
Middleware for Communications

Contents

Preface 2

1 QoS-enabled Middleware 1
1.1 Introduction . 2

1.1.1 Emerging Trends . 2
1.1.2 Key Technical Challenges and Solution Approaches 3
1.1.3 Chapter Organization . 5

1.2 The Evolution of Middleware . 5
1.2.1 Overview of Middleware . 6
1.2.2 Limitations of Conventional Middleware 7

1.3 Component Middleware: A Powerful Approach to Building DRE Ap-
plications . 8
1.3.1 Overview of Component Middleware and the CORBA Compo-

nent Model . 9
1.3.2 Limitations with Conventional Component Middleware for Large-

scale DRE Systems . 12
1.4 QoS Provisioning and Enforcement with CIAO and QuO Qoskets . . . 14

1.4.1 Static Qos Provisioning via QoS-enabled Component Middle-
ware and CIAO . 16

1.4.2 Dynamic QoS Provisioning via QuO Adaptive Middleware and
Qoskets . 20

1.4.3 Integrated QoS provisioning via CIAO and Qoskets 24
1.5 Related Work . 26
1.6 Concluding Remarks . 28

Bibliography 30

Preface

1

QoS-enabled Middleware

Nanbor Wang Douglas C. Schmidt,
and Aniruddha Gokhale,

Christopher D. Gill Balachandran Natarajan,
Dept. of Computer Science Institute for Software

and Engineering Integrated Systems

Washington University Vanderbilt University

One Brookings Drive Box 1829, Station B

St. Louis, MO 63130 Nashville, TN 37203

Joseph P. Loyall, Richard E. Schantz,
and Craig Rodrigues

BBN Technologies

10 Moulton Street

Cambridge, MA 02138

Middleware for Communications. Edited by Qusay H. Mahmoud
c© 2001 John Wiley & Sons, Ltd

QOS-ENABLED MIDDLEWARE 2

1.1 Introduction

1.1.1 Emerging Trends

Commercial-off-the-shelf (COTS) middleware technologies, such as The Object Man-
agement Group (OMG)’s Common Object Request Broker Architecture (CORBA) (Obj
2002c), Sun’s Java RMI (Wollrath et al. 1996), and Microsoft’s COM+ (Morgenthal
1999), have matured considerably in recent years. They are being used to reduce
the time and effort required to develop applications in a broad range of informa-
tion technology (IT) domains. While these middleware technologies have historically
been applied to enterprise applications (Gokhale et al. 2002), such as online catalog
and reservation systems, bank asset management systems, and management plan-
ning systems, over 99% of all microprocessors are now used for distributed real-time
and embedded (DRE) systems (Alan Burns and Andy Wellings 2001) that control
processes and devices in physical, chemical, biological, or defense industries.

These types of DRE applications have distinctly different characteristics than
conventional desktop or back office applications in that the right answer delivered too
late can become the wrong answer, i.e., failure to meet key QoS requirements can
lead to catastrophic consequences. Middleware that can satisfy stringent quality of
service (QoS) requirements, such as predictability, latency, efficiency, scalability, de-
pendability, and security, is therefore increasingly being applied to DRE application
development. Regardless of the domain in which middleware is applied, however, its
goal is to help expedite the software process by (1) making it easier to integrate parts
together and (2) shielding developers from many inherent and accidental complexi-
ties, such as platform and language heterogeneity, resource management, and fault
tolerance.

Component middleware (Szyperski 1998) is a class of middleware that enables
reusable services to be composed, configured, and installed to create applications
rapidly and robustly. In particular, component middleware offers application devel-
opers the following reusable capabilities:

• Connector mechanisms between components, such as remote method invocations
and message passing,

• Horizontal infrastructure services, such as request brokers, and
• Vertical models of domain concepts, such as common semantics for higher-level

reusable component services ranging from transaction support to multi-level
security.

Examples of COTS component middleware include the CORBA Component Model
(CCM) (Obj 2002a), Java 2 Enterprise Edition (J2EE) (Sun Microsystems 2001), and
the Component Object Model (COM) (Box 1998), each of which uses different APIs,
protocols, and component models.

As the use of component middleware becomes more pervasive, DRE applications
are increasingly combined to form distributed systems that are joined together by
the Internet and intranets. Examples of these types of DRE applications include in-
dustrial process control systems, such as hot rolling mill control systems that process
molten steel in real-time, and avionics systems, such as mission management com-
puters (Sharp 1998, 1999) that help aircraft pilots plan and navigate through their

QOS-ENABLED MIDDLEWARE 3

routes. Often, these applications are combined further with other DRE applications
to create “systems of systems,” which we henceforth refer to as “large-scale DRE
systems.”

The military command and control systems shown in Figure 1.1 exemplifies such a
large-scale DRE system, where information is gathered and assimilated from a diverse
collection of devices (such as unmanned aerial vehicles and wearable computers),
before being presented to higher level command and control functions that analyze
the information and coordinate the deployment of available forces and weaponry.
In the example, both the reconnaissance information such as types and locations

Engagement System

Reconnaissance System

Command and Control

Weapon Control System

Navigation System

AWACS

Figure 1.1 An Example Large-scale DRE System

of threats, and the tactical decisions such as retasking and redeployment, must be
communicated within specified timing constraints across system boundaries to all
involved entities.

1.1.2 Key Technical Challenges and Solution Approaches

The following key technical challenges arise when developing and deploying applica-
tions in the kinds of large-scale DRE systems environments outlined in Section 1.1.1:
1. Satisfying multiple QoS requirements in real-time. Most DRE applica-
tions have stringent QoS requirements that must be satisfied simultaneously in real-
time. Example QoS requirements include processor allocation and network latency,
jitter, and bandwidth. To ensure that DRE applications can achieve their QoS require-
ments, various types of QoS provisioning must be performed to allocate and manage
system computing and communication resources end-to-end. QoS provisioning can be
performed in the following ways:

• Statically, where ensuring adequate resources required to support a particular
degree of QoS is pre-configured into an application. Examples of static QoS

QOS-ENABLED MIDDLEWARE 4

provisioning include task prioritization and communication bandwidth reserva-
tion. Section 1.4.1 describes a range of QoS resources that can be provisioned
statically.

• Dynamically, where the resources required are determined and adjusted based
on the runtime system status. Examples of dynamic QoS provisioning include
runtime reallocation re-prioritization to handle bursty CPU load, primary, sec-
ondary and remote storage access, and competing network traffic demands.
Section 1.4.2 describes a range of QoS resources that can be provisioned dy-
namically.

QoS provisioning in large-scale DRE systems cross-cuts multiple layers and re-
quires end-to-end enforcement. Conventional component middleware technologies,
such as CCM, J2EE, and COM+, were designed largely for applications with business-
oriented QoS requirements such as data persistence, confidentiality, and transactional
support. Thus, they do not effectively address enforcing the stringent, multiple and
simultaneous QoS requirements of DRE applications end-to-end . What is therefore
needed is QoS-enabled component middleware that preserves existing support for het-
erogeneity in standard component middleware, yet also provides multiple dimensions
of QoS provisioning and enforcement (Rajkumar et al. 1998) to meet those end-to-end
real-time QoS requirements of DRE applications.
2. Alleviating the complexity of composing and managing large-scale DRE
software. To reduce lifecycle costs and time-to-market, application developers to-
day largely assemble and deploy DRE applications by manually selecting a set of com-
patible common-off-the-shelf (COTS) and custom-developed components. To compose
an application successfully requires that these components have compatible interfaces,
semantics, and protocols, which makes selecting and developing a compatible set of
application components a daunting task (Luis Iribarne and José M. Troya and Anto-
nio Vallecillo 2002). This problem is further compounded by the existence of myriad
strategies for configuring and deploying the underlying middleware to leverage special
hardware and software features.

Moreover, DRE application demands for QoS provisioning (which in turn require
end-to-end enforcement and often pervade an entire application) only exacerbate
the complexity. Consequently, application developers spend non-trivial amounts of
time debugging problems associated with the selection of incompatible strategies and
components. What is therefore needed is an integrated set of software development
processes, platforms, and tools that can (1) select a suitable set of middleware and
application components, (2) analyze, synthesize, and validate the component con-
figurations, (3) assemble and deploy groups of related components to their appro-
priate execution platforms, and (4) dynamically adjust and reconfigure the system
as operational conditions change, to maintain the required QoS properties of DRE
applications.

This chapter provides the following two contributions to research and development
efforts that address the challenges described above:

• We illustrate how enhancements to standard component middleware can sim-
plify the development of DRE applications by composing QoS provisioning
policies statically with applications. Our discussion focuses on a QoS-enabled

QOS-ENABLED MIDDLEWARE 5

enhancement of standard CCM (Obj 2002a) called the Component-Integrated
ACE ORB (CIAO), which is being developed at Washington University in St.
Louis and the Institute for Software Integrated Systems (ISIS) at Vanderbilt
University.

• We describe how dynamic QoS provisioning and adaptation can be addressed
using middleware capabilities called Qoskets, which are enhancements to the
Quality Objects (QuO) (Zinky et al. 1997) middleware developed by BBN Tech-
nologies. Our discussion focuses on how Qoskets can be combined with CIAO to
compose adaptive QoS assurance into DRE applications dynamically. In partic-
ular, Qoskets manage modular QoS aspects, which can be combined with CIAO
and woven to create an integrated QoS-enabled component model.

A companion chapter in this book (Gokhale et al. 2003) on Model Driven Middle-
ware discusses how QoS-enabled component middleware can be combined with Model
Driven Architecture (MDA) tools to rapidly develop, generate, assemble, and deploy
flexible DRE applications that can be tailored readily to meet the needs of multiple
simultaneous QoS requirements.

All the material presented in this chapter is based on the CIAO and QuO middle-
ware, which can be downloaded in open-source format from deuce.doc.wustl.edu/
Download.html and quo.bbn.com/quorelease.html, respectively. This middleware
is being applied to many projects worldwide in a wide range of domains, including
telecommunications, aerospace, financial services, process control, scientific comput-
ing, and distributed interactive simulations.

1.1.3 Chapter Organization

The remainder of this chapter is organized as follows: Section 1.2 gives a brief overview
of middleware technologies and describes limitations of conventional object-based
middleware technologies; Section 1.3 describes how component middleware addresses
key limitations of object-oriented middleware and then explains how current com-
ponent middleware does not yet support DRE application development effectively;
Section 1.4 illustrates how the CIAO and QuO middleware expands the capabilities
of conventional component middleware to facilitate static and dynamic QoS provision-
ing and enforcement for DRE applications; Section 1.5 compares our work on CIAO
and Qoskets with related research; and Section 1.6 presents concluding remarks.

1.2 The Evolution of Middleware

In the early days of computing, software was developed from scratch to achieve a par-
ticular goal on a specific hardware platform. Since computers were themselves much
more expensive than the cost to program them, scant attention was paid to system-
atic software reuse and composition of applications from existing software artifacts.
Over the past four decades, the following two trends have spurred the transition from
hardware-centric to software-centric development paradigms:

• Economic factors – Due to advances in VLSI and the commoditization of
hardware, most computers are now much less expensive than the cost to program

QOS-ENABLED MIDDLEWARE 6

them.
• Technological advances – With the advent of software development techno-

gies, such as object-oriented programming languages and distributed object
computing technologies, it has become easier to develop software with more
capabilities and features.

A common theme underlying the evolution of modern software development paradigms
is the desire for reuse, i.e., to compose and customize applications from pre-existing
software building blocks Douglas C. Schmidt and Frank Buschmann (2003). Major
modern software development paradigms all aim to achieve this common goal but
differ in the type(s) and granularity of building blocks that form the core of each
paradigm. The development and the evolution of middleware technologies also follow
the similar goal to capture and reuse design information learned in the past, within
various layers of software.

This section provides an overview of middleware and describes the limitations
of conventional distributed object computing (DOC) middleware, which has been
the dominant form of middleware during the 1990’s. Section 1.3 then presents an
overview of how component middleware overcomes the limitations of conventional
DOC middleware.

1.2.1 Overview of Middleware

Middleware is reusable software that resides between applications and the underly-
ing operating systems, network protocol stacks, and hardware (Schantz and Schmidt
2002). Middleware’s primary role is to bridge the gap between application programs
and the lower-level hardware and software infrastructure to coordinate how parts of
applications are connected and how they interoperate. Middleware focuses especially
on issues that emerge when such programs are used across physically separated plat-
forms. When developed and deployed properly, middleware can reduce the cost and
risk of developing distributed applications and systems by helping to:

• Simplify the development of distributed applications by providing a consistent
set of capabilities that is closer to the set of application design-level abstractions
than to the underlying computing and communication mechanisms.

• Provide higher-level abstraction interfaces for managing system resources, such
as instantiation and management of interface implementations and provisioning
of QoS resources.

• Shield application developers from low-level, tedious, and error-prone platform
details, such as socket-level network programming idioms.

• Amortize software lifecycle costs by leveraging previous development expertise
and capturing implementations of key patterns in reusable frameworks, rather
than rebuilding them manually for each use.

• Provide a wide array of off-the-shelf developer-oriented services, such as trans-
actional logging and security, that have proven necessary to operate effectively
in a distributed environment.

QOS-ENABLED MIDDLEWARE 7

• Ease the integration and interoperability of software artifacts developed by mul-
tiple technology suppliers, over increasingly diverse, heterogeneous, and geo-
graphically separated environments (Cemal Yilmaz and Adam Porter and Dou-
glas C. Schmidt 2003).

• Extend the scope of portable software to higher levels of abstraction through
common industry-wide standards.

The emergence and rapid growth of the Internet, beginning in the 1970’s, brought
forth the need for distributed applications. For years, however, these applications were
hard to develop due to a paucity of methods, tools, and platforms. Various technolo-
gies have emerged over the past 20+ years to alleviate complexities associated with
developing software for distributed applications and to provide an advanced software
infrastructure to support it. Early milestones included the advent of Internet proto-
cols (Postel 1980, 1981), interprocess communication and message passing architec-
tures (Davies et al. 1981), micro-kernel architectures (Accetta et al. 1986), and Sun’s
Remote Procedure Call (RPC) model (Sun Microsystems 1988). The next generation
of advances included OSF’s Distributed Computing Environment (DCE) (Rosenberry
et al. 1992), CORBA (Obj 2002c), and DCOM (Box 1998). More recently, middleware
technologies have evolved to support DRE applications (e.g., Real-time CORBA (Obj
2002b)), as well as to provide higher-level abstractions, such as component models
(e.g., CCM (Obj 2002a), J2EE (Sun Microsystems 2001)) and model driven middle-
ware (Gokhale et al. 2003).

The success of middleware technologies has added the middleware paradigm to
the familiar operating system, programming language, networking, and database offer-
ings used by previous generations of software developers. By decoupling application-
specific functionality and logic from the accidental complexities inherent in a dis-
tributed infrastructure, middleware enables application developers to concentrate on
programming application-specific functionality, rather than wrestling repeatedly with
lower-level infrastructure challenges.

1.2.2 Limitations of Conventional Middleware

Section 1.2.1 briefly described the evolution of middleware over the past 20+ years.
One of the watershed events during this period was the emergence of distributed ob-
ject computing (DOC) middleware in the late 1980’s/early 1990s (Schantz et al. 1986).
DOC middleware represented the confluence of two major areas of software technol-
ogy: distributed computing systems and object-oriented design and programming. Tech-
niques for developing distributed systems focus on integrating multiple computers to
act as a unified scalable computational resource. Likewise, techniques for developing
object-oriented systems focus on reducing complexity by creating reusable frameworks
and components that reify successful patterns and software architectures (Buschmann
et al. 1996; Gamma et al. 1995; Schmidt et al. 2000). DOC middleware therefore uses
object-oriented techniques to distribute reusable services and applications efficiently,
flexibly, and robustly over multiple, often heterogeneous, computing and networking
elements.

The Object Management Architecture (OMA) in the CORBA 2.x specification (Obj
2002d) defines an advanced DOC middleware standard for building portable dis-

QOS-ENABLED MIDDLEWARE 8

tributed applications. The CORBA 2.x specification focuses on interfaces, which are
essentially contracts between clients and servers that define how clients view and ac-
cess object services provided by a server. Despite its advanced capabilities, however,
the CORBA 2.x standard has the following limitations (Wang et al. 2000):

1. Lack of functional boundaries. The CORBA 2.x object model treats all
interfaces as client/server contracts. This object model does not, however, provide
standard assembly mechanisms to decouple dependencies among collaborating ob-
ject implementations. For example, objects whose implementations depend on other
objects need to discover and connect to those objects explicitly. To build complex dis-
tributed applications, therefore, application developers must explicitly program the
connections among interdependent services and object interfaces, which is extra work
that can yield brittle and non-reusable implementations.

2. Lack of generic server standards. CORBA 2.x does not specify a generic
server framework to perform common server configuration work, including initializ-
ing a server and its QoS policies, providing common services (such as notification
or naming services), and managing the runtime environment of each component. Al-
though CORBA 2.x standardized the interactions between object implementations
and object request brokers (ORBs), server developers must still determine how (1)
object implementations are installed in an ORB and (2) the ORB and object imple-
mentations interact. The lack of a generic component server standard yields tightly
coupled, ad-hoc server implementations, which increase the complexity of software
upgrades and reduce the reusability and flexibility of CORBA-based applications.

3. Lack of software configuration and deployment standards. There is no
standard way to distribute and start up object implementations remotely in CORBA
2.x specifications. Application administrators must therefore resort to in-house scripts
and procedures to deliver software implementations to target machines, configure the
target machine and software implementations for execution, and then instantiate
software implementations to make them ready for clients. Moreover, software imple-
mentations are often modified to accommodate such ad hoc deployment mechanisms.
The need of most reusable software implementations to interact with other software
implementations and services further aggravates the problem. The lack of higher-level
software management standards results in systems that are harder to maintain and
software component implementations that are much harder to reuse.

1.3 Component Middleware: A Powerful Approach
to Building DRE Applications

This section presents an overview of component middleware and the CORBA Compo-
nent Model. It then discusses how conventional component middleware lacks support
for the key QoS provisioning needs of DRE applications.

QOS-ENABLED MIDDLEWARE 9

1.3.1 Overview of Component Middleware and the CORBA
Component Model

Component middleware (Szyperski 1998) is a class of middleware that enables reusable
services to be composed, configured, and installed to create applications rapidly and
robustly. Recently, component middleware has evolved to address the limitations of
DOC middleware described in Section 1.2.2 by

• Creating a virtual boundary around larger application component implementa-
tions that interact with each other only through well-defined interfaces,

• Defining standard container mechanisms needed to execute components in generic
component servers, and

• Specifying the infrastructure to assemble, package, and deploy components
throughout a distributed environment.

The CORBA Component Model (CCM) (Obj 2002a) is a current example of
component middleware that addresses limitations with earlier generations of DOC
middleware. The CCM specification extends the CORBA object model to support
the concept of components and establishes standards for implementing, packaging,
assembling, and deploying component implementations. From a client perspective, a
CCM component is an extended CORBA object that encapsulates various interaction
models via different interfaces and connection operations. From a server perspective,
components are units of implementation that can be installed and instantiated in-
dependently in standard application server runtime environments stipulated by the
CCM specification. Components are larger building blocks than objects, with more
of their interactions managed to simplify and automate key aspects of construction,
composition, and configuration into applications.

A component is an implementation entity that exposes a set of ports, which are
named interfaces and connection points that components use to collaborate with
each other. Ports include the following interfaces and connection points shown in
Figure 1.2:

• Facets, which define a named interface that services method invocations from
other components synchronously.

• Receptacles, which provide named connection points to synchronous facets
provided by other components.

• Event sources/sinks, which indicate a willingness to exchange event messages
with other components asynchronously.

Components can also have attributes that specify named parameters that can be
configured later via metadata specified in component property files.

Figure 1.3 shows the server-side view of the runtime architecture of the CCM
model. A container provides the server runtime environment for component imple-
mentations called executors. It contains various pre-defined hooks and operations that
give components access to strategies and services, such as persistence, event notifica-
tion, transaction, replication, load balancing, and security. Each container defines a
collection of runtime strategies and policies, such as an event delivery strategy and
component usage categories, and is responsible for initializing and providing runtime

QOS-ENABLED MIDDLEWARE 10

����������
	

�
�
�

�
��

�

�
�
�
�
��

�
�
�
�
�
��
�
��
�

	

�
�
�

�
�
�
��
�
�

���������

���������

���������

����

�
���
��
�

�
�
���

�
�
�
�
��
�
�

�
�
��
�

Figure 1.2 Client View of CCM Components

���������

	
�

�	
��

��������

��������

���

�	�

�����������

�������� ������������

����������

�
�
��
��
�
�

	�
��
�

�
�
�
�

�������

	����
����

	�������

	����
����

���������

�	
��

��������

��������

���

�	�

�
�
��
��
�
�

	�
��
�

�
�
�
�

�������

	����
����

	�������

	����
����

Figure 1.3 Overview of the CCM Run-time Architecture

QOS-ENABLED MIDDLEWARE 11

contexts for the managed components. Component implementations have associated
metadata, written in XML, that specify the required container strategies and policies.

In addition to the building blocks outlined above, the CCM specification also
standardizes various aspects of stages in the application development lifecycle, no-
tably component implementation, packaging, assembly, and deployment as shown in
Figure 1.4, where each stage of the lifecycle adds information pertaining to these
aspects. The numbers in the discussion below correspond to the labels in Figure 1.4.
The CCM Component Implementation Framework (CIF) (1) automatically generates

Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL

Definitions

Stubs

&

Skeletons

Object

Implementations

Running

Applications

Component

IDL

Definitions

IDL

Compiler
CIDL

Compiler

Component

CIDL

Definitions

Servants,

Executors,

Contexts

Language

Tools

Component

DLLs

XML

Component &

Home Properties

XML

Component

Descriptors

(.ccd)

Packaging

Tools

Component

Packages

(Zipped

archives

*.car)

Assembling

Tools

XML

Component &

Home Properties

Assembly

Packages

(Zipped

archives

*.aar)

XML

Softpkg

Descriptors

(.csd)

XML

Assembly

Descriptors

(.cad)

Deployment

Tools

Target Platform

Properties

Component

Configurations

(1)

(2)

(3)

(4)

Figure 1.4 Overview of the CCM Development Lifecycle

component implementation skeletons and persistent state management mechanisms
using the Component Implementation Definition Language (CIDL). CCM packaging
tools (2) bundle implementations of a component with related XML-based compo-
nent metadata. CCM assembly tools (3) use XML-based metadata to describe compo-
nent compositions, including component locations and interconnections among com-
ponents, needed to form an assembled application. Finally, CCM deployment tools
(4) use the component assemblies and composition metadata to deploy and initialize
applications.

The tools and mechanisms defined by CCM collaborate to address the limitations
described in Section 1.2.2. The CCM programming paradigm separates the concerns
of composing and provisioning reusable software components into the following de-
velopment roles within the application lifecycle:

• Component designers, who define the component features by specifying what
each component does and how components collaborate with each other and with
their clients. Component designers determine the various types of ports that
components offer and/or require.

QOS-ENABLED MIDDLEWARE 12

• Component implementors, who develop component implementations and
specify the runtime support a component requires via metadata called compo-
nent descriptors.

• Component packagers, who bundle component implementations with meta-
data giving their default properties and their component descriptors into com-
ponent packages.

• Component assemblers, who configure applications by selecting component
implementations, specifying component instantiation constraints, and connect-
ing ports of component instances via metadata called assembly descriptors.

• System deployers, who analyze the runtime resource requirements of assem-
bly descriptors and prepare and deploy required resources where component
assemblies can be realized.

The CCM specification has recently been finalized by the OMG and is in the
process of being incorporated into the core CORBA specification.1 CCM implemen-
tations are now available based on the recently adopted specification (Obj 2002a),
including OpenCCM by the Universite des Sciences et Technologies de Lille, France,
K2 Containers by iCMG, MicoCCM by FPX, Qedo by Fokus, and CIAO by the
DOC groups at Washington University in St. Louis and the Institute for Software
Integrated Systems (ISIS) at Vanderbilt University. The architectural patterns used
in CCM (Volter et al. 2002) are also used in other popular component middleware
technologies, such as J2EE (Alur et al. 2001; Marinescu and Roman 2002) and .NET.

Among the existing component middleware technologies, CCM is the most suit-
able for DRE applications since the current base-level CORBA specification is the
only standard COTS middleware that has made substantial progress in satisfying
the QoS requirements of DRE systems. For example, the OMG has adopted several
DRE-related specifications, including Minimum CORBA, Real-time CORBA,
CORBA Messaging, and Fault-tolerant CORBA. These QoS specification and
enforcement capabilities are essential for supporting DRE systems. Our work there-
fore focuses on CCM as the basis for developing QoS-enabled component models that
are able to support DRE systems.

1.3.2 Limitations with Conventional Component Middleware
for Large-scale DRE Systems

Large-scale DRE applications require seamless integration of many hardware and
software systems. Figure 1.5 shows a representative air traffic control system that
collects and processes real-time flight status from multiple regional radars. Based on
the real-time flight data, the system then reschedules flights, issues air traffic control
commands to airplanes in flight, notifies airports, and updates the displays in an
airport’s flight bulletin boards.

The types of systems shown in Figure 1.5 require complicated provisioning, where
developers must connect numerous distributed or collocated subsystems together and
define the functionality of each subsystem. Component middleware can reduce the

1The CORBA 3.0 specification (Obj 2002c) released by the OMG only includes changes in IDL
definition and Interface Repository changes from the Component specification.

QOS-ENABLED MIDDLEWARE 13

Component Server

Container Container

Flight
Scheduling
Processing

Web
Gateway

Component
Deployment

&
Configuration
Mechanism

Middleware Framework

Deployment
&

Configuration
Metadata

Real-Time
Component
Repository

Compose Deploy

Client

Middleware Bus

Central
Data
Store

System Development

Field Radar
Control
System

Real-Time
Flight
Status
Bulletin
Board

Chicago
Data

Center

Component
Assembly

Flight
Scheduling

Airport
Approach
Control

WWW

Figure 1.5 Integrating DRE Applications with Component Middleware

software development effort for these types of large-scale DRE systems by enabling
application development through composition. Conventional component middleware,
however, is designed for the needs of business applications, rather than the more com-
plex QoS provisioning needs of DRE applications. Developers are therefore forced to
configure and control these QoS mechanisms imperatively in their component imple-
mentations to meet the real-time demands of their applications.

It is possible for component developers to take advantage of certain middleware or
OS features to implement QoS-enabled components by embedding certain QoS pro-
visioning code within a component implementation. Many QoS capabilities, however,
cannot be implemented solely within a component because:

• QoS provisioning must be done end-to-end, i.e., it needs to be applied to many
interacting components. Implementing QoS provisioning logic internally in each
component hampers its reusability.

• Certain resources, such as thread pools in Real-time CORBA, can only be pro-
visioned within a broader execution unit, i.e., a component server rather than a

QOS-ENABLED MIDDLEWARE 14

component. Since component developers often have no a priori knowledge about
with which other components a component implementation will collaborate, the
component implementation is not the right level at which to provision QoS.

• Certain QoS assurance mechanisms, such as configuration of non-multiplexed
connections between components, affect component interconnections. Since a
reusable component implementation may not know how it will be composed with
other components, it is not generally possible for component implementations
to perform QoS provisioning in isolation.

• Many QoS provisioning policies and mechanisms require the installation of cus-
tomized infrastructure modules to work correctly in meeting their requirements.
However, some of the policies and mechanisms in support of controlled behav-
iors such as high throughput and low latency, may be inherently incompatible.
It is hard for QoS provisioning mechanisms implemented within components to
manage these incompatibilities without knowing the end-to-end QoS context a
priori.

In general, isolating QoS provisioning functionality into each component prema-
turely commits every implementation to a specific QoS provisioning scenario in a DRE
application’s lifecycle. This tight coupling defeats one of the key benefits of compo-
nent middleware: separating component functionality from system management. By
creating dependencies between application components and the underlying compo-
nent framework, component implementations become hard to reuse, particularly for
large-scale DRE systems whose components and applications possess stringent QoS
requirements.

1.4 QoS Provisioning and Enforcement with CIAO
and QuO Qoskets

This section describes middleware technologies that we have developed to
1. Statically provision QoS resources end-to-end to meet key requirements. Some

DRE systems require strict preallocation of critical resources via static QoS
provisioning for closed loop systems to ensure critical tasks always have sufficient
resources to complete.

2. Monitor and manage the QoS of the end-to-end functional application interac-
tions.

3. Enable the adaptive and reflective decision-making needed to dynamically pro-
vision QoS resources robustly and enforce the QoS requirements of applications
for open loop environments in the face of rapidly changing mission requirements
and environmental/failure conditions.

The middleware technologies discussed in this section apply various aspect-oriented
development techniques (Kiczales et al. 1997) to support the separation of QoS sys-
temic behavior and configuration concerns. Aspect-oriented techniques are important
since code for provisioning and enforcing QoS properties in traditional DRE systems
is often spread throughout the software and usually becomes tangled with the applica-
tion logic. This tangling makes DRE applications brittle, hard to maintain, and hard

QOS-ENABLED MIDDLEWARE 15

to extend with new QoS mechanisms and behaviors for changing operational contexts.
As Section 1.3.2 discusses, as DRE systems grow in scope and criticality, a key chal-
lenge is to decouple the reusable, multi-purpose, off-the-shelf, resource management
aspects of the middleware from aspects that need customization and tailoring to the
specific preferences of each application.

���

������	
����

��������	
�����

����������

��

���������

��������
�
���������

����	��

�����������

��������	
�����

���

����������

�����������

����������

�����������

�����

�������

����	�

����

�����������
��

���������

��

���������

��

���������

���

����������

!������ !������

�����

�������

����	�

����

���
�	�������

��"����������
����������

�����#�����
����������

������
���$���

������ �����"��
���$���

��"����������
����������

�����#�����
����������

������
���$���

������ �����"��
���$���

Figure 1.6 Decoupling the Functional Path from the Systemic QoS Path

Based on our experience developing scores of large-scale research and production
DRE systems over the past two decades, we have found that it is most effective to
separate the programming and provisioning of QoS concerns along the two dimensions
shown in Figure 1.6 and discussed below:
Functional paths, which are flows of information between client and remote server
applications. The middleware is responsible for ensuring that this information is ex-
changed efficiently, predictably, scalably, dependably, and securely between remote
nodes. The information itself is largely application-specific and determined by the
functionality being provided (hence the term “functional path”).
QoS systemic paths, which are responsible for determining how well the functional
interactions behave end-to-end with respect to key DRE QoS properties, such as
(1) when, how, and what resources are committed to client/server interactions at
multiple levels of distributed systems, (2) the proper application and system behavior
if available resources are less than expected, and (3) the failure detection and recovery
strategies necessary to meet end-to-end dependability requirements.

In next generation of large-scale DRE systems, the middleware – rather than op-
erating systems or networks alone – will be responsible for separating QoS systemic
properties from functional application properties and coordinating the QoS of var-
ious DRE system and application resources end-to-end. The architecture shown in
Figure 1.6 enables these properties and resources to change independently, e.g., over
different distributed system configurations for the same application.

The architecture in Figure 1.6 assumes that QoS systemic paths will be provi-
sioned by a different set of specialists – such as systems engineers, administrators,
operators, and possibly automated computing agents – and tools – such as MDA

QOS-ENABLED MIDDLEWARE 16

tools (Gokhale et al. 2003) – than those customarily responsible for programming
functional paths in DRE systems. In conventional component middleware, such as
CCM described in Section 1.3.1, there are multiple software development roles, such
as component designers, assemblers, and packagers. QoS-enabled component middle-
ware identifies yet another development role: the Qosketeer (Zinky et al. 1997). The
Qosketeer is responsible for performing QoS provisioning, such as preallocating CPU
resources, reserving network bandwidth/connections, and monitoring/enforcing the
proper use of system resources at runtime to meet or exceed application and system
QoS requirements.

1.4.1 Static Qos Provisioning via QoS-enabled Component Mid-
dleware and CIAO

Below we present an overview of static QoS provisioning and illustrate how QoS-
enabled component middleware, such as CIAO, facilitates the composition of static
QoS provisioning into DRE applications.

Overview of Static QoS Provisioning

Static QoS provisioning involves pre-determining the resources needed to satisfy cer-
tain QoS requirements and allocating the resources of a DRE system before or during
start-up time. Certain DRE applications use static provisioning because they (1) have
a fixed set of QoS demands and (2) require tightly-bounded predictability for system
functionality. For example, key commands (such as collision warning alerts to a pilot
avionic flight systems) should be assured access to resources, e.g., through planned
scheduling of those operations or assigning them the highest priority (Gill et al. 2003).
In contrast, the handling of secondary functions, such as flight path calculation, can
be delayed without significant impact on overall system functioning. In addition,
static QoS provisioning is often the simplest solution available, e.g., a video stream-
ing application for an unmanned aerial vehicle (UAV) may simply choose to reserve a
fixed network bandwidth for the audio and video streams, assuming it is available (R.
Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy and
I. Pyarali 2003).

To address the limitations with conventional component middleware outlined in
Section 1.3.2, it is necessary to make QoS provisioning specifications an integral part
of component middleware and apply the aspect-oriented techniques to decouple QoS
provisioning specifications from component functionality. This separation of concerns
relieves application component developers from tangling the code to manage QoS re-
sources within the component implementation. It also simplifies QoS provisioning that
cross-cut multiple interacting components to ensure proper end-to-end QoS behavior.

To perform QoS provisioning end-to-end throughout a component middleware sys-
tem robustly, static QoS provisioning specifications should be decoupled from com-
ponent implementations. Static QoS requirements should be specified instead using
metadata associated with various application development lifecycles supported by
the component middleware. This separation of concerns helps improve component
reusability by preventing premature commitment to specific QoS provisioning param-

QOS-ENABLED MIDDLEWARE 17

eters. QoS provisioning specifications can also affect different scopes of components
and their behaviors, e.g., thread-pools that are shared among multiple components,
versus a priority level assigned to a single component instance.

Different stages of the component software development lifecycle involve commit-
ments to certain design decisions that affect certain scopes of a DRE application. To
avoid unnecessarily constraining the development stage, it is therefore important to
ensure that we do not commit to specific QoS provisioning prematurely. We review
these stages in the component software development lifecycle below and identify the
QoS specifications appropriate for each of these stages:

• QoS provisioning specifications that are part of a component implementation
need to be specified in the metadata associated with the component imple-
mentation, i.e., component descriptors. Examples of QoS-supporting features
include (1) a real-time ORB on which a component implementation depends,
or (2) QoS provisioning parameters, such as the required priority model that a
component implementation elects to make explicitly configurable.

• Configurable specifications of a component, such as its priority model and pri-
ority level, can be assigned default values in the component package by associ-
ating a component implementation with component property files as described
in Section 1.3.1.

• Resources, such as thread-pools and prioritized communication channels, that
need to be shared among multiple components in a component server should
be allocated separately as logical resource policies. Component instances within
the same component server can then share these logical resources by associ-
ating them with common logical resource policies in the application assembly
metadata described in Section 1.3.1.

• Component assembly metadata must also be extended to provision QoS re-
sources for component interconnections, such as defining private connections,
performing network QoS reservations, or establishing pre-connections to mini-
mize runtime latencies.

• Generic component servers provide the execution environment for components,
as described in Section 1.3.1. To ensure a component server is configured with
the mechanisms and resources needed to support the specified QoS require-
ments, deployment tools should be extended to include middleware modules
that can configure the component servers. Examples include customized com-
munication mechanisms and custom priority mappings.

Figure 1.7 illustrates several types of static QoS provisioning that are common in
DRE applications, including:

1. CPU resources, which need to be allocated to various competing tasks in a
DRE system to make sure these tasks finish on time,

2. Communication resources, which the middleware uses to pass messages
around to “connect” various components in a distributed system together, and

3. Distributed middleware configurations, which are plug-ins that a middle-
ware framework uses to realize QoS assurance.

QOS-ENABLED MIDDLEWARE 18

Client Component Server

RT-ORB

in args

out args + return value

operation ()

QoS
Mechanism

Plug-ins

QoS
Mechanism

Plug-ins

Container

CORBA

Component

Component

Home
Object

Reference

Real-Time POA

Thread

Pool

End-to-End Priority
Propagation

Explicit
Binding

Protocol

Properties

Standard

Synchronizers

Scheduling

Service

Figure 1.7 Examples of Static QoS Provisioning

Static QoS Provisioning with CIAO

Figure 1.8 shows the key elements of the Component-Integrated ACE ORB (CIAO),
which is a QoS-enabled implementation of CCM being developed at Washington Uni-
versity, St. Louis and the Institute for Software Integrated Systems (ISIS) at Vander-
bilt University. CIAO extends the The ACE ORB (TAO) (Krishna et al. 2003) to sup-

Client Component Server Component Assembly

RT-ORB

in args

out args + return value

operation ()

QoS

Mechanism
Plug-ins

QoS

Mechanism
Plug-ins

Client
Configuration

Aggregate

QoS
Adaptation

Container

CORBA

Component

Component

Home

Real-Time POA

QoS Property

Adaptor

QoS Policies

R
e
fl
e

c
t

QoS

Adaptation

QoS
Adaptation

QoS
Mechanism

Plug-ins

Named Policy
Aggregate

Named
Policy

Aggregate

Object

Reference

QoS
Adaptation

QoS

Mechanism
Plug-ins

QoS Policies

Component Connection

Specifications

Component & Home Impls

Deploy
Deploy

Figure 1.8 Key Elements in CIAO

port components and simplify the development of DRE applications by enabling devel-
opers to declaratively provision QoS policies end-to-end when assembling a system.
TAO is an open-source, high-performance, highly configurable Real-time CORBA
ORB that implements key patterns (Schmidt et al. 2000) to meet the demanding
QoS requirements of DRE systems. TAO supports the standard OMG CORBA ref-
erence model (Obj 2002e) and Real-time CORBA specification (Obj 2002b), with
enhancements designed to ensure efficient, predictable, and scalable QoS behavior for
high-performance and real-time applications.

TAO is developed atop lower-level middleware called ACE (Schmidt and Huston
2002a,b), which implements core concurrency and distribution patterns (Schmidt et
al. 2000) for communication software. ACE provides reusable C++ wrapper facades
and framework components that support the QoS requirements of high-performance,
real-time applications. ACE and TAO run on a wide range of OS platforms, in-
cluding Windows, most versions of UNIX, and real-time operating systems such as
Sun/Chorus ClassiX, LynxOS, and VxWorks.

To support the role of the Qosketeer, CIAO extends CCM to support static QoS
provisioning as follows:

QOS-ENABLED MIDDLEWARE 19

Application assembly descriptor. A CCM assembly descriptor specifies how
components are composed to form an application. CIAO extends the notion of CCM
assembly descriptor to enable Qosketeers to include QoS provisioning specifications
and implementations for required QoS supporting mechanisms, such as container-
specific policies and ORB configuration options to support these policies. We also ex-
tend the CCM assembly descriptor format to allow QoS provisioning at the component-
connection level.
Client configuration aggregates. CIAO defines client configuration specifica-
tions that Qosketeers can use to configure a client ORB to support various QoS
provisioning attributes, such as priority level policy and custom priority mapping.
Clients can then be associated with named QoS provisioning policies (defined in an
aggregate) that are used to interact with servers and provide end-to-end QoS as-
surance. CIAO enables the transparent installation of client configuration aggregates
into a client ORB.
QoS-enabled containers. CIAO enhances CCM containers to support QoS ca-
pabilities, such as various server-specified Real-time CORBA policies. These QoS-
enabled containers provide the central ORB interface that Qosketeers can use to
provision component QoS policies and interact with ORB endsystem QoS assurance
mechanisms, such as Real-time POA and ORB proprietary internal interfaces, re-
quired by the QoS policies.
QoS adaptation. CIAO also supports installation of meta-programming hooks,
such as portable interceptors, servant managers, smart proxies and skeletons, that
can be used to inject dynamic QoS provisioning transparently. Section 1.4.2 describes
these QoS adaptation mechanisms in detail.

To support the capabilities described above, CIAO extends the CCM metadata
framework so that developers can bind the QoS requirements and the supporting
mechanisms during various stages of the development lifecycle, including compo-
nent implementation, component packaging, application assembly, and application
deployment. These capabilities enable CIAO to statically provision the types of QoS
resources outlined in Section 1.4.1 as follows:
CPU resources. These policies specify how to allocate CPU resources when run-
ning certain tasks, e.g., by configuring the priority models and priority levels of com-
ponent instances.
Communication resources. These policies specify strategies for reserving and
allocating communication resources for component connections, e.g., an assembly
can request a private connection between two critical components in the system and
reserve bandwidth for the connection using the RSVP protocol (R. Schantz and J.
Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy and I. Pyarali 2003).
Distributed middleware configuration. These policies specify the required soft-
ware modules that control the QoS mechanisms for:

• ORB configurations. To enable the configuration of higher level policies,
CIAO needs to know how to support the required functionality, such as installing
and configuring customized communication protocols.

QOS-ENABLED MIDDLEWARE 20

• Meta-programming mechanisms. Software modules, such as those devel-
oped with the QuO Qosket middleware described in Section 1.4.2 that imple-
ment dynamic QoS provisioning and adaptation, can be installed statically at
system composition time via meta-programming mechanisms, such as smart
proxies and interceptors (Wang et al. 2001b).

In summary, DRE application developers can use CIAO at various points of the
development cycle to (1) decouple QoS provisioning functionality from component
implementations and (2) compose static QoS provisioning capabilities into the appli-
cation via the component assembly and deployment phases. This approach enables
maximum reusability of components and robust composition of DRE applications
with diverse QoS requirements.

1.4.2 Dynamic QoS Provisioning via QuO Adaptive Middle-
ware and Qoskets

Section 1.4.1 described the static QoS provisioning capabilities provided by CIAO.
We now present an overview of dynamic QoS provisioning and describe how the QuO
Qosket middleware framework Schantz et al. (2002) can be used to manage dynamic
QoS provisioning for DRE applications.

Overview of Dynamic QoS Provisioning

Dynamic QoS provisioning involves the allocation and management of resources at
runtime to satisfy application QoS requirements. Certain events, such as fluctuations
in resource availability due to temporary overload, changes in QoS requirements,
or reduced capacity due to failures or external attacks, can trigger reevaluation and
reallocation of resources. Dynamic QoS provisioning requires the following middleware
capabilities:

• To detect changes in available resources, middleware must monitor DRE system
status to determine if reallocations are required. For example, network band-
width is often shared by multiple applications on computers. Middleware for
bandwidth-sensitive applications, such as video conferencing or image process-
ing, is therefore responsible for determining changes in total available bandwidth
and bandwidth usable by a specific application.

• To adapt to the change by adjusting the use of resources required by an applica-
tion, when available resources change. For instance, middleware that supports a
video conferencing application (R. Schantz and J. Loyall and D. Schmidt and C.
Rodrigues and Y. Krishnamurthy and I. Pyarali 2003) may choose to (1) lower
the resolution temporarily when there is less available network bandwidth to
support the original resolution and (2) switch back to the higher resolution when
sufficient bandwidth becomes available. Other examples (such as changing the
degree of fault tolerance, substituting a simple text interface in place of imagery
intensive applications with short real-time constraints, or temporarily ceasing
operation in deference to higher priority activities) illustrate the breadth of
DRE application adaptive behavior.

QOS-ENABLED MIDDLEWARE 21

Although applications can often implement dynamic QoS provisioning function-
ality themselves using conventional middleware, they must work around the current
structures intended to simplify the development of DRE systems, which often be-
comes counter productive. Such ad hoc approaches lead to non-portable code that
depends on specific OS features, tangled implementations that are tightly coupled
with the application software, and other problems that make it hard to adapt the
application to changing requirements, and even harder to reuse an implementation.
It is therefore essential to separate the functionality of dynamic QoS provisioning
from both the lower level distribution middleware and the application functionality.

Protocol Infrastructure

Design Time

Client Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Object Adapter

operation ()

ORB Core

in args

out args + return
value

OBJ
REF

Contract
Delegate Delegate

SysCond

Network

Mechanism/property
Manager

IIOP IIOP

SysCond
SysCond

SysCond

Contract

Code
Generator

Adaptation Specification
Language (ASL)

Contract Description
Language (CDL)

CORBA IDL

Runtime

Delegate Contracts

IIOP
Glue

IIOP
Glue

Group Replication (AQuA)

Bandwidth Reservation (DIRM)

IIOP over TCP/IP (default)C
li

en
t-

Si
de

 O
R

B

Se
rv

er
-S

id
e

O
R

BControl Control

IIOPIIOP

Runtime

1

2

3

Callback Callback

Figure 1.9 Examples of Dynamic QoS Provisioning

Figure 1.9 illustrates the types of dynamic QoS provisioning abstractions and
mechanisms that are necessary in large-scale DRE systems:

1. Design formalisms to specify the level of service desired by a client, the level
of service a component expects to provide, operating regions interpreting the
ranges of possible measured QoS, and actions to take when the level of QoS
changes.

2. Runtime capabilities to adapt application behavior based upon the current
state of QoS in the system.

3. Management mechanisms that keep track of the resources in the protocol
and middleware infrastructure that need to be measured and controlled dynam-
ically to meet application requirements and mediate total demand on system
resources across and between the platforms.

QOS-ENABLED MIDDLEWARE 22

Overview of QuO

The Quality Objects (QuO) (Zinky et al. 1997) framework is adaptive middleware
developed by BBN Technologies that allows DRE system developers to use aspect-
oriented software development (Kiczales et al. 1997) techniques to separate the con-
cerns of QoS programming from “business” logic in DRE applications. The QuO
framework allows DRE developers to specify (1) their QoS requirements, (2) the sys-
tem elements that must be monitored and controlled to measure and provide QoS,
and (3) the behavior for adapting to QoS variations that occur at runtime.

The runtime architecture shown in Figure 1.9 illustrates how the elements in QuO
support the following dynamic QoS provisioning needs:

• Contracts specify the level of service desired by a client, the level of service a
component expects to provide, operating regions indicating possible measured
QoS, and actions to take when the level of QoS changes.

• Delegates act as local proxies for remote components. Each delegate provides
an interface similar to that of the remote component stub, but adds locally
adaptive behavior based upon the current state of QoS in the system, as mea-
sured by the contract.

• System Condition objects provide interfaces to resources, mechanisms, and
ORBs in the DRE system that need to be measured and controlled by QuO
contracts.

QuO applications can also use resource or property managers that manage given QoS
resources such as CPU or bandwidth, or properties such as availability or security, for
a set of QoS-enabled server components on behalf of the QuO clients using those server
components. In some cases, managed properties require mechanisms at lower levels
in the protocol stack, such as replication or access control. QuO provides a gateway
mechanism (Schantz et al. 1999) that enables special-purpose transport protocols and
adaptation below the ORB.

QuO contracts and delegates support the following two different models for trig-
gering middleware- and application-level adaptation:

In-band adaptation applies within the context of remote object invocations, and
is a direct side effect of the invocation (hence the name “in-band”). A QuO delegate
applies the Interceptor Pattern (Schmidt et al. 2000) to provide adaptation and QoS
control for the object access. The QuO delegate can perform in-band adaptation
whenever a client makes a remote operation call and whenever an invoked operation
returns. The delegates on the client and server check the state of the relevant contracts
and choose behaviors based upon the state of the system. These behaviors can include
shaping or filtering the method data, choosing alternate methods or server objects,
performing local functionality, etc.

Out-of-band adaptation applies more generally to the state of an application, a
system, or a subsystem outside the context of invocations. QuO supports out-of-band
adaptation by monitoring system condition objects within a system. Whenever the
monitored conditions change (or whenever they change beyond a specified threshold),

QOS-ENABLED MIDDLEWARE 23

a system condition object triggers an asynchronous evaluation of the relevant con-
tracts. If this results in a change in contract region, i.e., a state change, it in turn
triggers adaptive behavior asynchronous to any object interactions.

For more information about the QuO adaptive middleware, see (Loyall et al. 1998;
Schantz et al. 1999; Vanegas et al. 1998; Zinky et al. 1997).

Qoskets: QuO Support for Reusing Systemic Behavior

One goal of QuO is to separate the role of a systemic QoS programmer from that of an
application programmer. A complementary goal of this separation of programming
roles is that systemic QoS behaviors can be encapsulated into reusable units that
are not only developed separately from the applications that use them, but that can
be reused by selecting, customizing, and binding them to new application programs.
To support this goal, we have defined a Qosket (Schantz et al. 2002) as a unit of
encapsulation and reuse of systemic behavior in QuO applications. A Qosket is each
of the following, simultaneously:

• A collection of cross-cutting implementations, i.e., a Qosket is a set
of QoS specifications and implementations that are woven throughout a DRE
application and its constituent components to monitor and control QoS and
systemic adaptation.

• A packaging of behavior and policy, i.e., a Qosket generally encapsulates
elements of an adaptive QoS behavior and a policy for using that behavior, in
the form of contracts, measurements and code to provide adaptive behavior.

• A unit of behavior reuse, largely focused on a single property, i.e., a Qosket
can be used in multiple DRE applications, or in multiple ways within a sin-
gle application, but typically deals with a single property (e.g., performance,
dependability, or security).

Qoskets are an initial step towards individual behavior packaging and reuse, as
well as a significant step toward the more desirable (and much more complex) ability
to compose behaviors within an application context. They are also a means toward
the larger goal of flexible design tradeoffs at runtime among properties (such as real-
time performance, dependability, and security) that vary with the current operating
conditions. Qoskets are used to bundle in one place all of the specifications for control-
ling systemic behavior, independent of the application in which the behavior might
end up being used.

In practice, a Qosket is a collection of the interfaces, contracts, system condition
objects, callback components, unspecialized adaptive behavior, and implementation
code associated with a reusable piece of systemic behavior. A Qosket is fully specified
by defining the following:

1. The contracts, system condition objects, and callback components it encapsu-
lates

2. The Adaptation Specification Language (ASL) template code, defining partial
specifications of adaptive behavior,

QOS-ENABLED MIDDLEWARE 24

3. Implementation code for instantiating the Qosket’s encapsulated components,
for initializing the Qosket, and for implementing the Qosket’s defined systemic
measurement, control, and adaptation, and

4. The interfaces that the Qosket exposes.

The general structure of Qoskets, including modules they encapsulate and inter-
faces they expose, is illustrated in Figure 1.10. The two interfaces that Qoskets expose

Oosket

Qosket
Implementation

Adapter
Interface

Callback
Objects

Delegate
Templates

System
Condition
Objects

Contracts

Delegate
Interface

Helper
Methods

Figure 1.10: Qoskets Encapsulate QuO Components into Reusable Behaviors

correspond to these two use cases:
• The adapter interface, which is an application programming interface. This

interface provides access to QoS measurement, control, and adaptation features
in the Qosket (such as the system condition objects, contracts, and so forth) so
that they can be used anywhere in an application.

• The delegate interface, which is an interface to the in-band method adap-
tation code. In-band adaptive behaviors of delegates are specified in the QuO
ASL language. The adaptation strategies of the delegate are encapsulated and
woven into the application using code generation techniques.

1.4.3 Integrated QoS provisioning via CIAO and Qoskets

As discussed in Section 1.4.2, Qoskets provide abstractions for dynamic QoS pro-
visioning and adaptive behaviors. The current implementation of Qoskets in QuO,
however, requires application developers to modify their application code manually
to “plug in” adaptive behaviors into existing applications. Rather than retrofitting
DRE applications to use Qosket specific interfaces, it would be more desirable to use
existing and emerging COTS component technologies and standards to encapsulate
QoS management, both static and dynamic.

Conversely, CIAO allows system developers to compose static QoS provisioning,
adaptation behaviors, and middleware support for QoS resources allocating and man-
aging mechanisms into DRE applications transparently, as depicted in Section 1.4.1.
CIAO did not, however, initially provide an abstraction to model, define, and specify
dynamic QoS provisioning. We are therefore leveraging CIAO’s capability to con-
figure Qoskets transparently into component servers to provide an integrated QoS
provisioning solution, which enables the composition of both static and dynamic QoS
provisioning into DRE applications.

QOS-ENABLED MIDDLEWARE 25

The static QoS provisioning mechanisms in CIAO enable the composition of Qos-
kets into applications as part of component assemblies. As in the case of provisioning
static QoS policies, developers can compose and weave together Qosket modules of
different granularities into component-based applications at various stages of the de-
velopment lifecycle. The most straightforward approach is to implement Qosket be-
haviors as CCM components, as shown in Figure 1.11. Each Qosket component offers

�� ��

�����	������	�

�����
�����

��	�������

Figure 1.11 Composing Qosket components in an application

interception facets and receptacles that can be used to provide in-band adaptation
along the functional path. Qosket components can also provide other ports to support
out-of-band adaptation and interact with related QoS management mechanisms.

Implementing Qoskets as CCM components takes advantage of the CCM assembly
framework and is thus suitable for prototyping a dynamic QoS provisioning capability.
It requires modifying the application assembly directly, however, and must therefore
be woven into an application at application composition time. Inserting Qoskets as
conventional CCM components requires the use of regular CCM interfaces to define
interception facets and receptacles. This exposure could in theory impose significant
overhead in network communication because it permits Qosket delegate components
to be deployed remotely from the targeting components, which defeats the purpose
of using Qoskets to closely manage local behavior to achieve end to end QoS man-
agement.

To resolve these concerns, CIAO provides meta-mechanisms to weave in Qosket
delegates and integrate Qosket modules into a CCM application. As shown in Fig-
ure 1.12, CIAO can install a Qosket using the following mechanisms:

• QuO delegates can be implemented as smart proxies (Wang et al. 2001b) and
injected into components using interceptors by providing hooks in containers.
The delegate configuration metadata can be injected into assembly descriptors
or the client-side configuration aggregates described in Section 1.4.1.

• Developers can specify a Qosket-specific ORB configuration and assemble QoS
mechanisms into the component server or client ORB.

• Out-of-band provisioning and adaptation modules, such as contracts, system
conditions, and callback components, can continue to be implemented and as-
sembled as separate CCM components into servers.

• Interactions between delegates and system condition objects can then be spec-
ified by additional assembly descriptors that, e.g., connect the delegate meta-
data with the packaging-time meta-data for the system condition components.

QOS-ENABLED MIDDLEWARE 26

����������	

����

�����������
�

�������

����������	

���������

����������

�������������

�����������
��

�������

�������

��
���

��������������

����������

�����

�����	��������	����

����	 ��������

!���������"��
�

�����������
#

���������	
����������	
�
���������	
�

���������

���

�	���	��

�����
�

�������

��������
��������

��������������

Figure 1.12 Composing a Qosket using CIAO

The approach described above requires support from the component middleware but
provides better control over the integration of Qosket modules. Since this approach
does not require the modification of application assembly at a functional level, it
more thoroughly decouples QoS management from the application logic written by
component developers.

Although using CIAO to compose Qoskets into component assemblies simplifies
retrofitting, a significant problem remains: component cross-cutting. Qoskets are use-
ful for separating concerns between systemic QoS properties and application logic, as
well as implementing limited cross-cutting between a single client/component pair.
Neither Qoskets nor CIAO yet provide the ability to cross-cut application compo-
nents, however. Many QoS-related adaptations will need to modify the behavior of
several components at once, likely in a distributed way. Some form of dynamic aspect-
oriented programming might be used in this context, which is an area of ongoing
research (Office n.d.).

1.5 Related Work

This section reviews work on QoS provisioning mechanisms using the taxonomy shown
in Figure 1.13. One dimension depicted in Figure 1.13 is when QoS provisioning is
performed, i.e., static versus dynamic QoS provisioning, as described in Section 1.1.
Some enabling mechanisms allow static QoS provisioning before the startup of a sys-
tem, whereas and others provide abstractions to define dynamic QoS provisioning
behaviors during runtime based on resources available at the time. The other di-
mension depicted in Figure 1.13 is the level of abstraction. Both middleware-based
approaches shown in the figure, i.e., CIAO and BBN’s QuO Qoskets, offer higher
levels of abstraction for QoS provisioning specification and modeling. Conversely, the
programming language-based approach offers meta-programming mechanisms for in-
jecting QoS provisioning behaviors. We review previous research in the area of QoS
provisioning mechanisms along these two dimensions.

QOS-ENABLED MIDDLEWARE 27

QoS Provisioning
Static Dynamic

A
bs

tr
ac

tio
n M

id
dl

ew
ar

e
P

ro
gr

am
m

in
g

La
ng

ua
ge

s

QoS-Enabled
Component
Middleware

(RTCCM-CIAO,
QoS EJB Containers)

Dynamic QoS
Provisioning
(QuO Qosket,
dynamicTAO)

Aspect-Oriented
Languages

(AspectJ,
AspectC++)

Figure 1.13 Taxonomy of QoS Provisioning Enabling Mechanisms

Dynamic QoS Provisioning. In their dynamicTAO project, Kon and Camp-
bell (Kon et al. 2002) apply reflective middleware techniques to extend TAO to re-
configure the ORB at runtime by dynamically linking selected modules, according to
the features required by the applications. Their work falls into the same category as
Qoskets (shown in Figure 1.13), in that both provide the mechanisms for realizing
dynamic QoS provisioning at the middleware level. Qoskets offer a more compre-
hensive QoS provisioning abstraction, however, whereas Kon and Campbell’s work
concentrates on configuring middleware capabilities.

Moreover, although Kon and Campbell’s work can also provide QoS adaptation
behavior by dynamically (re)configuring the middleware framework, their research
may not be as suitable for DRE applications, since dynamic loading and unloading of
ORB components can incur significant and unpredictable overheads and thus prevent
the ORB from meeting application deadlines. Our work on CIAO relies upon Model
Driven Architecture (MDA) tools (Gokhale et al. 2003) to analyze the required ORB
components and their configurations. This approach ensures the ORB in a compo-
nent server contains only the required components, without compromising end-to-end
predictability.
QoS-enabled Component Middleware. Middleware can apply the Quality Con-
nector pattern (Cross and Schmidt 2002) to meta-programming techniques for spec-
ifying the QoS behaviors and configuring the supporting mechanisms for these QoS
behaviors. The container architecture in component-based middleware frameworks
provides the vehicle for applying meta-programming techniques for QoS assurance
control in component middleware, as previously identified in (Wang et al. 2001a).
Containers can also help apply aspect-oriented software development (Kiczales et al.
1997) techniques to plug in different systemic behaviors (Conan et al. 2001). These
projects are similar to CIAO in that they provide a mechanism to inject “aspects”

QOS-ENABLED MIDDLEWARE 28

into applications statically at the middleware level.
Miguel de Miguel further develops the work on QoS-enabled containers by extend-

ing a QoS EJB container interface to support a QoSContext interface that allows the
exchange of QoS-related information among component instances (de Miguel 2002).
To take advantage of the QoS-container, a component must implement QoSBean and
QoSNegotiation interfaces. This requirement, however, adds an unnecessary depen-
dency to component implementations. Section 1.3.2 examines the limitations of im-
plementing QoS behavior logic in component implementations.
QoS Enabled Distributed Objects (Qedo). The Qedo project (FOKUS n.d.)
is another ongoing effort to make QoS support an integral part of CCM. Qedo targets
applications in the telecommunication domain and supports information streaming.
It defines a metamodel that defines multiple categories of QoS requirements for ap-
plications. To support the modeled QoS requirements, Qedo defines extensions to
CCM’s container interface and the Component Implementation Framework (CIF) to
realize the QoS models (Ritter et al. 2003).

Similar to QuO’s Contract Definition Language (CDL), Qedo’s contract meta-
model provides mechanisms to formalize and abstract QoS requirements. QuO (Qos-
ket) contracts are more versatile, however, because they not only provide high levels
of abstraction for QoS status, but also define actions that should take place when
state transitions occur in contracts. Qedo’s extensions to container interfaces and
the CIF also require component implementations to interact with the container QoS
interface and negotiate the level of QoS contract directly. While this approach is
suitable for certain applications where QoS is part of the functional requirements,
it inevitably tightly couples the QoS provisioning and adaptation behaviors into the
component implementation, and thus hampers the reusability of component. In com-
parison, our approach explicitly avoids this coupling and tries to compose the QoS
provision behaviors into the component systems.
Aspect-Oriented Programming Languages. Aspect-oriented programming (AOP) (Kicza-
les et al. 1997) languages provide language-level abstractions for weaving different as-
pects that cross-cut multiple layers of a system. Examples of AOP languages include
AspectJ (Kiczales et al. 2001) and AspectC++ (Olaf Spinczyk and Andreas Gal and
Wolfgang Schröder-Preikschat 2002). Similar to AOP, CIAO supports injection of as-
pects into systems at the middleware level using meta-programming techniques. Both
CIAO and AOP weave aspects statically, i.e., before program execution, and neither
defines an abstraction for dynamic QoS provisioning behaviors. In contrast, Qoskets
use AOP techniques dynamically to organize and connect the various dimensions of
the QoS middleware abstractions with each other and with the program to which the
behavior is being attached.

1.6 Concluding Remarks

DRE applications constitute an increasingly important domain that requires stringent
support for multiple simultaneous QoS properties, such as predictability, latency,
and dependability. To meet these requirements, DRE applications have historically
been custom-programmed to implement their QoS provisioning needs, making them

QOS-ENABLED MIDDLEWARE 29

so expensive to build and maintain that they cannot adapt readily to meet new
functional needs, different QoS provisioning strategies, hardware/software technology
innovations, or market opportunities. This approach is increasingly infeasible, since
the tight coupling between custom DRE software modules increases the time and
effort required to develop and evolve DRE software. Moreover, QoS provisioning cross-
cuts multiple layers in applications and requires end-to-end enforcement that makes
DRE applications even harder to develop, maintain, and adapt.

One way to address these coupling issues is by refactoring common application
logic into object-oriented application frameworks (Johnson 1997). This solution has
limitations, however, since application objects can still interact directly with each
other, which encourages tight coupling. Moreover, framework-specific bookkeeping
code is also required within the applications to manage the framework, which can
also tightly couple applications to the framework they are developed upon. It becomes
non-trivial to reuse application objects and port them to different frameworks.

Component middleware (Szyperski 1998) has emerged as a promising solution
to many of the known limitations with object-oriented middleware and application
frameworks. Component middleware supports a higher level packaging of reusable
software artifacts that can be distributed or collocated throughout a network. Existing
component middleware, however, does not yet address the end-to-end QoS provision-
ing needs of DRE applications, which transcend component boundaries. QoS-enabled
middleware is therefore necessary to separate end-to-end QoS provisioning concerns
from application functional concerns.

This chapter describes how the Component Integrated ACE ORB (CIAO) mid-
dleware developed by Washington University in St. Louis and the Institute for Soft-
ware Integrated Systems at Vanderbilt University is enhancing the standard CCM
specification to support static QoS provisioning by pre-allocating resources for DRE
applications. We also describe how BBN’s QuO Qosket middleware framework pro-
vides powerful abstractions that help define and implement reusable dynamic QoS
provisioning behaviors. By combining QuO Qoskets with CIAO, we are developing
an integrated end-to-end QoS provisioning solution for DRE applications.

When augmented with Model Driven Middleware tools, such as CoSMIC (Gokhale
et al. 2003), QoS-enabled component middleware and applications can be provi-
sioned more effectively and efficiently at even higher levels of abstraction. CIAO,
QuO Qoskets, and CoSMIC are open-source software that is currently available
and can be obtained from www.dre.vanderbilt.edu/CIAO/, quo.bbn.com/, and
www.dre.vanderbilt.edu/cosmic, respectively.

Bibliography

Accetta M, Baron R, Golub D, Rashid R, Tevanian A and Young M 1986 Mach: A New
Kernel Foundation for UNIX Development Proceedings of the Summer 1986 USENIX
Technical Conference and Exhibition.

Alan Burns and Andy Wellings 2001 Real-Time Systems and Programming Languages, 3rd
Edition. Addison Wesley Longmain.

Alur D, Crupi J and Malks D 2001 Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall.

Box D 1998 Essential COM. Addison-Wesley, Reading, MA.
Buschmann F, Meunier R, Rohnert H, Sommerlad P and Stal M 1996 Pattern-Oriented

Software Architecture—A System of Patterns. Wiley & Sons, New York.
Cemal Yilmaz and Adam Porter and Douglas C. Schmidt 2003 Distributed Continuous

Quality Assurance: The Skoll Project Workshop on Remote Analysis and Measurement
of Software Systems (RAMSS) IEEE/ACM, Portland, Oregon.

Conan D, Putrycz E, Farcet N and DeMiguel M 2001 Integration of Non-Functional
Properties in Containers. Proceedings of the Sixth International Workshop on
Component-Oriented Programming (WCOP).

Cross JK and Schmidt DC 2002 Applying the Quality Connector Pattern to Optimize
Distributed Real-time and Embedded Middleware In Patterns and Skeletons for
Distributed and Parallel Computing (ed. Rabhi F and Gorlatch S) Springer Verlag.

Davies D, Holler E, Jensen E, Kimbleton S, Lampson B, LeLann G, Thurber K and
Watson R 1981 Distributed Systems- Architecture and Implementation – An Advanced
Course. Springer-Verlag.

de Miguel MA 2002 QoS-Aware Component Frameworks The 10th International Workshop
on Quality of Service (IWQoS 2002), Miami Beach, Florida.

Douglas C. Schmidt and Frank Buschmann 2003 Patterns, Frameworks, and Middleware:
Their Synergistic Relationships International Conference on Software Engineering
(ICSE) IEEE/ACM, Portland, Oregon.

FOKUS n.d. Qedo Project Homepage http://qedo.berlios.de/.
Gamma E, Helm R, Johnson R and Vlissides J 1995 Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.
Gill C, Schmidt DC and Cytron R 2003 Multi-Paradigm Scheduling for Distributed

Real-Time Embedded Computing. IEEE Proceedings, Special Issue on Modeling and
Design of Embedded Software.

Gokhale A, Schmidt DC, Natarajan B and Wang N 2002 Applying Model-Integrated
Computing to Component Middleware and Enterprise Applications. The
Communications of the ACM Special Issue on Enterprise Components, Service and
Business Rules.

Gokhale A, Schmidt DC, Natarajan B, Gray J and Wang N 2003 Model Driven Middleware
In Middleware for Communications (ed. Mahmoud Q) Wiley and Sons New York.

Johnson R 1997 Frameworks = Patterns + Components. Communications of the ACM.

BIBLIOGRAPHY 31

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J and Griswold WG 2001 An
overview of AspectJ. Lecture Notes in Computer Science 2072, 327–355.

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes CV, Loingtier JM and Irwin J 1997
Aspect-Oriented Programming Proceedings of the 11th European Conference on
Object-Oriented Programming.

Kon F, Costa F, Blair G and Campbell RH 2002 The Case for Reflective Middleware.
Communications of the ACM 45(6), 33–38.

Krishna AS, Schmidt DC, Klefstad R and Corsaro A 2003 Real-time Middleware In
Middleware for Communications (ed. Mahmoud Q) Wiley and Sons New York.

Loyall JP, Bakken DE, Schantz RE, Zinky JA, Karr D, Vanegas R and Anderson KR 1998
QoS Aspect Languages and Their Runtime Integration. Proceedings of the Fourth
Workshop on Languages, Compilers and Runtime Systems for Scalable Components
(LCR98) pp. 28–30.

Luis Iribarne and José M. Troya and Antonio Vallecillo 2002 Selecting Software
Components with Multiple Interfaces Proceedings of the 28th Euromicro Conference
(EUROMICRO’02), pp. 26–32 IEEE, Dortmund, Germany.

Marinescu F and Roman E 2002 EJB Design Patterns: Advanced Patterns, Processes, and
Idioms. John Wiley & Sons, New York.

Morgenthal JP 1999 Microsoft COM+ Will Challenge Application Server Market
www.microsoft.com/com/wpaper/complus-appserv.asp.

Obj 2002a CORBA Components OMG Document formal/2002-06-65 edn.
Obj 2002b Real-time CORBA Specification OMG Document formal/02-08-02 edn.
Obj 2002c The Common Object Request Broker: Architecture and Specification 3.0.2 edn.
Obj 2002d The Common Object Request Broker: Architecture and Specification 2.6.1 edn.
Obj 2002e The Common Object Request Broker: Architecture and Specification 3.0.2 edn.
Office DIE n.d. Program Composition for Embedded Systems (PCES)
www.darpa.mil/ixo/.

Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat 2002 AspectC++: An
Aspect-Oriented Extension to C++ Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002).

Postel J 1980 User Datagram Protocol. Network Information Center RFC 768 pp. 1–3.
Postel J 1981 Transmission Control Protocol. Network Information Center RFC 793

pp. 1–85.
R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy and I.

Pyarali 2003 Flexible and Adaptive QoS Control for Distributed Real-time and
Embedded Middleware Proceedings of Middleware 2003, 4th International Conference on
Distributed Systems Platforms IFIP/ACM/USENIX, Rio de Janeiro, Brazil.

Rajkumar R, Lee C, Lehoczky JP and Siewiorek DP 1998 Practical Solutions for
QoS-based Resource Allocation Problems IEEE Real-Time Systems Symposium IEEE,
Madrid, Spain.

Ritter T, Born M, Unterschütz T and Weis T 2003 A QoS Metamodel and its Realization
in a CORBA Component Infrastructure Proceedings of the 36th Hawaii International
Conference on System Sciences, Software Technology Track, Distributed Object and
Component-based Software Systems Minitrack, HICSS 2003 HICSS, Honolulu, HW.

Rosenberry W, Kenney D and Fischer G 1992 Understanding DCE. O’Reilly and
Associates, Inc.

Schantz R, Loyall J, Atighetchi M and Pal P 2002 Packaging Quality of Service Control
Behaviors for Reuse Proceedings of the 5th IEEE International Symposium on
Object-Oriented Real-time Distributed Computing (ISORC) IEEE/IFIP, Crystal City,
VA.

Schantz RE and Schmidt DC 2002 Middleware for Distributed Systems: Evolving the
Common Structure for Network-centric Applications In Encyclopedia of Software
Engineering (ed. Marciniak J and Telecki G) Wiley & Sons New York.

BIBLIOGRAPHY 32

Schantz RE, Thomas RH and Bono G 1986 The Architecture of the Cronus Distributed
Operating System Proceedings of the 6th International Conference on Distributed
Computing Systems, pp. 250–259 IEEE, Cambridge, MA.

Schantz RE, Zinky JA, Karr DA, Bakken DE, Megquier J and Loyall JP 1999 An
object-level gateway supporting integrated-property quality of service Proceedings of The
2nd IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC 99).

Schmidt DC and Huston SD 2002a C++ Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns. Addison-Wesley, Boston.

Schmidt DC and Huston SD 2002b C++ Network Programming, Volume 2: Systematic
Reuse with ACE and Frameworks. Addison-Wesley, Reading, Massachusetts.

Schmidt DC, Stal M, Rohnert H and Buschmann F 2000 Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York.

Sharp DC 1998 Reducing Avionics Software Cost Through Component Based Product
Line Development Proceedings of the 10th Annual Software Technology Conference.

Sharp DC 1999 Avionics Product Line Software Architecture Flow Policies Proceedings of
the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC).

Sun Microsystems 1988 RPC: Remote Procedure Call Protocol Specification. Technical
Report RFC-1057, Sun Microsystems, Inc.

Sun Microsystems 2001 JavaTM 2 Platform Enterprise Edition
http://java.sun.com/j2ee/index.html.

Szyperski C 1998 Component Software—Beyond Object-Oriented Programming.
Addison-Wesley, Santa Fe, NM.

Vanegas R, Zinky JA, Loyall JP, Karr D, Schantz RE and Bakken DE 1998 QuO’s
Runtime Support for Quality of Service in Distributed Objects. Proceedings of
Middleware 98, the IFIP International Conference on Distributed Systems Platform and
Open Distributed Processing (Middleware 98).

Volter M, Schmid A and Wolff E 2002 Server Component Patterns: Component
Infrastructures Illustrated with EJB. Wiley Series in Software Design Patterns, West
Sussex, England.

Wang N, Schmidt DC and O’Ryan C 2000 An Overview of the CORBA Component Model
In Component-Based Software Engineering (ed. Heineman G and Councill B)
Addison-Wesley Reading, Massachusetts.

Wang N, Schmidt DC, Kircher M and Parameswaran K 2001a Towards a Reflective
Middleware Framework for QoS-enabled CORBA Component Model Applications. IEEE
Distributed Systems Online.

Wang N, Schmidt DC, Othman O and Parameswaran K 2001b Evaluating
Meta-Programming Mechanisms for ORB Middleware. IEEE Communication Magazine,
special issue on Evolving Communications Software: Techniques and Technologies
39(10), 102–113.

Wollrath A, Riggs R and Waldo J 1996 A Distributed Object Model for the Java System.
USENIX Computing Systems.

Zinky JA, Bakken DE and Schantz R 1997 Architectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems 3(1), 1–20.

