
Performance Evaluation of the Reactor Pattern Using the
OMNeT++ Simulator

Arundhati Kogekar, Aniruddha Gokhale
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, Tennessee 37235

{akogekar, gokhale}@dre.vanderbilt.edu

ABSTRACT
The design of large-scale, distributed, performance-sensitive
systems presents numerous challenges due to their network-
centric nature and stringent quality of service (QoS) require-
ments. Standardized middleware implementations provide
the key building blocks necessary to address these require-
ments of the distributed systems. However, middleware are
designed to be applicable for a wide range of domains and
applications, which results in system developers requiring
to choose the right set of building blocks to design their
system. To reduce the impact on development costs and
time-to-market, decisions on the right set of building blocks
to use in systems design must be made as early as possible in
system design. This paper addresses this concern by describ-
ing a model-driven systems simulation approach to analyze,
catch and rectify incorrect system design decisions at design-
time. In this paper we focus on model-driven OMNeT++
simulation of the Reactor pattern, which provides event de-
multiplexing and handling capability. Our experience with
modeling the Reactor shows that this approach can be ex-
tended to the performance analysis of other pattern-based
blocks and indeed in the long term to the entire composed
middleware framework.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Performance Analysis

Keywords
Distributed systems, middleware, performance modeling

1. INTRODUCTION
Standardized middleware, such as J2EE, CORBA and

.NET, is used in building real-time, performance-critical dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06 March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

tributed systems in many domains, such as telecommuni-
cations, power grid and enterprise systems among others.
Middleware provides the mechanisms to ensure scalability,
fault tolerance, reliability and other quality of service (QoS)
requirements of these distributed systems. Since standard-
ized middleware implementations are designed to be appli-
cable to a wide range of domains and applications they come
equipped with a number of building blocks with customiz-
able configurations. It is then the task of the system de-
veloper to select the right building blocks, evaluate the per-
formance of these configurations and select the one which
are best suited for that particular domain. In traditional
systems development, the developer often has to wait very
late into the system lifecyle, for example, until runtime, to
benchmark various configurations, which is both costly and
time-consuming. If the configuration which provides the
most optimum performance is known at design time, code
can be written only for that configuration. Similarly, the
sooner the design flaws are detected in the system lifecycle,
the easier and cheaper it is to correct them. This high-
lights the benefit of using design-time performance analysis,
such as simulations, to predict the system performance at
design time, when there is still time and ample opportunity
to change the design, without causing additional wastage of
resources.

The design of contemporary standardized middleware is
based on elegant patterns as well as pattern languages [1].
Patterns-based middleware is a class of middleware, which
is designed and implemented by composing together differ-
ent pattern-based functional building blocks. Patterns [1]
represent solutions to a common set of problems arising
in a particular context. A pattern therefore is a body of
expert knowledge on best practices, designs and strategies
that has been documented in a standardized manner and
that can therefore be reused in similar situations. In the
context of middleware, patterns represent solutions for com-
mon distributed and network programing tasks such as event
handling, memory management, service access and config-
uration, concurrency and synchronization [7]. Figure 1 [8]
shows a pattern-based middleware architecture composed of
building blocks representing these patterns.

The emphasis we laid earlier on design-time performance
analysis of distributed systems now maps to the performance
evaluation of the patterns-based middleware building blocks.
For this paper we are interested in using simulation as the
mechanism for design-time performance evaluation. The
simulation of a pattern-based middleware building block,
however, presents its own set of challenges. Each middle-

Figure 1: Patterns in Middleware

ware block interacts in different ways with other blocks. For
example, the reactor pattern has to deal with numerous si-
multaneous events. The event-handling mechanism in the
reactor allows concurrency by enabling event handling in
multiple threads concurrently. This necessitates the use of
a powerful discrete event-based simulator which would be
able to simulate the simultaneous occurrence and handling
of events. In addition, the simulator must be able to incor-
porate any modifications to the model easily, i.e, the sim-
ulation of the combination of two or more building blocks
should not require extensive rewriting of existing simulation
code. We have chosen the OMNeT++ (www.omnetpp.org)
simulator to model and evaluate the middleware blocks.

The organization of the rest of the paper is as follows:
Section 2 provides an overview of the structural and dy-
namic aspects of the Reactor building block, which we have
simulated for this paper. Section 3 provides an overview of
OMNeT++ and describes the simulation model of the Re-
actor pattern. Section 4 explains the simulation set up and
presents an analysis of the results obtained from this sim-
ulation. Section 5 discusses some of the related research in
this area. Finally, Section 6 concludes the paper by explain-
ing the future direction of this approach and providing some
insights and lessons learned in the course of designing this
simulation model.

2. THE REACTOR PATTERN
The ability to handle and dispatch simultaneously occur-

ring events effectively without any additional resource over-
head is an integral part of middleware used in a real-time,
event-driven and performance-critical environment. For cor-
rect functionality of the entire system, the performance of
middleware for this particular task needs to be optimum
and hence must be evaluated carefully. This paper focuses
on the performance evaluation of the “Reactor Pattern”,
which is at the heart of the event handling mechanisms in
middleware.

The Reactor architectural pattern [7] allows event-driven
applications to demultiplex and dispatch service requests
that are delivered to an application from one or more clients.
The Reactor pattern inverts the flow of control in a system
during event handling. Figure 2 [7] shows the structural
composition of the reactor pattern.

The Reactor pattern consists of the following participants:

• Handle: The handle uniquely identifies event sources
such as network connections or open files. When-
ever an event is generated by an event source, it is

Figure 2: Structural Represenation of the Reactor
Pattern

queued up on the handle for that source and marked
as “ready”.

• Reactor : The reactor is the dispatching mechanism
of the Reactor pattern. In response to an event, it
dispatches the corresponding event-handler for that
event.

• Event Handler : The event handlers are the entities
which actually process the event. These are registered
with the reactor and are dispatched by the reactor
when the event for which they are registered occurs.
The handles for which these handlers are registered
form a “Handle Set”.

• Synchronous Event Demultiplexer : This entity is actu-
ally implemented as a function call, such as select()

or WaitForMultipleObjects() (in case of Windows-
based systems). It waits for one or more indication
events to occur, and then propagates these events to
the reactor.

• Concrete Event Handlers: The concrete event han-
dlers specialize the generalized Event Handler. They
are responsible for processing specific types of events.
Figure 2 shows three types of concrete event handlers:
the Acceptor, the Connector and the Service Handler.

Figure 3 [7] illustrates the dynamics of the Reactor pat-
tern.

Figure 3: Dynamics of the Reactor Pattern

In the initialization phase, the application registers its
event handlers, as well as the handles that they are prepared
to accept, with the reactor. The reactor collects all the regis-
tered handles into a handle set. In the event handling phase,
whenever an event occurs, the synchronous event demulti-
plexer channels it to the reactor. Based on the handle for
that event, the reactor dispatches the corresponding regis-
tered event handler. The event handler then processes the
event. In this way, the application does not spend its time
polling for an event to take place, nor does it have to deal
with demultiplexing the event to the appropriate handler.
The reactor is present to do this job. Additional informa-
tion about the Reactor architectural pattern can be found
in [7].

3. MODELING THE REACTOR SIMULA-
TION

This section describes the simulation model of the re-
actor pattern. After careful study we chose OMNeT++
(www.omnetpp.org) as the simulator for our research because
of its ease of use, flexible and modular architecture, para-
metric approach and open-source code base. OMNeT++
also has an advantage over other existing simulators in that
it easily allows for the simulation of virtually any modular,
event-driven system, and not just communication-network
oriented systems.

OMNeT++ [10] follows a hierarchical architecture. At
the lowest level of the hierarchy are simple modules which
encapsulate behavior. These simple modules are represented
by C++ classes. A compound module may be composed of
simple as well as other compound modules. Modules com-
municate with each other via message-passing. An event
is said to have occurred whenever a module sends/receives
a message. A module may have parameters whose values
are specified externally in an initialization file. These pa-
rameters can be varied in different simulation runs. In the
context of middleware, these parameters can be used to sim-
ulate and analyze the effect of different middleware config-
uration options. Additional information about OMNeT++
can be found in the OMNeT++ User Manual [9].

The Simulation Model
The simulation model for the Reactor pattern is based on
the structure of the Reactor as shown in Figure 2. The
topology of the model is shown in Figure 4. This topology
is specified in the .NED file of OMNeT++.

Our simulation model consists of the following blocks:

• Event Generators: Event generators are event sources,
which generate events at a Poisson distribution rate
λ. The number of event generators and their rates of
event generation are parameterized values.

• Synchronous Event Demultiplexer : The synchronous
event demultiplexer receives the events generated by
the Generators. Depending on which generator gen-
erated the event, the synchronous event demultiplexer
attaches an Event Type value to the event and subse-
quently propagates the event to the Reactor.

• Reactor : Depending on the Event Type, the reactor
dispatches and activates the appropriate Event Han-
dler by sending an event to that handler.

Figure 4: Simulation Model of Reactor

• Event Handlers: Each Event Handler has an exponen-
tially distributed service time with rate µ. Each Event
Handler also has a bounded queue associated with it
with a maximum size of N. Upon receiving the dispatch
event from the Reactor, the event is immediately han-
dled if the queue is empty and no other event is being
handled. If an event is currently being handled and
the queue is not full, the incoming event is queued. If
the queue is full, then the event is dropped. After an
event has been handled, the event handler propagates
it to the data collector. The event-handling process
is simulated by scheduling the event to be propagated
after a delay of Service Time seconds. The number
of event handlers as well as the service rate µ of each
handler is a parameterized value and can be changed
for each simulation run.

• Data Collector : The data collector acts as an event
sink. It receives events sent by the Event Handlers.
The data collector also calculates the throughput value
and loss probability for each Event type.

We have modeled the generators as generating events at a
Poisson distribution because the generated events represent
the arrival pattern of events into the system, which is most
commonly taken to be Poisson. Similarly, the service times
of Event Handlers are exponentially distributed according
to the most common service pattern. We have modeled a
bounded buffer for Event Handlers as most of the real-time,
event-driven systems do not have the memory resources re-
quired for an infinite buffer.

Statistics Collection
The following metrics [3] are measured during the simulation
process:

• Throughput(T): The throughput for each event type i
is calculated by the data collector as the number of
events of that type received by the collector divided
by the simulation time at the end of the simulation
run. The throughput metric is important for real-time
event processing and distributed applications, such as
online stock trading services.

• Queue Length (Q): The queue length for each event
type is recorded each time an event arrives for the
event handler for that type. The queue length metric
is significant for resource-constrained systems, such as
RFID chips, that need to know the optimum buffer
size to allocate for buffering events.

• Loss Probability (L): The loss probability for an event
type i is calculated by the data collector as the number
of events sent by the event handler divided by the total
number of events arriving in the event handler. This
metric is significant for hard real-time systems where
the loss of a control event would significantly affect the
performance and even correctness of the system.

In the next section we describe the actual simulation set
up and present an analysis of the results.

4. SIMULATION RESULTS AND ANALY-
SIS

This section describes the results of simulating the reac-
tor pattern in OMNeT++ by varying different parameters.
The number of event generators, as well as the number of
event handlers, is set to two. Table 1 lists out the input
parameters, the performance metrics and their notations.

(a) Parameters

Parameter Type 0 Type 1
Arrival Rate λ0 λ1

Service Rate µ0 µ1

Maximum Buffer Length N0 N1

(b) Metrics

Metric Type 0 Type 1
Mean Queue Length Q0 Q1

Throughput T0 T1

Loss Probability L0 L1

Table 1: Notations

The initial values of the input parameters are shown in
Table 2.

Parameter Initial Value
λ0 0.4/s
λ1 0.4/s
µ0 2.0/s
µ1 2.0/s
N0 5
N1 5

Table 2: Initial Set-Up

The input parameters are specified in the omnetpp.ini file.
These parameters are read at runtime by the OMNeT++
simulation environment for each set of simulation runs. A
sample omnetpp.ini file used for analyzing the effect of the
arrival rate λ0 is given below:

[General]

preload-ned-files=*.ned

network=reactor_block

sim-time-limit=10000s

[Parameters]

reactor_block.num_handlers=2;

reactor_block.generator[1].lambda=0.4;

reactor_block.handler[0].mu=2;

reactor_block.handler[1].mu=2;

reactor_block.handler[0].queue_size=5;

reactor_block.handler[1].queue_size=5;

[Run 0]

reactor_block.generator[0].lambda=0.4;

[Run 1]

reactor_block.generator[0].lambda=0.6;

[Run 2]

reactor_block.generator[0].lambda=0.8;

[Run 3]

reactor_block.generator[0].lambda=1.0;

[Run 4]

reactor_block.generator[0].lambda=1.2;

[Run 5]

reactor_block.generator[0].lambda=1.4;

[Run 6]

reactor_block.generator[0].lambda=1.6;

[Run 7]

reactor_block.generator[0].lambda=1.8;

[Run 8]

reactor_block.generator[0].lambda=2.0;

Effect of Arrival Rate. For the first set of simulation runs,
the effect of the arrival rate λ0 on the throughput, mean
queue length and probability of event loss was measured. As
noted in the sample omnetpp.ini file, λ0 was varied from 0.4
to 2.0 in steps of 0.2, while the other input parameters were
kept constant at the values given in Table 2. The results
are shown in Figure 5. It can be seen that as the arrival
rate for Event Type 0 increases, the throughput for Type 0
also increases. The throughput for Type 1 remains constant,
since arrival and processing of Type 0 is independent from
Type 1.

It can also be seen that as the arrival rate increases, the
loss probabibility of Type 0 events increases, i.e, more Type
0 events are likely to be dropped. This can also be correlated
to the increase in the mean queue length of Type 0 events.

Effect of Service Time. For the second set of simulation
runs, the effect of the service rate µ0 on the throughput,
mean queue length and probability of event loss was mea-
sured. This time µ0 was varied from 0.4/s to 2.0/s in steps
of 0.2, while other input parameters were kept constant at
the values given in Table 2. The results are shown in Fig-
ure 6. It can be seen that as µ0 increases (i.e the time
required by Handler 0 to process the events decreases) the
throughput for Type 0 increases. The throughput for Type
1 remains constant, since arrival and processing of Type 0
is independent from that of Type 1.

It can also be seen that the loss probabibility of Type 0
events decreases as service time decreases, since the number
of queued events decrease with decrease in service time. This
can also be deduced by the decrease in Mean Queue Length
as seen in Figure 6(b). It can be seen from Figure 6(c)

(a) Throughput (b) Mean Queue Length (c) Loss Probability

Figure 5: Effect of Arrival Rate

that the probability of loss increases rapidly when µ0 drops
below 0.8/s. This would be useful information for a system
developer who needs to know the maximum allowable service
time for a given loss probability.

It should be noted that the simulation model of the Event
Handler does not take into account how the handler actu-
ally handles the event. The simulation therefore does not
consider the effects of implementation artifacts such as the
internal data structures used. For the purposes of simula-
tion, the handler is considered to be a black box.

Effect of Maximum Buffer Size. For the third set of sim-
ulation runs, the effect of the maximum buffer sizes N0 and
N1 on the throughput, mean queue length and probability
of event loss was measured. Other input parameters were
kept constant at the values shown in Table 2. N0 and N1

were both kept at 1 for the first run. The results are il-
lustrated in Figure 7. It can be seen that for a maximum
buffer size of 1, all three metrics, i.e. throughput, mean
queue length and loss probability were sub-optimal. In the
second run, N0 and N1 were 5. The change in the results
was remarkable, especially for the loss probability, as seen
in Figure 7(c). The loss probability was almost zero for
buffer size of 5. This indicates that the system was able to
sustain the given arrival pattern. It also serves as a useful
indicator to resource provisioners about the capacity of the
system to handle higher event arrival rates for given buffer
constraints.

The throughput also increased, since considerably less
number of events were being dropped. As expected, the
mean queue length also increased with increase in maximum
buffer size.

These results provide some insightful information about
the design of the system. For example, from Figure 5 it can
be seen that with increase in the arrival rate there is increase
in the throughput, but the loss probability is increased as
well. Therefore for higher arrival rates the designer could
provide multi-level queues in his/her design to minimize the
probability of loss. Also, by studying the effect of a combi-
nation of parameters such as maximum buffer size and the
service rate, the designer could decide the most optimum
configuration for the system.

While developing this simulation model manually, we ob-
served that the scalability of the model stood out as an
important issue. We found that as the number of event

handlers and event generators increases, it becomes quite
difficult to construct a correct simulation model by hand.
Similarly, if we add a few more patterns such as Acceptor-
Connector to the simulation model, it will be extremely dif-
ficult to manage the entire model manually. We are there-
fore exploring the use of model-driven generative techniques
for generating simulation models auotmatically. These tech-
niques would factor out some of the common tasks in sim-
ulation (such as adding new connections upon addition of a
new handler). They could also guard against any errors in-
troduced by changes to the model. The use of model-driven
techniques in this context is elaborated in Section 6.

5. RELATED WORK
There have been efforts to evaluate the performance of

middleware patterns analytically by various researchers [2],
[6]. A drawback of using analytical models is that it is dif-
ficult to predict the behavior of a complex system based on
analytical methods alone. Harkema, et al [4] have worked on
the performance evaluation of the CORBA method invoca-
tion and threading models. However, they have not focused
on the pattern-based approach toward the performance anal-
ysis of middleware. Model-driven techniques are increas-
ingly being used for middleware development, but convert-
ing static pattern-based middleware models into simulation
models for the purpose of performance evaluation has not
yet been a focus of research in the research community.

6. FUTURE WORK AND CONCLUSIONS
In conclusion, the simulation model of the reactor pat-

tern represents the first step in our bottom-up approach
toward analysis of pattern-based middleware. It provided
us some insight into the event-handling behavior of middle-
ware. This experience should prove useful in the simulation
and analysis of other building blocks as well as of the com-
posed system. Thus, our approach illustrates a mechanism
for design-time performance analysis of middleware build-
ing blocks that are required to develop large, distributed
and performance-critical systems.

As discussed earlier, middleware is built of pattern-based
building blocks such as Acceptor-Connector, Proactor, Bro-
ker, etc [7]. By modeling these patterns and their inter-
pattern and intra-pattern dynamics, it will be possible to
develop a simulation model for a composed pattern-based
middleware system that is tailored to the needs of the ap-

(a) Throughput (b) Mean Queue Length (c) Loss Probability

Figure 6: Effect of Service Time

(a) Throughput (b) Mean Queue Length (c) Loss Probability

Figure 7: Effect of Maximum Buffer Size

plications. Thus, our future work in this area will focus on
enhancing this simulation model as well as building simu-
lation models of other patterns. Another research goal is
to map a structural model designed in a modeling environ-
ment, such as the Generic Modeling Environment(GME) [5]
to the simulation model in OMNeT++, so that changes in
the GME model would automatically be reflected in the sim-
ulation model or any other back-end performance analysis
models. The various configurations modeled in GME could
then be simulated and evaluated in OMNeT++ at the “click
of a button”. This will be helpful to developers who are us-
ing the model-driven development approach and who want
to evaluate the performance of their design by simulation.

7. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison Wesley
Professional, 1994.

[2] S. Gokhale, A. Gokhale, and J. Gray. Model-driven
performance analysis methodology for distributed
performance sensitive software systems, 2005.

[3] D. Gross. Fundamentals of Queueing Theory. Wiley
Series in Probability and Statistics.
Wiley-Interscience, 3 edition, 1998.

[4] M. Harkema, B. M. M. Gijsen, R. D. van der Mei, and
Y. Hoekstra. Middleware performance: A quantitaive
modeling approach. In International Symposium on
Performance Evaluation of Computer and
Communication Systems (SPECTS), 2004.

[5] A. Ledeczi, B. Bakay, M. Maroti, P. Volgysei,
G. Nordstrom, S. J., and G. Karsai. Composing
domain-specific design environments. IEEE Computer,
2001.

[6] S. Ramani, K. S. Trivedi, and B. Dasarathy.
Performance analysis of the CORBA event service
using stochastic reward nets. In Proc. of the 19th
IEEE Symposium on Reliable Distributed Systems,
pages 238–247, October 2000.

[7] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. Addison Wesley,
2000.

[8] D. C. Schmidt and F. Buschmann. Patterns,
frameworks, and middleware: their synergistic
relationships. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 694–704, 2003.

[9] A. Varga. The OMNeT++ User Manual, 1997.

[10] A. Varga. The omnet++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), 2001.

