
Model-driven Integration of Federated Event Services in
Real-time Component Middleware ∗

Gan Deng
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

gan.deng@vanderbilt.edu

Aniruddha Gokhale
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

a.gokhale@vanderbilt.edu

Balachandran Natarajan
Institute for Software
Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

b.natarajan@vanderbilt.edu

ABSTRACT
Rapid advances in hardware, networking technologies and soft-
ware technologies, including standards-based optimized compo-
nent middleware, has enabled the growth of component middleware-
based complex, large-scale distributed real-time and embedded (DRE)
systems. These DRE systems found in different domains, such as
avionics, telecommunications, defense, enterprise and healthcare,
often use a publisher/subscriber communication paradigm, such as
that provided by an event service. A federation of such event ser-
vices provides a scalable solution to address the complex distri-
bution challenges of DRE systems. By connecting event channels
from different systems together a federated event service enables
seamless and application-transparent interchange of event informa-
tion across distribution boundaries.

Although component middleware supports the creation of appli-
cations via composition of reusable and flexible software compo-
nents, however, to deploy such systems effectively involves numer-
ous challenges in integrating the various distributed components
communicating via different event channels. Current state of the
art in deploying a federation of event services for these component
middleware-based DRE systems involves ad hoc techniques that
are tedious and error-prone.

This paper describes a novel scheme we have developed based on
a model-based paradigm that resolves the challenges in configur-
ing the federated event service. Our approach centers around the
notion of the federated event service modeling language (FESML),
which is a modeling tool we have developed to resolve the config-
uration and deployment challenges of federated event service for
component middleware-based DRE systems.

Categories and Subject Descriptors
∗This work was sponsored in part by AFRL Contract#F33615-03-
C-4112 for DARPA PCES Program and grant from Siemens

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Southeast Conference ’04, April 2-3, 2004, Huntsville, Alabama,
USA. Copyright 2004 ACM 1-58113-870-9/04/04...$5.00.

I.6.5 [Simulation and Modeling]: Model Development:Modeling
Paradigm; C.3 [Special-purpose and Application-based Systems]:
Real-time Systems:Event-based Systems; D.2.2 [Software Engi-
neering]: Design Tools and Techniques:Model driven

Keywords
Federated Event Service, Component Middleware, CORBA Com-
ponent Model, Model-based Systems.

1. INTRODUCTION
Over the past decade,component middlewarehas evolved to sup-
port the creation of applications via composition of reusable and
flexible softwarecomponents. Components are implementation/integration
units with crisply-defined interfaces that can be installed and in-
stantiated in application server run-time environments. Middle-
ware is systems software that resides between applications and the
underlying operating systems, network protocol stacks, and hard-
ware in complex distributed systems to enable or simplify how
these components are connected. Examples of commercial-off-the-
shelf (COTS) component middleware include the CORBA Compo-
nent Model (CCM) [1], J2EE [2], and .NET [3]. Large-scale Dis-
tributed Real-time and Embedded (DRE) systems (such as avionics
mission computing [4], distributed audio/video processing [5], and
distributed interactive simulations [6]), which is the focus of our
research, are increasingly based on component middleware.

One model of communication between components supported by
component middleware is based on the publish/subscribe paradigm [7].
This is achieved via the integration of event or notification services
within the component middleware. The publisher/subscriber de-
sign is a powerful architecture for event-based communication be-
cause it provides anonymity, by decoupling event publishers and
subscribers, and asynchronism, by automatically notifying subscribers
when a specified event is generated.

DRE systems are often characterized by the presence of a large
number of components using the publish/subscribe communication
paradigm. Examples of these systems include distributed inter-
active simulation environments, such as the Next-Generation Run
Time Infrastructure (RTI-NG) implementation for the Defense Mod-
eling and Simulation Organization (DMSO) High Level Architec-
ture (HLA) [8].

Naive implementations of an event service will send one message
for each remote consumer interested in the event. This design will



waste network resources since the same data is transmitted multiple
times, often to the same target host.

The strategy by which a predictably performing distributed event
service with minimal network traffic overhead can be configured
within a real-time component middleware framework is to build
a federation of real-time event services. Such a service, called
a federated event service, allows sharing filtering information to
minimize or eliminate the transmission of unwanted events to a
remote entity. Moreover, a federated event service allows events
that are being communicated in one channel to be made available
on another channel. The channels typically communicate through
CORBA Gateways, UDP, or IP Multicast [9]. By connecting event
channels from different systems together a federated event service
allows event information to be interchanged seamlessly, providing
a level of integration between the two systems, thus improving the
quality of service (QoS) of the system.

To deploy a federated event service for a complex DRE system
requires complex integration efforts in configuring a federation of
event services with a distributed component middleware. Current
state of the art in deploying such a federation involvesad hocinte-
gration efforts based mostly on handcrafting the federation deploy-
ment descriptor metadata. This metadata is usually specified in
XML adhering to some DTD or Schema. The descriptor metadata
comprises information, such as the type of federations (i.e., using a
CORBA Gateway, or UDP or IP Multicast), object references of re-
mote event channels, object reference of local event channels, and
other information. Since the components may involve a large num-
ber of different types of events and event channels,ad hoctech-
niques of deploying federation of event services is a very tedious
and error-prone task.

To address this challenge, therefore, requires principled methods
that can be analyzed, validated and verified for correctness and ro-
bustness. Model-based techniques are well suited to address these
challenges. Therefore, this paper provides a novel approach we
have developed using model-based techniques to deploy federation
of event services for DRE systems.

Previous work on federated event services has focused on the pat-
terns and performance optimizations ofhighly scalable[6] and
real-time[10] CORBA Event Service [11] implementations in the
context of real-time CORBA object middleware [9]. This paper ex-
tends this previous work by describing how our ongoing R&D on
Model Driven Middleware (MDM) [12] can be applied to to sim-
plify the integration of a federated event service in QoS-enabled
component middleware, such as our real-time CORBA component
middleware framework called CIAO [13].

MDM is an emerging paradigm that integratesmodel-based soft-
ware techniques(including Model-Integrated Computing [14, 15]
and the OMG’s Model Driven Architecture [16]) withQoS-enabled
component middleware(including Real-time CORBA [8] and QoS-
enabled CCM [13]) to help resolve key software development and
validation challenges encountered by developers of large-scale DRE
middleware and applications.

This paper is organized as follows: Section 2 describes a MDM
tool we have developed to simplify the configuration and deploy-
ment of federated event service in CIAO, which is our QoS-enabled
implementation of the CORBA Component Model; and Section 3
provides concluding remarks and future work.

2. RESOLVING FEDERATED EVENT SER-
VICE INTEGRATION CHALLENGES IN
CIAO

CIAO’s real-time event channels can be accessed transparently across
distribution boundaries through CIAO’s container framework. How-
ever, many applications want to be shielded from distribution as-
pects, while simultaneously achieving high performance using the
federated event service. To address the challenges in deployment
of federated event services described in Section 1, we have devel-
oped the Federated Event Service Modeling Language (FESML),
as a part of of the CoSMIC [17] Model Driven Middleware tool
chain [18], which supports the development, assembly, and deploy-
ment of DRE systems.

The FESML is a modeling language developed using the Generic
Modeling Environment(GME) [19]. The GME is a configurable
toolkit for creating domain-specific modeling and program synthe-
sis environments. The configuration of the modeling environment
is accomplished through metamodeling approach, which specifies
the modeling paradigm (modeling language) of the application do-
main. The modeling paradigm contains all the syntactic, semantic,
and presentation information regarding the domain and actually de-
fines the family of models that can be created using the resultant
modeling environment.

The artifacts that FESML provides include event consumers, event
suppliers, event channels, CORBA Gateways, UDP Senders, UDP
Receivers and Multicast ports, among others.

Figure 1 illustrates an example of how FESML can be used to
model a federation of event channels using CORBA gateways and
which includes other artifacts of the publish/subscribe paradigm,
such as event consumers, event suppliers, and event channels in
different sites.

By using FESML, the application developer can configure the lo-
cation of the gateway with respect to its event channels to minimize
the utilization of network resources. For example, collocating the
gateway with its sink event channel, i.e. the one it connects to as
a supplier, eliminates the need to transmit events that are not inter-
esting for the sink event channel.

The rest of the section describes the artifacts of the FESML mod-
eling paradigm.

2.1 FESML Syntactic Elements
The FESML meta-model defines two levels of syntactic elements:
(1) The outer level is rather simple and it only contains theSiteele-
ment, which allows the user to define the sites that are present in the
distributed environment and how they could be connected with each
other through event channels and CORBA Gateway, which are ex-
posed asPort elements from the outside view; (2) The second level,
which is the inner level representing a site, contains a list of syn-
tactic elements including Event Supplier, Event Consumer, Event
Channel, CORBA Gateway, IP Multicast Sender and Receiver, and
Event Type References, which allows the user to configure the de-
ployment of these artifacts inside a site.

Figure 2 is a screenshot of the FESML tool used to model a fed-
erated event service with three sites. The top part of the Figure 2
shows the outer level configuration, and the bottom part shows the
inner level of the configuration.



Figure 1: Federated Event Channel

2.2 Model Checker
FESML provides a built-in constraint model checker that checks
for syntactic and semantic compatibility of the federation of event
channels to ensure the correct assembly and deployment of event
service. This model checker is implemented using GME’s Con-
straint Manager, which is fully compliant with the standard (Object
Constraint Language) OCL 1.4 specification.

To ensure the validity of the modeled federated event service, the
event channels’ configuration and settings must be checked to en-
sure that they are consistent with the federation types. For example,
when the user chooses the IP Multicast as the type of federations to
federate event channels, since IP Multicast uses the Observer [20]
capabilities of event channels, the Observer functionality in event
channel must be enabled and activated to ensure the IP Multicast
could work properly. To ensure such semantically consistent con-
figuration, it would be ideal that any violation of such rules will be
detected in the early modeling phase rather than in the later com-
ponent deployment phase.

2.3 Model Interpreter
The FESML encompasses a model interpreter, which synthesizes
the federated event service assembly and deployment descriptor
XML files. The information captured in the descriptor files in-
cludes the relationship between each artifacts, the physical loca-
tion of each supplier, consumer, event channel, CORBA Gateway,
etc. This file will be then further fed into the CIAO assembly and
deployment tool to deploy the system.

Currently there is no standard XML DTD or Schema to describe a
real-time event service configuration metadata or metadata for the
federation of the event services. Our approach, therefore, extends
the existing standard component assembly metadata DTD with el-
ements for deployment of federated event services.

The shift toward high-level design languages and modeling tools
is creating an opportunity for increased automation in generating
and integrating application components. The goal is to shield all
the low level details about how to configure the federation of event
service away from application developers.

Figure 2: FESML Artifacts

3. CONCLUDING REMARKS AND FUTURE
WORK

Large-scale distributed real-time and embedded systems need a real-
time publisher/subscriber paradigm for communication. This en-
tails the need to deploy a federation of event services. This paper
describes a novel approach of using model-based techniques to de-
ploy a federated event service. We have developed a tool called
FESML to address the assembly and deployment challenges of fed-
erated event services.

The true test of FESML will be its usefulness in configuring real
component-based software systems. In the coming months, this
tool will be tested in multiple real-world scenarios involving mission-
critical distributed, real-time systems. FESML project is a work in
progress as part of the CoSMIC tool suite. The CoSMIC MDM
tool suite is available for download atwww.dre.vanderbilt.
edu/cosmic .

The OMG, which is a standards body, has issued an specification
for a Notification Service, which is a superset of the CORBA Event
Service that adds interfaces for event filtering, configurable event
delivery semantics, security, and event delivery at specified levels
of QoS. CIAO already provides the implementation for the Noti-
fication Service specification. FESML is being enhanced to allow
these services to be modeled and configured in a large distributed
environment.

4. REFERENCES
[1] Object Management Group,CORBA Components, OMG

Document formal/2002-06-65 edition, June 2002.



[2] Sun Microsystems, “JavaTM 2 Platform Enterprise Edition,”
http://java.sun.com/j2ee/index.html, 2001.

[3] Microsoft Corporation, “Microsoft .NET Development,”
msdn.microsoft.com/net/, 2002.

[4] Christopher D. Gill, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-Time
CORBA Scheduling Service,”Real-Time Systems, The
International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, vol. 20, no. 2, Mar.
2001.

[5] David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy,
Irfan Pyarali, and Douglas C. Schmidt, “Application of the
QuO Quality-of-Service Framework to a Distributed Video
Application,” in Proceedings of the 3rd International
Symposium on Distributed Objects and Applications, Rome,
Italy, Sept. 2001, OMG.

[6] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell
Noseworthy, “Patterns and Performance of a CORBA Event
Service for Large-scale Distributed Interactive Simulations,”
International Journal of Computer Systems Science and
Engineering, vol. 17, no. 2, Mar. 2002.

[7] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal,Pattern-Oriented Software
Architecture—A System of Patterns, Wiley & Sons, New
York, 1996.

[8] Arvind S. Krishna, Douglas C. Schmidt, Ray Klefstad, and
Angelo Corsaro, “Real-time CORBA Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed.
Wiley and Sons, New York, 2003.

[9] Douglas C. Schmidt and et al., “TAO: A Pattern-Oriented
Object Request Broker for Distributed Real-time and
Embedded Systems,”IEEE Distributed Systems Online, vol.
3, no. 2, Feb. 2002.

[10] Douglas C. Schmidt and Carlos O’Ryan, “Patterns and
Performance of Real-time Publisher/Subscriber
Architectures,”Journal of Systems and Software, Special
Issue on Software Architecture - Engineering Quality
Attributes, 2002.

[11] Object Management Group,Event Service Specification
Version 1.1, OMG Document formal/01-03-01 edition, Mar.
2001.

[12] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran
Natarajan, Jeff Gray, and Nanbor Wang, “Model Driven
Middleware,” inMiddleware for Communications, Qusay
Mahmoud, Ed. Wiley and Sons, New York, 2003.

[13] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale,
Craig Rodrigues, Balachandran Natarajan, Joseph P. Loyall,
Richard E. Schantz, and Christopher D. Gill, “QoS-enabled
Middleware,” inMiddleware for Communications, Qusay
Mahmoud, Ed. Wiley and Sons, New York, 2003.

[14] Janos Sztipanovits and Gabor Karsai, “Model-Integrated
Computing,”IEEE Computer, vol. 30, no. 4, pp. 110–112,
Apr. 1997.

[15] Jeffery Gray, Ted Bapty, and Sandeep Neema, “Handling
Crosscutting Constraints in Domain-Specific Modeling,”
Communications of the ACM, pp. 87–93, Oct. 2001.

[16] Object Management Group,Model Driven Architecture
(MDA), OMG Document ormsc/2001-07-01 edition, July
2001.

[17] Center for Distributed Object Computing, “Component
Synthesis using Model Integrated Computing (CoSMIC),”
www.dre.vanderbilt.edu/cosmic, Vanderbilt University.

[18] Aniruddha Gokhale, Krishnakumar Balasubramanian,
Jaiganesh Balasubramanian, Arvind Krishna, George T.
Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons, and

Douglas C. Schmidt, “Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed
Real-time and Embedded Applications,”Submitted to The
Journal of Science of Computer Programming: Special Issue
on Model Driven Architecture, 2004.

[19] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei,
Greg Nordstrom, Jonathan Sprinkle, and Gabor Karsai,
“Composing Domain-Specific Design Environments,”IEEE
Computer, Nov. 2001.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA,
1995.


