;
30 end
31 return Xbest;
32 End Function

autonomous self-healing/self-adapting system. The system’s
software architecture comprises three modules: Pub/Sub Mes-
saging, a Network Monitor, and a Decision Maker. The roles
and responsibilities of each are explained next.

• Pub/Sub Messaging: We use Pub/Sub Messaging, which
is a lightweight asynchronous messaging service to com-
municate messages between controllers and Network
Monitor. The controllers that manage flows from the
data plane serve as the publishers. They create a topic



Algorithm 3: Modified Greedy Algorithm
Input: A set C = {c1, c2, . . . , cm} of m controllers, a

set S = {s1, s2, . . . , sn} of n switches, request
rates of all switches Λ = {λ1, λ2, . . . , λn},
existing loads of all controllers
Θ = {θ1, θ2, . . . , θm} and their average load θ,
a load-balancing threshold, a maxIteration
number, an initial controller to switch
assignment in X0 matrix,
X0 = {x00, x01, . . . , xnm}

Output: An adapted controller to switch assignment in
Xbest matrix

1 Function Main(C, m, S, n, Λ, Θ, θ counter,
maxIteration, X0):

2 δ ← INF ;
3 counter ← 0;
4 while δ > threshold and

counter < maxIteration do
5 Find controller cj with the maximum load from

C;
6 Find controller cj′ with the minimum load

from C;
7 Find the set Sj of switches that connect to cj

and the switch sjr ∈ Sj with the minimum
load;

8 In X0, set xjr,j ← 0 by disconnecting sjr from
cj ;

9 In X0, set xjr,j′ ← 1 by connecting sjr to cj′ ;
10 Update the controller loads θj ← θj − λjr and

θj′ ← θj′ + λjr;
11 Compute δ ← 1

m

∑m
j=1 |θj − θ|;

12 Increment counter++;
13 end
14 Xbest ← X0;
15 return Xbest;
16 End Function

with an IP address and a port number and keep sending
the instrumented network data to a broker. The network
data includes topology information, switch request rates,
controller packet-in rates, and controller processing time.
After receiving the network data, the broker will forward
the data to the Network Monitor (acting as a subscriber),
which subscribes to the topic created by the publishers.

• Network Monitor: After receiving the data from the
broker, the Network Monitor running in the application
plane is able to generate a controller to switch assignment
in Xi matrix and store the switch request rates in λ. Then,
the Network Monitor will pass all the network-related
parameters to the Decision Maker.

• Decision Maker: The Decision Maker can be configured
to execute one of three alternative heuristic algorithms
that we developed corresponding to our optimization
problem: Genetic Algorithm, Simulated Annealing Algo-

Fig. 4: MAPE loop in our systems architecture.

rithm, and Modified Greedy Algorithm. Each algorithm
runs independent of each other. The output of the al-
gorithms is a new controller-to-switch assignment that
will be compared with the initial controller-to-switch
assignment to create a switch migration plan.

VI. EMPIRICAL EVALUATION

Our experiment design used to evaluate the efficacy of
our techniques is depicted in Figure 4. We implemented our
algorithms in Python1 and evaluated their performance in
Mininet [36], which provides a simple and straightforward
network emulation testbed for developing and evaluating SDN
applications. We use the Ryu controller [37] as our Mininet
remote controller. We implemented our Pub/Sub Messag-
ing module using the ZeroMQ PUB/SUB pattern [38]. The
topology we have used is the real internet service topology
called ARN (nodes: 30, edges: 29) available from the Internet
Topology Zoo [39].

We use the Distributed Internet Traffic Generator (D-
ITG) [40] to generate traffic flows on the host side. We focus
mainly on the Packet-in event on the controller side, which
consumes more controller resources than other flow events.
The traffic flows from D-ITG follow a Poisson distribution. We
evaluated our proposed algorithms in the application plane by
using matrices to solve minimization goals that are defined in
Eq. (5) and Eq. (9). We also compared our heuristic algorithms
with the Switch Migration-Based Decision-Making Scheme
(SMDM), which applied a switch migration algorithm based
on the greedy method proposed by Wang et al. [16]. Their
approach also aims at balancing the load of controllers in a
efficient manner, thereby improving the network performance.

1The implementation is publicly available at https://github.com/minziran/
Switch-Migration-Problem



Fig. 5: Comparison for the algorithms with different number of controllers.

They presented a numerical evaluation by using Mininet
emulator.

A. End-to-End Response Time

Figure 5 shows the end-to-end response time in the system
with different number of controllers. The number of controllers
(m) is varied from 2 to 4. We run each simulation for 15 mins
and the overall switch request rate is fixed. The y-axis indicates
the average end-to-end response time in the system. The result
shows that GA and SA outperform the greedy-based algorithm
MG as well as SMDM. Compared to traditional optimizing
algorithms, GA and SA enable a partial random process to
create offspring or neighbor states, which helps avoid getting
stuck in local optima.

Figure 6 shows the end-to-end response time with the
overall switch request rate increasing. The simulation keeps
running for 15 mins and the overall request rate increases
20% every 5 mins. The running result shows that compared
to SMDM, GA and SA are more adaptive to network traffic.

Fig. 6: The end-to-end response time in the system (m = 3).

B. Load Balancing

Figure 5 also shows the variance of controller loads with
increasing number of controllers. SA has an excellent per-
formance in load balancing while minimizing the end-to-end
response time in the system. Figure 7 indicates that GA and
SA are also capable of balancing the controller loads while
the overall switch request rate is increasing. In GA and SA,
we accept new offspring or neighbor states by using Eq. (5),
which aims at minimizing both the end-to-end response time
and the variance of controller loads. The result of Figure 7
also shows that the performance of MG and SMDM is not
stable while experiencing the network traffic.

Fig. 7: The variance of controller loads (m = 3).

C. Switch Migration Cost

With increasing number of controllers, MG and SMDM
have lower switch migration costs as shown in Figure 8.
Moreover, MG outperforms SMDM in terms of switch mi-
gration cost when the overall switch request rates increase.



MG demonstrates better performance by always migrating the
switch with the lowest request rate. Although GA and SA
have higher migration costs, they can efficiently find a switch
migration plan with minimum end-to-end response time and
variance of controller loads.

Fig. 8: The average switch migration cost (m = 3).

D. Performance Trade-offs

Considering the different performance of our switch mi-
gration heuristics, we present the trade-offs among our algo-
rithms in Figure 9 and Figure 10. GA and SA show better
performance in minimizing the variance in the controller loads
while having higher migration costs. With the overall request
rate increasing, MG has the lowest migration cost while
the requests are experiencing longer processing time in the
controller.

Fig. 9: The average switch migration cost with the end-to-end response time
increasing (m = 3).

E. Summary

Overall, we observed that our heuristic algorithms exhibit
good performance when considering the end-to-end response
time, the variance in controller loads, and the switch migration
cost. Our result indicates that GA and SA are excellent
decisions for the IoT network, which experiences an increasing
traffic load while MG helps the large-scale IoT based network.
Essentially, the results show they are effective approaches for
solving SMP while adapting to dynamic network conditions.

Fig. 10: The average switch migration cost with variance increasing (m = 3).

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an autonomic approach to deal with the
multi-objective dynamic Switch Migration Problem (SMP) for
software defined networks (SDN) in IoT. Compared with the
previous single-objective research efforts, our study considered
not only the control latency between controller and switch but
also runtime controller loads, load balancing among controllers
and the switch migration costs in the system. Moreover,
compared with the previous multi-objective research efforts,
our algorithm is able to adapt to dynamic changes in IoT. The
NP-hard nature of the optimization problem and the need for
effective runtime solutions motivates the heuristics developed
in this paper based on genetic algorithms (GA), simulated
annealing (SA) and modified greedy (MG). Simulation results
conducted using Mininet show that the GA and SA are
able to balance the controller loads while minimizing the
end-to-end response time in the system. Moreover, MG can
significantly reduce the switch migration cost under dynamic
traffic changes.

A. Discussion

Considering the different strengths of our proposed algo-
rithms, we could potentially swap our heuristics to adapt to
these dynamic changes. Besides, when we scale our architec-
ture to very large and distributed IoT networks, we may need
a hierarchical/partitioned solution and multiple MAPE loops.
Then, we will manage the network monitor state to handle the
consistency issues.



B. Future Work

There are several potential extensions to this work. First,
we will develop our approach for a larger network topology
than the one we considered in this work. Second, we will
consider more objectives that play pivotal roles in IoT, such as
security, cost and energy savings. Finally, we will expand the
application domain from wired networks to the fifth generation
(5G) networks, where the SDN technology is widely applied
to build different types of network slicing based on different
user requirements.
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