
Visual OS: Design and Implementation of a Visual
Framework for Learning Operating System Concepts

James H. Hill
Institute for Software Integrated Computing

Vanderbilt University
Box 1829 Station B
Nashville, TN 37235

(615) 322-8489
j.hill@vanderbilt.edu

Aniruddha S. Gokhale
Institute for Software Integrated Computing

Vanderbilt University
Box 1829 Station B
Nashville, TN 37235

(615) 322-8754
a.gokhale@vanderbilt.edu

ABSTRACT
An operating system can be described as software composed of
numerous components providing a distinct functionality, such as
CPU scheduling, disk scheduling, virtual memory and paging,
while working together to efficiently manage the hardware and
resources of a computer system. Understanding their features and
interplay can be a non-trivial task, in particular, for
undergraduate students in Computer Science studying operating
systems. To aid in their understanding of the OS dynamics, a
number of aids including textbooks, journals and simulators
exist. Although these aids suffice to understand simple OS
concepts, some algorithms, such as paging, synchronization and
process control, and their interactions are too complex to
understand without a way to visualize these interactions and
operations.

This paper provides three contributions to the R&D on
visualizing the dynamics of operating systems. First, we describe
the design architecture of Visual OS, which is our OS
visualization engine. Second, we describe how we used software
design patterns to make our framework extensible to
accommodate a variety of OS features that cater to different
domains, such as generic computing, real-time systems and
embedded systems. Finally, we describe how we have used
Visual OS for a programming assignment in a senior level OS
class at Vanderbilt University.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: General. D.4.8 [Operating
Systems]: Performance – simulation, measurements. D.3.3
[Programming Languages]: Language Constructs and Features
– abstract data types, classes and objects, frameworks,
inheritance, patterns, polymorphism.

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Operating Systems, Patterns, Simulators, Frameworks, Education
Tools, Visualization Tools, Visual OS, Operating System
Concepts.

1. INTRODUCTION
Every professor of an operating system course has his or her
methods to simplify the understanding of its concepts for
undergraduate Computer Science students. Some use
programming assignments that emulate OS concepts, while
others use simulators that visualize the concepts. Because an
operating system is composed of many components that interact
with one another, and many tools have a limited scope of
component interaction, we have developed Visual OS – an
experimental research application aimed to aid in the teaching of
operating system concepts through visualization by removing the
overhead and difficulty of interacting with actual hardware, or
portions of an operating system not available at user level
development. This paper describes significant research
enhancements to previous efforts in building educational
frameworks, and how Visual OS was applied to learn various
aspects operating system concepts.

The remainder of the paper is organized as follows: Section 2
describes the design architecture and challenges we faced when
designing Visual OS; Section 3 describes design patterns used
when implementing the Visual OS architecture, and a project for
a senior level operating system course using Visual OS; Section
4 discusses related operating system simulators; and Section 5
provides concluding remarks.

2. VISUAL OS DESIGN ARCHITECTURE
In any application, designing the architecture is one of the most
important parts of the development process. When designing the
architecture for Visual OS, we desired several key features,
which are listed below:

• The architecture should be extensible and scalable.
• The architecture should provide a common interface

among components.
• The architecture should be easy to learn and operate.

• The architecture should allow run-time configuration.

We discuss each one of these desired properties and their
associated technical challenges in Section 2.2 of the paper.

2.1. Architecture Design and Layout
The architecture design and layout for Visual OS is similar to an
actual operating system. It is composed of a bootstrap, kernel,
user interface, and several managers, e.g. process, memory, etc.
The bootstrap is responsible for loading the kernel and starting
the system. It also loads resources used by the kernel, such as the
user interface and default managers if specified. But most
importantly, the bootstrap is responsible for assembling the
loaded pieces of the system so they may function properly.

As illustrated in Figure 1, there are three levels in the system.
The top level is composed of the user interface, or any
component used to manipulate the underlying system. The
middle level is the system level. The bottom level is the
component, device, and manager (CDM) level. The system level
acts a liaison, or bridge, for the upper and lower levels; and
contains a run-time configuration (RTC) manager for loading,
configuring, and unloading objects in the lower level. The user
interface is used for invoking commands upon the system. The
commands are then delegated to the appropriate component,
manager, or device by the system. The user interface is also used
to observe the state of the system and its makeup which is
achieved via callbacks and system queries.

Figure 1. Three level diagram of the Visual OS architecture

in its assembled form.

2.2. Technical Challenges
This section describes the challenges associated with the
architecture design and layout when developing a visualization
framework for studying operating system concepts.

2.2.1. Extensibility and Scalability
Designing an R&D simulator for OS concepts is a complex
undertaking. In order to guarantee consistent evolution of
concepts in operating systems, we needed the architecture to be
scalable so new concepts, or features, could be added without
breaking any existing infrastructure.

2.2.2. Common Interfaces
We wanted all components of similar type to share a common
interface so we could create families of components. This is
desired because we wanted to extract design patterns that occur
within an operating system. More importantly, we wanted to
create common interfaces that can be understood by the system,
and be inherited by components.

2.2.3. Ease of Learning and Use
When designing the architecture for the system, we did not want
to create one that was too complex to understand and, more
importantly, to use. The users should be able to interact with the
system without having to learn a complex API. In addition, the
API should resemble other standard API, e.g. malloc and free
from the standard C library and CreateProcess from the Win32
SDK.

2.2.4. Run-Time Configuration
We wanted our architecture to allow users to implement their
own algorithms and visualize them without having to restart the
system. We also wanted the system to allow users to unload and
load strategies at run-time without having to recompile and relink
the application since we would not provide the source code for
Visual OS.

3. RESOLVING THE CHALLENGES IN
DEVELOPING AN OS VISUALIZATION
FRAMEWORK
This section describes how we addressed the technical challenges
of developing a visualization framework for studying OS
concepts. Our solution is based on a systematic application of
software design patterns [4]. We also show how these patterns
are put together to form the OS visualization framework.

3.1. Design Patterns in Visual OS
Visual OS was built using design patterns and implemented in
C++. Figure 1 illustrated the assembled system after
bootstrapping. Figure 2 illustrates the design pattern-oriented
architecture of Visual OS shown in Figure 1. In the remainder of
this section, we explain these patterns used to implement Visual
OS and discuss how they resolved the technical challenges
described in Section 2.2.

Figure 2. Design patterns in used to implement the various
components Visual OS.

3.1.1. Bridge Pattern
The bridge pattern decouples an abstraction from its
implementation so two objects can vary independently [4]. This
pattern was used in the kernel of Visual OS to resolve the
extensibility and scalability challenge – Section 2.2.1. As
illustrated in the Figure 2, the kernel acts a bridge between the
user interface and the lower level components, devices, and
managers. Because the upper and lower levels communicate
through the system kernel, the implementation can vary on either
end. Therefore, we added a layer of abstraction and
independence between the upper and lower levels simultaneously
so rescaling the entire system does not destroy the current
infrastructure.

3.1.2. Strategy Pattern
The strategy pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable so they can vary
independently from the clients using them [4]. This pattern was
used to solve the common interface, extensibility, and ease of use
challenge – Section 2.1.1, 2.2.2, & 2.2.3.

All objects in the system inherit a common base interface, and
more specialized objects are derived from the common base to
create subclasses. By combining component design and with
subclasses, we defined specialized objects familiar to the system
that provide a common interface for ease of use and extension.
When we add extend the original subclasses to create newer
subclasses, it will inherit a previously known interface and the
system will know its base operations. In addition, when a user
implements his or her original algorithm for a known subclass he
or she must overload the common interface through
polymorphism. When the component is imported into the system,
the system knows how to manipulate it because of the common
interface provided by the strategy pattern.

3.1.3. Factory Pattern
The factory pattern defines an interface for creating an object,
but lets subclasses determine which class, or subclass, to
instantiate [4]. This pattern was used internally in the run-time
configuration to resolve the run-time configuration challenge –
Section 2.2.4. When the user changes the strategy of the system,
the factory within the run-time configuration is responsible for
creating it for the system.

3.1.4. Observer Pattern
The observer pattern defines a one-to-many dependency between
objects so that when one object changes states, all its
dependencies are notified and updated automatically [4]. This
pattern was used to resolve the ease of use challenge – Section
2.2.3. The user interface is implemented using the observer
pattern because we wanted an efficient update method that did
not make unnecessary and unwanted updates. When a component
needs the user interface to update its information, it signals user
interface. Therefore, users do not have to learn the logistics of
manipulating the user interface. Instead, they focus primarily on
implementing their algorithm.

3.1.5. Abstract Factory Pattern
The abstract factory pattern provides an interface for creating
families of related or dependent objects without specifying their
concrete class [4]. This pattern was also used to solve the ease of
use challenge – Section 2.2.3. The abstract factory pattern was
implemented in the project generator tool that is integrated into
Visual OS. It allows users to generate different project types and
shell code for implementing a strategy. Instead of handwriting
the shell code, which can be error prone, the generator produces
the bare necessities needed to implement original strategies,
which is free of errors, and makes Visual OS easier to use.

3.1.6. Component Configurator Pattern
The component configurator pattern allows an application to link
and unlink its component implementations at run-time without
having to modify, recompile, or statically relink the application
[7]. This pattern was used to resolve the run-time configuration
challenge – Section 2.2.4. Because we chose a component based
design, we already had the foundation for adding run-time
configuration to the system. To add complete support for run-
time configuration, we defined components in individual run-
time libraries instead of static libraries1. Then the component
configurator pattern was used to load and unload the
components into the system.

3.2. Visual OS Undergraduate Class Project
During the Fall 2004 semester, we used Visual OS to teach the
memory management portion of our undergraduate operating
systems course. For three lectures, we discussed the concept of
memory management and various strategies such as partitioning,
paging and segmentation. The students were then assigned a
programming project on the final lecture day. For the
assignment, they were responsible for implementing three
contiguous memory managers2 using Visual OS.

When the students submit their work, a survey will be distributed
to evaluate the programming assignment and Visual OS. It will
contain questions asking the students to comment about the
technical challenges we addressed when designing Visual OS.
These comments will be used to further improve Visual OS, as
well as define new challenges that must be addressed.

4. RELATED WORK
The power of visualization for teaching non-trivial concepts is
well understood as evidenced by the number of projects that use
visualization as a base for disseminating knowledge. Of these
projects, there are some that allow users to create scripts, which
the visualization tool interprets and displays the results. Although
this is a good method for furthering the understanding of
concepts in a subject like operating systems, students do not get

1 Our component architecture and run-time configuration is
similar to the COM/COM+™ technology created by Microsoft.
We chose not to use that technology because (1) we did not need
all the functionality it provides; and (2) it is not platform-
independent, which was a requirement of our system.
2 The students were responsible for implementing best-fit fixed-
partition, dynamic-partition, and paging memory management
schemes.

the requisite experience of implementing the learned concepts
with a well known systems programming language, such as C++
[6].

To address this limitation, there are projects that attempt to
incorporate a well known systems programming language by
allowing users to implement their own concepts and evaluate
them in a simulator. Unfortunately, these projects are statically
bound, meaning they have predetermined state and set of tasks,
and do not support run-time configuration [1] [5]. Moreover, the
simulator only explores limited aspects of OS, but in reality there
are many aspects – many of which have complex interactions
with each other. Thus, these projects do not show how multiple
artifacts, or components, of an OS coordinate with one another.
Visual OS described in this paper attempts to overcome these
shortcomings. Its evaluation and future enhancements are
possible after we have gained sufficient insights using it in our
OS class.

5. CONCLUDING REMARKS
In this paper, we have described the Visual OS architecture and
design, the patterns incorporated into the system, and a class
project at Vanderbilt University that uses Visual OS. As we are
learning, the subject area of operating systems is vast and there
will always be room for further development. In addition, as
more operating system concepts want to be explored, the system
will need to be expanded to meet those needs. As a result of these
insights, we have defined and discussed a framework that will
allow extension and scalability to occur without having any
negative side-effects on the system’s current infrastructure. More
importantly, we have defined a framework that can be used at the
undergraduate level to teach concepts that are non-trivial without
the aid of a visualization tool.

6. REFERENCES
[1] Christopher, W. A., Procter, S. J., & Anderson, T. E. (1993).

The nachos instructional operating system. Berkley,
CA: University of California at Berkley.

[2] Crowley, Charles (1997). Operating systems: A design-

oriented approach. Chicago: Irwin.

[3] Flynn, I. M. & McHoes, A. M. (2001). Understanding

operating system concepts (3rd. Ed). Pacific Grove,
California: Wadsworth Group.

[4] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).

Design patterns: Elements of reusable object-oriented
software. Boston, MA: Addison-Wesley.

[5] Holland, D. A., Lim, A. T., & Seltzer, M. I. (2002). A new

instructional operating system. Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education, 33, 111-115.

[6] Ontko, Ray (2001). Modern operating system simulators

[Computer software and manual]. Retrieved September
10, 2004, from http://www.ontko.com/moss.

[7] Schmidt, D., Stal, M., Rohnert, H., & Buschmann, F. (2000).

Pattern-oriented software architecture: Vol. 2.
Patterns for concurrent and networked objects. New
York: John Wiley & Sons, Ltd.

[8] Silberschatz, A., Galvin, P. B., & Gagne, G. (2003).

Operating system concepts (6th Ed.). Hoboken, NJ:
John Wiley & Sons, Inc.

