Tutorial on the OMG Data Distribution
Service

Introduction
OMG Data Distribution Service

e Adopted by OMG in June 2003

— Joint submission of
* Real-Time Innovations
« THALES
* Objective Interface Systems
 MITRE (Supporter)

— Finalized in April 2004
— Current version — 1.1 — March 2005 — formal/05-12-04
— Latest revision - ptc/06-04-09

OBJECTIVE
INTERFACE

DDS Specification Contents

OBJECTIVE
INTERFACE

e Qverview
— 1.1 Introduction
— 1.2 Purpose

« Data-Centric Publish- Subscribe (DCPS)

— 2.1 Platform Independent Model (PIM)
e 2.1.1 Overview and Design Rationale
e 2.1.2 PIM Description
e 2.1.3 Supported QoS

DDS Specification Contents

OBJECTIVE
INTERFACE

 Data Local Reconstruction Layer (DLRL)

— 3.1 Platform Independent Model (PIM)
« 3.1.1 Overview and Design Rationale
e 3.1.2 DLRL Description
« 3.1.3 What Can Be Modeled with DLRL
e 3.1.4 Structural Mapping
« 3.1.5 Operational Mapping
« 3.1.6 Functional Mapping

— 3.2 OMG IDL Platform Specific Model (PSM)

What are “PIM” and “PSM” Iin the DDS Spec?

 Model Driven Architecture
— Transformation of one model to another
— Model is a suitable abstraction for that stage of development

* In Model Driven Architecture terminology

— PIM — Platform Independent Model
* More abstract model — semantics without specific syntax

* In DDS specification — PIM is specified in Universal Modelling
Language (UML)

OBJECTIVE
INTERFACE

— PSM - Platform Specific Model

Architecture of DDS Specification -

o Data-Centric Publish-Subscribe (DCPS)

— Lower level

— Targeted towards efficient delivery of the proper information
to the proper recipients

e Data Local Reconstruction Layer (DLRL)

— Optional higher level

— Automatically reconstructs data locally from distributed
updates

— Allows the application to access the data ‘as if’ it were local

Application

Data Centric Publish-Subscribe (DCPS)

DCPS Data Flow Architecture

|dentified by Topic Data
Conceptual i

OBJECTIVE
INTERFACE

Concrete {—
/ Domain \\

Publisher Subscriber ;

— : \ !

-1 DataWriter |dgdta eEl \ DataReader [«

_ree value ;

-1 DataWriter DataReader [«

Publisher Subscriber ,

7 \

-1 DataWriter |data BE \ DataReader <

alues value

‘1 DataWriter DataReader [«

DCPS Data Flow Entities -

e Publisher

— Responsible for data dissemination
— Publishes data of different types

 DataWriter

— Communicates to a publisher the existence and value of
data-objects

— Typed access to Publisher
e Subscriber

DCPS UML Model

QosPolicy | 90s * 0.1 <<|n_terface>>
Entity Listener

A

OBJECTIVE
INTERFACE

attached_listener

WaitSet Condition

]

StatusCondition

0.1

attached_condition

DomainEntity « ¢ DomainParticipant

Publisher Topic Subscriber

* <<implicit>>
1 *

<<interface>>

DataWriter DataReader

TypeSupport

Other DCPS Entities ey

e Entity — abstract base class

 QoSPolicy — abstract base class to hold Quality of
Service settings

e Listener

— Abstract base class
— Allows reaction to changes
— May be attached to DCPS Entity

e Condition

Other DCPS Entities

o Status — predefined state of communication entity

o StatusCondition
— A state that can be waited for
— Attached to an entity
 DomainParticipant

— Represents the local membership of the application in a
domain.

OBJECTIVE
INTERFACE

 DomainEntity

DCPS Domains

A domain links all the applications able to
communicate with each other

OBJECTIVE
INTERFACE

e Only the publishers and the subscribers attached to
the same domain may interact

« Domains and nodes (computers) are orthogonal
— One node may participate in multiple domains
— Domains may span a single or multiple nodes

 One DomainParticipant on each node for each

DCPS Domains

)

a Node A)

/

Domain 1

—/

a Node B)
g %
Dom
™

a Node C)

)

Ain 3

(

[
O

Domain 2

Node D

Node E

O

Node F

OBJECTIVE
INTERFACE

DCPS Topics i

« Topics provide the identification of the data that

— Publishers provide
— Subscribers receive

 Identified by a string name
e Must be unigue within domain

« Associated with a single type of data

— Expressed in OMG Interface Definition Language (IDL)
— Type name registered with DCPS with register_type

DCPS Data and DataTypes -

e Data types represent information that is sent
atomically
— DLRL may be used to break down objects into elements

« By default, each data modification is propagated
Individually, independently, and uncorrelated with
other modifications

* Application may request that several modifications be
sent as a whole and interpreted as such at the

DCPS Data and Data Types
Keys

OBJECTIVE
INTERFACE

 May be multiple instances of data. Example:

— Topic = Flight Tracks may contain current data for UA #2333
and US #3456

— Multiple samples of data for each flight (at different times)

— Some applications will want to distinguish flights from one
another

— Each data type may have a Key (e.g., Flight Number)
« Keys distinguish instances

DCPS Data and DataTypes
Why OMG IDL? -

e OMG'’s Interface Definition Language (IDL)
— Includes a robust, portable type model

— And constructs for aggregate types, for example:
e Structures
* Arrays
e Seqguences

« Part of the CORBA specification
— Extensively used

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25486&ICS1=35&ICS2=80&ICS3=

DCPS Data and DataTypes
DDS Development Process (Typical)

OBJECTIVE
INTERFACE

DCPS Data and Data Types
Derived Interfaces

OBJECTIVE
INTERFACE
einterface=> DataWriter DataReader
DataType
register_type()
get_type_name()
FooDataWTriter FooDataReader
FooDataType register_instance()
register_instance_w_timestamp read()
unregister_instance() take()
- unregister_instance_w_timestamp() return_loan()
;%Iiiggtﬁp;rg e() dispose() read_next_sample()
- - dispose_w_timestamp() take_next_sample()
write() read_instance()
write_w_timestamp() take_instance()
get_key value() read_next_instance()
lookup_instance() take_next_instance()
read_w_condition()
i _, take_w_condition()
| get_key_value()
Yy W e kookup_instance()

<<CORBAUserDefinedType>>
Foo

DCPS Data and Data Types
Derived Interfaces ey

INTERFACE
 FooDataType
— register_type() —registers the Foo type with the service
— get _type name - returns “Foo”

e FooDataWriter
— register_instance()
» Register of an instance of Foo
* Allows internalization of key value
— unregister_instance() — no longer modifying instance
— dispose() — delete instance; no further publication

DCPS Data and Data Types
Derived Interfaces

e FooDataReader

— read(Q)

* Read a number of samples consistent with
— The QoS settings
— Sequence sizes provided in parameters
e Copy or no copy possible
— No copy requires call to return_loan()
« Samples may be “read” again
— take()

OBJECTIVE
INTERFACE

Quality of Service (Qo0S)

OBJECTIVE
INTERFACE

QoS values can be associated with most entities

QoS provides a generic mechanism to control and
tailor the behavior of the Service

Each Entity supports its own specialized kind of QoS
policies
— QoS policies summarized later

— The complete list of QoS policies is described in Section
2.1.3 of the specification

QoS Negotiation

OBJECTIVE
INTERFACE

e Certain QoS values must be consistent between
Publishers and Subscribers. Example:

— QoS setting DEADLINE specifies rate at which data samples
will be provided or are requested

— Rate offered by publisher must be same or greater than that
required by subscriber

e Scenario

— Subscriber requests a QoS value setting
— Publisher “offers” a QoS value setting

Q0S Summary oBJECTIVE

« USER DATA, GROUP_DATA, TOPIC DATA
— Data not interpreted by DDS
— Distributed as part of the built-in topics
— User defined extensibility
e DURABILITY — whether data should outlive the
source time — VOLATILE, TRANSIENT_LOCAL,
TRANSIENT, PERSISTENT

« DURABILITY_SERVICE — configuration if

QoS Summary (cont.) e

DEADLINE — periodicity of change

LATENCY_BUDGET - hint of allowed latency write
to read

OWNERSHIP — allowance for multiple sources:
SHARED, EXCLUSIVE

OWNERSHIP_STRENGTH — determines primary
source when EXCLUSIVE

LIVELINESS — mechanism used by primary to assert

QoS Summary (cont.)

OBJECTIVE
INTERFACE

PARTITION — “subdomain”

RELIABILITY — RELIABLE, BEST_EFFORT & max
blocking time (for writes)

TRANSPORT_PRIORITY — hint to infrastructure
LIFESPAN — “expiration time” for data written

DESTINATION_ORDER - order of delivery to reader:
BY RECEPTION_TIMESTAMP, BY _SOURCE_TIMESTAMP

QoS Summary (cont.) e

HISTORY — control consolidation of undelivered
samples: KEEP_ALL, KEEP_ LAST & depth

RESOURCE_LIMITS — max_samples,
max_instances, max_sample per_instance

ENTITY_FACTORY - enable each entity implicitly

WRITER_DATA CYCLE — auto-dispose instances
when unregistered?

READER_DATA CYCLE —

Listeners

OBJECTIVE
INTERFACE

* A listener can be attached to each entity

— Each entity has a specific listener type, e.g.,
DataReaderListener for a DataReader

o Listener is alerted to relevant state changes in the
entity. E.g, DataReaderListener is notified
— on_requested_deadline_missed()
— on_requested_incompatible _gos()
— on_sample_rejected()

Conditions and WaitSets

e Condition
— Base class for triggerable conditions
— GuardCondition — trigger under control of application

— StatusCondition

» Trigger on masked status of any entity
» Retrieved from any entity by get statuscondition()

OBJECTIVE
INTERFACE

— ReadCondition — allow an application to specify the data
samples it is interested in by specifying the desired

e sample-states

Examples

e C++ code used for illustration

e Scenarios following
— Bootstrap/Startup
— Publishing data
— Subscribing to a Topic
— Reading with a Listener
— Wait-based Reading

OBJECTIVE
INTERFACE

Bootstrap/Startup: Steps

OBJECTIVE
INTERFACE

1. Obtain DomainParticipantFactory
2. Specify Quality of Service for DomainParticipant

3. Optionally, create a DomainParticipantListener and
mask of events that listener will react to

4. Join a Domain by creating DomainParticipant

Example — Bootstrap/Startup

OBJECTIVE
INTERFACE

DomainParticipantFactory domain_factory
= DomainParticipantFactory.get instance();

DomainParticipantQoS domain_qos;

DomainParticipantListener®
domain_participant_listener = 0O;

StatusMask domain_participant _mask = O;

Publishing Data: Steps
1.

OBJECTIVE
INTERFACE

Create Publisher object with appropriate QoS and
optional listener

Create Topic object with proper name supporting a
data type with appropriate QoS and optional listener

Create DataWriter object for topic with appropriate
QoS and optional listener

Declare an instance of the data type
Set the value of the instance (not shown

Example — Publishing Data

OBJECTIVE
INTERFACE

Publisher publisher = domain->create publisher(
publisher _gos,
publisher_ listener,
publisher_listener_mask);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qgos, topic_listener, mask);

Subscribing to a Topic: Steps
1.

OBJECTIVE
INTERFACE

Create Subscriber object with appropriate QoS and
optional listener

Create Topic object with proper name supporting a
data type with appropriate QoS and optional listener

Create DataReader object for topic with appropriate
QoS and optional listener

Example — Subscribing to a Topic

OBJECTIVE
INTERFACE

Subscriber subs = domain->create_subscriber(
subscriber _gos, subscriber_ listener, sub_mask);

Topic topic = domain->create_ topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener, topic _mask);

DataReader reader = subscriber->create datareader(
topic, reader_gos, reader_listener, read mask);

Reading with a Listener: Steps e

1. Declare class that inherits from DataReaderListener

2. Override on_data_available to
1. Take available data
2. Process it

3. Create Instance of listener class

4. Set as listener on DataReader (or supply to
create_ datareader)

Example — Reading with a Listener

OBJECTIVE
INTERFACE

class MyReadListener : DataReaderListener {
void on_data available(DataReader reader); }

ReadListener::on_data available(DataReader reader)

1
FooSeq received_data(5);

SamplelnfoSeq sample_info(5);

reader->take(&received data, &sample info,

Wait-based Reading: Steps

OBJECTIVE
INTERFACE

1. Create ReadCondition with proper
SampleStateMask, ViewStateMask, and
InstanceStateMask

2. Attach condition to WaitSet
Wait on WalitSet

Lo

4. Declare seguence to receive data and information
about samples

Example — Wait-based Reading

OBJECTIVE
INTERFACE

Condition foo condition =
reader->create_readcondition(..);

waltset->attach_condition(foo _condition);

ConditionSeq active _conditions;
waltset->wait(&active _conditions, timeout);

“Advanced” DCPS Topics

e Built-in Topics
— Data about entities and topics in domain
 DCPSParticipant
« DCPSTopic
* DCPSPublication
 DCPSSubscription
— Built-in DataReaders obtained from DomainParticipant

 MultiTopic

OBJECTIVE
INTERFACE

Summary

« DDS Data Centric Publish — Subscribe (DCPS)
allows

OBJECTIVE
INTERFACE

— Publishing applications to
 |dentify the data objects they intend to publish, and
* Provide values for these objects.
— Subscribing applications to
* |dentify which data objects they are interested in, and
» Access their data values.

Data Local Reconstruction Layer (DLRL)

Data Local Reconstruction Layer (DLRL)

OBJECTIVE
INTERFACE

Optional higher level

Automatically reconstructs data locally from
distributed updates

Allows the application to access the data ‘as If’ it
were local

Propagates information to all interested subscribers
but also updates a local copy of the information.

Can be built on top of DCPS

Application

DLRL

« Application developer will be able to

— Describe classes of application objects with their
* Methods,
« Data fields and
* Relations;

— Attach some of those data fields (shared) to DCPS entities
— Manipulate those objects (i.e., create, read, write, delete)

» Using the native language constructs
» Activates, behind the scenes, the attached DCPS entities

OBJECTIVE
INTERFACE

DLRL Generation Process

OBJECTIVE
INTERFACE

e Based on the
— Application model description (IDL ValueTypes)
— Tags that enhance the description (XML)

* Tool will generate:

— Native model definition

» Application classes usable by the application developer
* IDL

DLRL Generation Process

OBJECTIVE
INTERFACE

DLRL Generation Process

OBJECTIVE
INTERFACE

IDL DLRL Generator
ValueTypes

Application Model

* Objects with
— Methods

— Attributes which can be

* Local — do not participate in the data distribution

» Shared

— Participate in the data distribution process
— Attached to DCPS entities

 Related by

OBJECTIVE
INTERFACE

Application Model

OBJECTIVE
INTERFACE

 Shared attributes can be

— Mono-valued:
e Of a simple type:
— basic-type (long, short, char, string, etc.);
— enumeration-type;
— simple structure

* Reference to a DLRL object.
— Multi-valued (collections of homogeneously-typed

Example Application Model - UML

OBJECTIVE
INTERFACE

- a_radar -

Example Application Model - IDL

OBJECTIVE
INTERFACE

#include "dirl._idlI"

valuetype stringStrMap; // StrMap<string>
valuetype TrackList; // List<Track>

valuetype RadarRef; // Ref<Radar>
valuetype Track : DLRL::ObjectRoot {
public double X;
public double Y

public stringStrMap comments;
public long w;

Model Tags i

o Symbolic representation of IDL
 Mapping to DCPS topics, etc.
e EXxcerpt:

<classMapping name=""Track"''>
<mainTopic name="TRACK-TOPIC'>
<keyDescription content="FullOid">
<keyFi1eld>CLASS</keyField>
<keyFi1eld>01D</keyField>
</keyDescription>

DLRL Generation Process

OBJECTIVE
INTERFACE

Application
Model
Description

Implied IDL
-

DLRL Generator — Three Mappings

OBJECTIVE
INTERFACE

e Structural mapping
— Relations between DLRL objects and DCPS data,;

e QOperational mapping
— Mapping of the DLRL objects to the DCPS entities
(Publisher, DataWriter, etc.) including
* QO0S settings
« Combined subscriptions
* Etc,;

Structural Mapping

OBJECTIVE
INTERFACE

« Each instance of a DLRL object is mapped to a row
(sample) of a DCPS topic

« Data type for topic includes
— String field for DLRL type name
— 0id — (integer) identifier of instance
— Fields mapped from DLRL attributes

« Simple attributes mapped to field
* Object references (associations) mapped to Oid, TypeName

Example Structural Mapping

OBJECTIVE
INTERFACE

Track Radar
tracks a radar
N 0..1

x: real

y: real

comments[*]: string TRACK-TOPIC COMMENTS-TOPIC

w: integer CLASS CLASS
OID
X OID

Z& vy INDEX

COMMENTS-0OID GRMMENL

Track3D

z: real

Operational Mapping

OBJECTIVE
INTERFACE

e Each DLRL class Is associated with several
DCPS Topics

— Each has a DCPS DataWriter and/or a DCPS
DataReader

— A DataReader and DataWriter are attached to
each Cache instance

o All DataWriter and DataReader objects used
by a DLRL object are attached to a single

Functional Mapping — DLRL entities

OBJECTIVE
INTERFACE

CacheFactory — creates Cache instances

Cache — a set of DLRL objects that are locally
available

CacheAccess — mediates access to a cache

ObjectHome — act as representative for all the local
Instances of a given application-defined class.

ObjectListener — implemented by the application to
be made aware of updates on objects belonging to

Functional Mapping — DLRL entities

OBJECTIVE
INTERFACE

e ObjectQuery — specialization of ObjectFilter that
performs a filter based on a query expression

« SelectionListener — implemented by the application to
be made aware on updates made on objects
belonging to that selection.

e ObjectModifier — represent modifiers to be applied to
a set of objects.

* ObjectExtent — manages a set of instances

Example: Using CacheAccess for Read

1.

OBJECTIVE
INTERFACE

Create the CacheAccess for read purpose
(Cache::.create_access)

Clone some objects in it (ObjectRoot:.clone or
clone_object);

Refresh them (CacheAccess::refresh);
Consult the clone objects and navigate amongst

them (plain access to the objects); these objects are
not subject to any incoming notifications;

Example: Using CacheAccess for Read

(A

OBJECTIVE
INTERFACE

Cache

DCPS

create access clone \

Track 1

CacheAccess

—alue

Example: Using CacheAccess for Write
1.

OBJECTIVE
INTERFACE

Create the CacheAccess for write purpose
(Cache::.create_access)

Clone some objects in it (ObjectRoot::clone or
clone_object);

Refresh them (CacheAccess::refresh);

If needed create new ones for that CacheAccess
(ObjectHome:: create_object);

Modify the attached (plain access to the objects);
Write the modifications into the underlyin

Summary

« DDS-DLRL is a layer on top of DCPS to

— Ease the management of the data
— Integrate into the application

e Supports
— Object-orientation
— Management of graphs of objects

e |t promotes typed interfaces

OBJECTIVE
INTERFACE

Compliance Profiles

Compliance Profiles

OBJECTIVE
INTERFACE

e Minimum profile: mandatory features of the DCPS
layer

e Content-subscription profile:

— Adds the optional classes: ContentFilteredTopic,
QueryCondition, MultiTopic

— Enables subscriptions by content

e Persistence profile: adds
— Optional Qos policy DURABILITY_SERVICE

Compliance Profiles

OBJECTIVE
INTERFACE

e Ownership profile: adds
— Optional setting ‘EXCLUSIVE’ of the OWNERSHIP kind
— Support for the optional OWNERSHIP_STRENGTH policy
— Ability to set a depth > 1 for the HISTORY QoS policy.

e Object model profile: includes

— DLRL

— Support for the PRESENTATION access_scope setting of
‘GROUP’

Further Information

OBJECTIVE
INTERFACE

o Current Specification — version 1.1 —
— http://www.omg.org/cgi-bin/doc?formal/05-12-04

e [atest revision — version 1.2
— In adoption vote
— http://www.omg.org/cgi-bin/doc?ptc/06-04-09

http://www.omg.org/cgi-bin/doc?formal/05-12-04
http://www.omg.org/cgi-bin/doc?ptc/06-04-09

	Tutorial on the OMG Data Distribution Service
	Introduction �OMG Data Distribution Service
	DDS Specification Contents
	DDS Specification Contents
	What are “PIM” and “PSM” in the DDS Spec?
	Architecture of DDS Specification
	Data Centric Publish-Subscribe (DCPS)
	DCPS Data Flow Architecture
	DCPS Data Flow Entities
	DCPS UML Model
	Other DCPS Entities
	Other DCPS Entities
	DCPS Domains
	DCPS Domains
	DCPS Topics
	DCPS Data and DataTypes
	DCPS Data and Data Types�Keys
	DCPS Data and DataTypes�Why OMG IDL?
	DCPS Data and DataTypes�DDS Development Process (Typical)
	DCPS Data and Data Types�Derived Interfaces
	DCPS Data and Data Types�Derived Interfaces
	DCPS Data and Data Types�Derived Interfaces
	Quality of Service (QoS)
	QoS Negotiation
	QoS Summary
	QoS Summary (cont.)
	QoS Summary (cont.)
	QoS Summary (cont.)
	Listeners
	Conditions and WaitSets
	Examples
	Bootstrap/Startup: Steps
	Example – Bootstrap/Startup
	Publishing Data: Steps
	Example – Publishing Data
	Subscribing to a Topic: Steps
	Example – Subscribing to a Topic
	Reading with a Listener: Steps
	Example – Reading with a Listener
	Wait-based Reading: Steps
	Example – Wait-based Reading
	“Advanced” DCPS Topics
	Summary
	Data Local Reconstruction Layer (DLRL)
	Data Local Reconstruction Layer (DLRL)
	DLRL
	DLRL Generation Process
	DLRL Generation Process
	DLRL Generation Process
	Application Model
	Application Model
	Example Application Model - UML
	Example Application Model - IDL
	Model Tags
	DLRL Generation Process
	DLRL Generator – Three Mappings
	Structural Mapping
	Example Structural Mapping
	Operational Mapping
	Functional Mapping – DLRL entities
	Functional Mapping – DLRL entities
	Example: Using CacheAccess for Read
	Example: Using CacheAccess for Read
	Example: Using CacheAccess for Write
	Summary
	Compliance Profiles
	Compliance Profiles
	Compliance Profiles
	Further Information

