
Integrating Publisher/Subscriber Services in Component
Middleware for Distributed Real-time and Embedded

Systems ∗

George T. Edwards
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

g.edwards@vanderbilt.edu

Douglas C. Schmidt
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

d.schmidt@vanderbilt.edu

Aniruddha Gokhale
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

a.gokhale@vanderbilt.edu

ABSTRACT
Although component-based software development has widespread
acceptance in the enterprise business and desktop application do-
mains, developers of distributed real-time and embedded (DRE)
systems have encountered limitations with the available compo-
nent middleware platforms, such as the CORBA Component Model
(CCM) and the Java 2 Enterprise Edition (J2EE). These limitations
often preclude developers of DRE systems from fully exploiting
the benefits of component software. In particular, component mid-
dleware platforms lack standards-based publisher/subscriber com-
munication mechanisms that support key quality-of-service (QoS)
requirements, such as low latency, bounded jitter, and end-to-end
operation priority propagation. QoS-enabled publisher/subscriber
services are available in object middleware platforms, such as Real-
time CORBA, but such services have not been integrated into com-
ponent middleware due to a number of development and configura-
tion challenges.

This paper provides three contributions to the integration of pub-
lisher/subscriber services in component middleware. First, we out-
line key challenges associated with integrating publisher/subscriber
services into component middleware. Second, we describe a method-
ology for resolving these challenges based on software patterns.
Third, we describe a pattern-oriented component middleware plat-
form that we have developed to integrate publisher/subscriber ser-
vices into component middleware applications.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
Systems:Event-based Systems; D.2.13 [Software Engineering]:

∗This work was sponsored in part by grants from NSF ITR CCR-
0312859, Siemens, and DARPA/AFRL contract #F33615-03-C-
4112

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’04, April 2-3, 2004, Huntsville, Alabama, USA.Copyright 2004
ACM 1-58113-870-9/04/04...$5.00.

Reusable Software:Patterns

Keywords
Real-time Event Service, Component Middleware, CORBA Com-
ponent Model, Model-based Systems.

1. INTRODUCTION
To reduce the complexity of designing robust, efficient, and scal-
able distributed real-time and embedded (DRE) software systems,
developers increasingly rely on middleware [1], which is software
that resides between applications and the lower-level run-time in-
frastructure, such as operating systems, network protocol stacks,
and hardware. Middleware isolates DRE applications from lower-
level infrastructure complexities, such as heterogeneous platforms
and error-prone network programming mechanisms. It also en-
forces essential end-to-end quality of service (QoS) properties,
such as low latency and bounded jitter; fault propagation/recovery
across distribution boundaries; authentication and authorization;
and weight, power consumption, and memory footprint constraints.

Over the past decade, middleware has evolved to support the cre-
ation of applications via composition of reusable and flexible soft-
ware components [2]. Components are implementation/integration
units with precisely-defined interfaces that can be installed in ap-
plication server run-time environments. Examples of commercial-
off-the-shelf (COTS) component middleware include the CORBA
Component Model (CCM) [3], J2EE [4], and .NET [5].

Component middleware generally supports two models for com-
ponent interaction: (1) a request-response communication model,
in which a component invokes a point-to-point operation on an-
other component and (2) an event-based communication model,
in which a component transmits arbitrarily-defined, strongly-typed
messages, called events, to other components. Event-based com-
munication models are particularly relevant for large-scale DRE
systems (such as avionics mission computing [6], distributed
audio/video processing [7], and distributed interactive simula-
tions [8]) because they help reduce software dependencies and
enhance system composability and evolution. In particular, the
publisher/subscriber architecture [9] of event-based communica-
tion allows application components to communicate anonymously
and asynchronously [10]. The publisher/subscriber communication
model defines the following three software roles:

• Publishers generate events to be transmitted. Depending on
the architecture design and implementation, publishers may
need to describe the events they generate a priori.

• Subscribers receive events via hook operations. Subscribers
also may need to declare the events they receive a priori.

• Event channels accept events from publishers and deliver
events to subscribers. Event channels perform event filtering
and routing, QoS enforcement, and fault management. In
distributed systems, event channels propagate events across
distribution domains to remote subscribers.

The publisher/subscriber design is an especially powerful archi-
tecture for event-based communication because it provides (1)
anonymity by decoupling event publishers and subscribers and (2)
asynchrony by automatically notifying subscribers when a speci-
fied event is generated.

Figure 1 illustrates the relationships and information flow between
these three types of components.

Figure 1: Relationships Between Components in a Pub-
lisher/Subscriber Architecture

QoS-enabled component middleware platforms leverage the bene-
fits of component-centric software development while simultane-
ously preserving the optimization patterns and principles of dis-
tributed object computing middleware. Before DRE application de-
velopers can derive benefits from QoS-enabled components, how-
ever, common middleware services must be integrated with com-
ponent middleware in a manner that minimizes the complexity as-
sociated with configuration and deployment. This paper describes
a novel scheme that employs patterns to integrate a family of pub-
lisher/subscriber services within QoS-enabled CORBA component
middleware.

Our previous work on publisher/subscriber architectures focused
on the patterns and performance optimizations of event channels
in the context of real-time object middleware [11], specifically a
highly scalable [8] and real-time [12] CORBA Event Service [13].
This paper extends our previous work by describing how patterns
can be applied to simplify the integration of publisher/subscriber
services in QoS-enabled component middleware.

We have developed a QoS-enabled CCM implementation, the
Component-Integrated ACE ORB (CIAO) [14], which supports
the development, assembly, configuration, and deployment of
component-based applications. This paper focuses on the imple-
mentation of a framework that supports application component ac-
cess to publisher/subscriber services in CIAO.

The remainder of this paper is organized as follows: Section 2
briefly describes the structure of the CORBA Component Model

(CCM); Section 3 details the key challenges associated with im-
plementing and configuring publisher/subscriber services in com-
ponent middleware; Section 4 describes a pattern-oriented compo-
nent middleware framework we developed to address these chal-
lenges; and Section 5 presents concluding remarks and outlines fu-
ture work.

2. OVERVIEW OF CCM
The CORBA Component Model (CCM) forms a key part of the
CORBA 3.0 standard [15]. CCM is designed to address the limi-
tations with earlier versions of CORBA 2.x middleware that sup-
ported a distributed object computing (DOC) model [16]. Figure 2
depicts the layered architecture of the CCM model. The remainder

Figure 2: Layered CCM Architecture

of this section describes the key CCM elements in Figure 2.

Components. Components in CCM are implementation entities
that collaborate with each other via ports. CCM supports sev-
eral types of ports, including (1) facets, which define an interface
that accepts point-to-point method invocations from other compo-
nents, (2) receptacles, which indicate a dependency on point-to-
point method interface provided by another component, and (3)
event sources/sinks, which indicate a willingness to exchange typed
messages with one or more components.

Container. A container in CCM provides the run-time environ-
ment for one or more components that manages various pre-defined
hooks and strategies, such as persistence, event notification, trans-
action, and security, used by the component(s). Each container is
responsible for (1) initializing instances of the component types it
manages and (2) connecting them to other components and com-
mon middleware services. Developer-specified metadata expressed
in XML can be used to instruct CCM deployment mechanisms how
to control the lifetime of these containers and the components they
manage. The meta-data is present in XML files called descriptors.

Component assembly. In a distributed system, a component may
need to be configured differently depending on the context in which
it is used. As the number of component configuration parame-
ters and options increase, it can become tedious and error-prone to
configure applications consisting of many individual components.
To address this problem, the CCM defines an assembly entity to
group components and characterize the meta-data that describes

these components in an assembly. Each component’s meta-data
in turn describes the features available in it (e.g., its properties) or
the features that it requires (e.g., its dependencies). CCM assem-
blies are defined using XML Schema templates, which provide an
implementation-independent mechanism for describing component
properties and generating default configurations for CCM compo-
nents. These assembly configurations can preserve the required
QoS properties [17] and establish the necessary configuration and
interconnections among groups of components.

Component server. A component server is an abstraction that is
responsible for aggregating physical entities (i.e., implementations
of component instances) into logical entities (i.e., distributed ap-
plication services and subsystems). A CCM component server is
a singleton [18] that plays the role of a factory to create contain-
ers and standardizes the role of a server process in the CORBA
2.x object model. Each component server is typically assigned a
particular set of capabilities within a distributed system.

Component packaging and deployment. In addition to the run-
time building blocks outlined above, the CCM also standardizes
component implementation, packaging, and deployment mecha-
nisms. Packaging involves grouping the implementation of com-
ponent functionality – typically stored in a dynamic link library
(DLL) – together with other meta-data that describes properties of
this particular implementation. The CCM Component Implementa-
tion Framework (CIF) helps generate the component implementa-
tion skeletons and persistent state management automatically using
the Component Implementation Definition Language (CIDL).

3. PUBLISHER/SUBSCRIBER SERVICE IN-
TEGRATION CHALLENGES IN COM-
PONENT MIDDLEWARE

This section describes the R&D challenges associated with provid-
ing QoS-enabled publisher/subscriber service access via the con-
tainer programming model. We describe the context in which these
challenges arise, identify the specific problems that must be ad-
dressed, and outline an approach to resolving the challenges. Sec-
tion 4 then describes how we applied those solution approaches in
CIAO by using patterns to enhance CIAO’s container framework to
support a range of publisher/subscriber services.

Context. The container programming model establishes a paradigm
for component interaction with a run-time execution environment.
Specifically, the container programming model designates a soft-
ware entity, i.e.,the container, to manage a set of components. The
container supports an API framework through which developers
control component lifecycles and access common middleware ser-
vices, including publisher/subscriber services. The container archi-
tecture decouples components from application server implementa-
tions, thereby enhancing flexibility and reuse.

A CCM container provides component implementations with ac-
cess to common CORBA services, including (but not limited to)
two distinct publisher/subscriber services: the Event Service [13]
and the Notification Service [19]. CIAO supports both these ser-
vices, as well as an extended version of the Event Service, the
Real-Time Event Service [20]. Each publisher/subscriber service
that CIAO supports has different capabilities and is accessed via a
distinct interface. Components can also elect to have events propa-
gated directly, which causes the container itself to play the role of
an event channel, bypassing other intermediate publisher/subscriber

components.

Although the direct mechanism is lightweight and efficient for com-
ponents collocated in the same process, it does not scale well for
distributed components, such as remote event channel configura-
tions that place one or more event channels between the publisher
and subscriber components [8].

Problem. The standardized CCM container interface is designed
to encapsulate only a subset of the Notification Service, render-
ing the broader range of CORBA-based publisher/subscriber ser-
vices inaccessible. The container interface is generic by design,
simplifying its use and enabling component interoperability among
CCM implementations. Its design, however, prevents access to any
advanced publisher/subscriber service capabilities, such as QoS
guarantees. For example, the standard container interface lacks
any mechanism to specify priorities, timeouts, or event correlation,
which are essential capabilities for effective DRE application op-
eration. Likewise, exposing components to dissimilar and propri-
etary publisher/subscriber services requires developers to manipu-
late overly complicated and confusing interfaces, prevents compli-
ance with relevant OMG standards, and bloats component memory
footprint. As shown in Figure 3, component QoS policies must be
captured within the component logic.

Figure 3: A generic CCM container framework

Solution approach → Enhance containers to encapsulate, im-
plement, and configure publisher/subscriber services. CIAO’s
container framework presents application components with a uni-
form interface (shown as the QoS adapter in Figure 4) through
which various publisher/subscriber services can be selected and

Figure 4: CIAO Publisher/Subscriber Service Framework

configured. This interface enables application components to use
any combination of the publisher/subscriber services supported by
CIAO. More importantly, by encapsulating service-specific QoS
specification operations within a high-level interface, the container
framework supports QoS configuration of publisher/subscriber ser-
vices (e.g., assignment of priorities and latency thresholds), without
exposing components to service implementation details. Compo-
nents can therefore invoke these services in a straightforward man-

ner (i.e., without becoming tightly coupled to low-level CORBA
programming details), while preserving the flexibility and customiz-
ability of the underlying services. Figure 4 illustrates the different
aspects of QoS-enabled publisher/subscriber service support within
the CIAO container framework. In contrast to Figure 3, the QoS
policies are decoupled from application component logic via the
QoS adapter encapsulated within the container.

Section 4 describes how we applied patterns to enhance CIAO’s
container framework to support a range of publisher/subscriber ser-
vices.

4. PATTERN-ORIENTED SOLUTIONS IN
CIAO

We employed pattern-oriented software [18, 9] techniques to ad-
dress the publisher/subscriber service access challenge discussed
in Section 3. This section describes our solution approach in detail.

4.1 Overview of the CIAO Container Frame-
work Architecture

The CIAO publisher/subscriber service framework exposes a lo-
cal CORBA interface, CIAO::EventServiceBase, that en-
capsulates the heterogeneity of the available publisher/subscriber
services. Internally, the framework defines four implementations of
EventServiceBase: one for direct communication, one for the
Event Service, one for the Real-Time Event Service, and one for the
Notification Service. The EventServiceBase interface con-
tains operations to connect, disconnect, and publish, (a.k.a., push)
events. A container instantiates the appropriate implementation of
EventServiceBase for each event supplier within its context.
The class interactions are shown in Figure 5.

Figure 5: Class Interactions in the CIAO Publisher/Subscriber
Service Framework

Although a container may create many EventServiceBase ob-
jects, only a single event or notification channel is created per-
container. All components managed by a container then use this
channel. Each EventServiceBase object maintains the event
configuration information for the supplier and all associated con-
sumer components. When a container receives a connect(),
disconnect(), or push() operation request, it delegates the
call to the associated EventServiceBase object. The container
uses unique connection identifiers based on the component’s uni-
versally unique id (UUID) to map individual suppliers and con-
sumers to EventServiceBase objects.

4.2 CIAO Container Framework Design Goals
and Implementation Strategies

The CIAO publisher/subscriber service architecture shown in Fig-
ure 4 employs patterns to address the design goals of the con-
tainer programming model outlined in Section 3. For example,
while maintaining efficiency and reliability requirements, CIAO
preserves the lightweight nature of components. An individual
component need know nothing about the services that implement
event-passing – the container encapsulates that complexity. It there-
fore follows that component application developers need not be
concerned with these details, further simplifying the design of the
core component logic.

For each design goal mandated by the CIAO container program-
ming model, our pattern-oriented solution is detailed below. Fig-
ure 6 demonstrates the interactions between patterns in the pub-
lisher/subscriber service framework.

Figure 6: Pattern Interactions in the CIAO Pub-
lisher/Subscriber Service Framework

Design goal 1 → Simplify component development by exposing
a simple publisher/subscriber service interface. To achieve this
design goal in CIAO, we used the Adapter pattern [18], which con-
verts one interface into a different one expected by clients. Since
the CORBA publisher/subscriber services were designed prior to
CCM their interfaces are not ideal for components. The container
therefore implements an adapter that provides components with a
simple, uniform interface and translates calls on that interface into
calls on a specific publisher/subscriber service interface. The ben-
efits of this design are twofold: (1) component developers need not
concern themselves with peculiar configuration interfaces and (2)
no matter what changes occur to the underlying publisher/subscriber
services, the interface exposed to components does not change.

Design goal 2 → Enhance reuse and extensibility by allowing
new publisher/subscriber services to be easily plugged-in. To
achieve this design goal in CIAO we used the Strategy pattern [18],
which defines classes that encapsulate different algorithms and de-
clares an interface common to all supported algorithms. In CIAO,
a local CORBA interface serves as the common interface, and the
various implementations encapsulate algorithms for the different
publisher/subscriber services. This design results in service imple-
mentations that are interchangeable from the container perspective.
After object creation, the container has no knowledge of the actual
algorithm being used, which enables fast operation delegations and
simplifies container design.

Design goal 3→ Reduce the memory footprint of the container by
decoupling the creation of publisher/subscriber service instances.
To achieve this design goal in CIAO we used the Builder pattern [18],
which separates the construction of objects from their representa-
tion, allowing the same process to create multiple implementations
of the same object type. The creation of publisher/subscriber ser-
vice instances is somewhat complex in CIAO since (1) they must
be initialized properly and (2) different implementations are pos-
sible. CIAO defines a builder class that encapsulates the com-
plexity of creating and initializing publisher/subscriber service im-
plementations. The result is finer control of the construction pro-
cess, isolation of construction code, and the ability to vary the pub-
lisher/subscriber service implementation.

Design Goal 4 → Ensure components only incur the cost of ser-
vices that are required by deferring publisher/subscriber service
selection and configuration decisions until run-time. To achieve
this design goal in CIAO we used the Component Configurator pat-
tern [21], which allows an application to link and unlink its compo-
nent implementations at run-time. In CIAO, publisher/subscriber
service libraries are loaded dynamically on-demand to avoid en-
cumbering the application with unused services, while still allow-
ing components to wait until deployment time to select a partic-
ular service. This mechanism provides the flexibility to initiate,
suspend, resume, and terminate services. More generally, CIAO
enables entire applications to be composed of independently devel-
oped services, thereby simplifying composition and deployment.

Design Goal 5 → Enable component access to the full set of
QoS features available in publisher/subscriber services by en-
capsulating service-specific QoS specification operations within
a high-level interface. To achieve this design goal in CIAO we
used the Wrapper Facade pattern [22], which defines a concise,
robust, portable, and maintainable interface to encapsulate low-
level functions and data structures. The CIAO publisher/subscriber
framework implements CORBA interfaces that contain operations
to configure QoS parameters for an individual publisher or sub-
scriber connection. The operations of these interfaces forward in-
vocations to the corresponding service-specific operations for each
publisher/subscriber service. This design results in a concise and
robust programming interface capable of configuring the QoS fea-
tures in multiple dissimilar publisher/subscriber services.

5. CONCLUDING REMARKS AND FUTURE
WORK

The integration of QoS-enabled publisher/subscriber services into
component middleware allows developers of DRE systems to
leverage the benefits of component-centric software development.
This paper described how QoS-enabled publisher/subscriber ser-
vices can be integrated into a component middleware container
framework using patterns. The integration techniques we de-
scribed allow DRE system developers to utilize the full ex-
tent of publisher/subscriber service capabilities without becom-
ing tightly-coupled to service implementations. Finally, this paper
demonstrated each integration strategy in CIAO. The CIAO open-
source CCM distribution is available for download at www.dre.
vanderbilt.edu/CIAO/.

Our future work will focus on applying Model-Driven Middleware
(MDM) [23] to simplify the configuration of publisher/subscriber
services in QoS-enabled component middleware. MDM is an
emerging technology that integrates model-based software develop-
ment paradigms (including Model-Integrated Computing [24, 25]

and the OMG’s Model Driven Architecture [26]) with component
middleware (including Real-time CORBA [27] and QoS-enabled
CCM [14]) to resolve the software development and validation
challenges of large-scale DRE middleware and applications.

MDM tools and techniques are particularly important for event-
based DRE software components that require custom QoS config-
urations to target multiple OS, network, and hardware platforms,
each of which may have slightly different requirements. In such
cases, event QoS requirements (such as latency thresholds and
priorities) may only be known when components are deployed,
rather than when they are developed. Contemporary component
middleware frameworks use XML descriptor files to specify the
publisher/subscriber configurations and QoS constraints associated
with particular software deployments. The component deployment
mechanism is responsible for parsing these files and making the
appropriate invocations on the publisher/subscriber configuration
interface provided by the container.

It is tedious and error-prone, however, to manually specify the QoS
requirements of large-scale event-based DRE component deploy-
ments. Component middleware has become complex to configure
due to an increasing number of operating policies (such as transac-
tion and security properties, persistence and lifecycle management,
and publisher/subscriber QoS configurations) that exist at multi-
ple middleware layers and employ legacy specification mechanisms
not based on XML. To further complicate matters, many combina-
tions of policies are semantically invalid and will result in system
failure.

To address these challenges, we are developing a MDM tool-
suite named Component Synthesis with Model-Integrated Comput-
ing (CoSMIC) [28, 29] that employs our QoS-enabled CCM im-
plementation, CIAO. The CoSMIC toolsuite supports the develop-
ment, assembly, and deployment of QoS-enabled CCM component
applications. CoSMIC currently uses CIAO as the default target
middleware since it is the only standards-based component middle-
ware platform that supports DRE systems. We also plan support
for other component middleware as their support for DRE systems
matures.

6. ADDITIONAL AUTHORS
Additional Authors: Balachandran Natarajan (Institute for
Software Integrated Systems, Vanderbilt University, email:
bala@dre.vanderbilt.edu)

7. REFERENCES
[1] Richard E. Schantz and Douglas C. Schmidt, “Middleware

for Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” in Encyclopedia of Software
Engineering, John Marciniak and George Telecki, Eds.
Wiley & Sons, New York, 2001.

[2] George T. Heineman and Bill T. Councill, Component-Based
Software Engineering: Putting the Pieces Together,
Addison-Wesley, Reading, Massachusetts, 2001.

[3] Object Management Group, CORBA Components, OMG
Document formal/2002-06-65 edition, June 2002.

[4] Sun Microsystems, “JavaTM 2 Platform Enterprise Edition,”
java.sun.com/j2ee/index.html, 2001.

[5] Microsoft Corporation, “Microsoft .NET Development,”
msdn.microsoft.com/net/, 2002.

[6] Christopher D. Gill, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-time

CORBA Scheduling Service,” Real-time Systems, The
International Journal of Time-Critical Computing Systems,
special issue on Real-time Middleware, vol. 20, no. 2, Mar.
2001.

[7] David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy,
Irfan Pyarali, and Douglas C. Schmidt, “Application of the
QuO Quality-of-Service Framework to a Distributed Video
Application,” in Proceedings of the 3rd International
Symposium on Distributed Objects and Applications, Rome,
Italy, Sept. 2001, OMG.

[8] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell
Noseworthy, “Patterns and Performance of a CORBA Event
Service for Large-scale Distributed Interactive Simulations,”
International Journal of Computer Systems Science and
Engineering, vol. 17, no. 2, pp. 115–132, Mar. 2002.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal, Pattern-Oriented Software
Architecture—A System of Patterns, Wiley & Sons, New
York, 1996.

[10] Antonio Carzaniga, David S. Rosenblum, and Alexander L
Wolf, “Design and Evaluation of a Wide-Area Event
Notification Service,” ACM Transactions on Computer
Systems, vol. 19, no. 3, pp. 332–383, Aug. 2001.

[11] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale,
Nanbor Wang, and Christopher Gill, “TAO: A
Pattern-Oriented Object Request Broker for Distributed
Real-time and Embedded Systems,” IEEE Distributed
Systems Online, vol. 3, no. 2, Feb. 2002.

[12] Douglas C. Schmidt and Carlos O’Ryan, “Patterns and
Performance of Real-time Publisher/Subscriber
Architectures,” Journal of Systems and Software, Special
Issue on Software Architecture - Engineering Quality
Attributes, 2002.

[13] Object Management Group, Event Service Specification
Version 1.1, OMG Document formal/01-03-01 edition, Mar.
2001.

[14] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale,
Craig Rodrigues, Balachandran Natarajan, Joseph P. Loyall,
Richard E. Schantz, and Christopher D. Gill, “QoS-enabled
Middleware,” in Middleware for Communications, Qusay
Mahmoud, Ed., pp. 131–162. Wiley and Sons, New York,
2004.

[15] Object Management Group, The Common Object Request
Broker: Architecture and Specification, 3.0.2 edition, Dec.
2002.

[16] Aniruddha Gokhale, Douglas C. Schmidt, Balachandra
Natarajan, and Nanbor Wang, “Applying Model-Integrated
Computing to Component Middleware and Enterprise
Applications,” The Communications of the ACM Special
Issue on Enterprise Components, Service and Business
Rules, vol. 45, no. 10, Oct. 2002.

[17] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale,
Christopher D. Gill, Balachandran Natarajan, Craig
Rodrigues, Joseph P. Loyall, and Richard E. Schantz, “Total
Quality of Service Provisioning in Middleware and
Applications,” The Journal of Microprocessors and
Microsystems, vol. 27, no. 2, pp. 45–54, mar 2003.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA,
1995.

[19] Object Management Group, Notification Service
Specification, Object Management Group, OMG Document
formal/2002-08-04 edition, Aug. 2002.

[20] Timothy H. Harrison, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-time
CORBA Event Service,” in Proceedings of OOPSLA ’97,
Atlanta, GA, Oct. 1997, ACM, pp. 184–199.

[21] Douglas C. Schmidt and Stephen D. Huston, C++ Network
Programming, Volume 2: Systematic Reuse with ACE and
Frameworks, Addison-Wesley, Reading, Massachusetts,
2002.

[22] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann, Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, Volume 2,
Wiley & Sons, New York, 2000.

[23] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran
Natarajan, Jeff Gray, and Nanbor Wang, “Model Driven
Middleware,” in Middleware for Communications, Qusay
Mahmoud, Ed., pp. 163–187. Wiley and Sons, New York,
2004.

[24] Janos Sztipanovits and Gabor Karsai, “Model-Integrated
Computing,” IEEE Computer, vol. 30, no. 4, pp. 110–112,
Apr. 1997.

[25] Jeffrey Gray, Ted Bapty, and Sandeep Neema, “Handling
Crosscutting Constraints in Domain-Specific Modeling,”
Communications of the ACM, pp. 87–93, October 2001.

[26] Object Management Group, Model Driven Architecture
(MDA), OMG Document ormsc/2001-07-01 edition, July
2001.

[27] Arvind S. Krishna, Douglas C. Schmidt, Ray Klefstad, and
Angelo Corsaro, “Real-time CORBA Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed.
Wiley and Sons, New York, 2004.

[28] Aniruddha Gokhale, Krishnakumar Balasubramanian,
Jaiganesh Balasubramanian, Arvind S. Krishna, George T.
Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons, and
Douglas C. Schmidt, “Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed
Real-time and Embedded Applications,” The Journal of
Science of Computer Programming: Special Issue on Model
Driven Architecture, 2005.

[29] Aniruddha Gokhale, “Component Synthesis using Model
Integrated Computing,”
www.dre.vanderbilt.edu/cosmic, 2003.

