
Model-driven Performance Estimation, Deployment,
and Resource Management for Cloud-hosted Services ∗

Faruk Caglar Kyoungho An Shashank Shekhar Aniruddha Gokhale
Vanderbilt University, ISIS and EECS

{faruk.caglar,kyoungho.an,shashank.shekhar,a.gokhale}@vanderbilt.edu

Abstract
There is a growing trend towards migrating applications and ser-
vices to the cloud. This trend has led to the emergence of dif-
ferent cloud service providers (CSPs), in turn leading to different
cost models offered by these CSPs to lease their resources, vari-
abilities in the granularity and specification of resources provided,
and heterogeneous APIs offered by the CSPs to the users to pro-
gram resource requests and deployment for their cloud-hosted ser-
vices. These challenges make it hard for customers of the cloud to
seamlessly transition their services to the cloud or migrate between
different CSPs. To address these challenges, this paper presents a
solution based on model-driven engineering (MDE). Specifically,
we describe the design of the domain-specific modeling languages
in our MDE framework and the associated generative mechanisms
that address the challenges related to estimating performance and
cost to host the services in the cloud, automated deployment and
resource management.

Categories and Subject Descriptors Computing Methodologies
[Simulation and Modeling]: Applications

General Terms Design, Performance

Keywords model-driven analysis, deployment, cloud computing

1. Introduction
Cloud computing [1] offers scalability, extensibility, elasticity, flex-
ibility, and cost savings to the customers of cloud service providers,
which is the reason it is increasingly becoming an attractive tech-
nology to host different types of applications and services. Even
mission-critical and real-time applications are moving to the cloud.
Although these trends demonstrate the promise that cloud comput-
ing holds for the future, multiple unresolved challenges must be
overcome before it becomes easy for users to access the services
of the cloud. These challenges can roughly be classified into three

∗ This work was supported in part by NSF CNS CAREER award 0845789.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DSM ’13, October 27, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2600-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2541928.2541933

categories: Programming and Deployment Heterogeneity, Resource
Management, and Performance and Cost Estimation.

• Programming and Deployment Heterogeneity: Cloud Ser-
vice Providers (CSPs), such as Amazon EC2, GoGrid, RackSpace,
and Microsoft Azure provide different APIs to their customers to
manage their resources on the cloud. This API heterogeneity im-
poses a steep learning curve for cloud customers while also limiting
their ability to seamlessly migrate their services between the CSPs.
Some recent efforts to deal with API heterogeneity include Delta-
Cloud [5], libcloud [6], and jclouds [7]. Some of these libraries
are programming language-dependent such as jclouds and libcloud
which could be utilized by a Java-based and Python-based applica-
tions respectively. Another tool, JetS3t [8], is applicable to Ama-
zon S3, CloudFront, and Google Storage. While, these efforts are
promising, we believe these technologies help address only the API
heterogeneity issue.

A closely related issue is that of deployment of services to
the cloud, which is often carried out programmatically using the
APIs. Consequently, the above limitations exist in this case also.
To overcome some of the deployment concerns, CSPs often pro-
vide a web-based management console. Unfortunately, these user
interfaces are very specific to the CSP and hence do not resolve the
original problem.

• Resource Management: Depending on the service hosting
model, the responsibility of resource management (i.e., determin-
ing the properties of the virtual machine and autoscaling as the
demand changes) remains the responsibility of the cloud customer.
Effective decisions on autoscaling of resources is a runtime prop-
erty and is dictated by the operating environment of the CSP, the
workload, and degree of resource sharing – which is a prominent
feature of public clouds. These decisions must be programmed us-
ing the APIs, which is already shown to be challenging.

• Performance and Cost Estimation: Cloud computing comes
with a cost; the accounting is based on a utility model. Making de-
cisions on how many cloud resources to use to host a service, and
when and how much to autoscale is a significant challenge for the
cloud customers. Understanding what will the impact of these deci-
sions be on both the expected performance delivered to the service
and cost incurred by the customer is even harder.

Addressing these challenges requires a framework that holis-
tically focuses on the core set of problems by providing intuitive
abstractions to the cloud customer to enable various CSP-agnostic
“what-if” analyses while automating the deployment and resource
management. To that end we have developed a solution based on
model-driven engineering (MDE). The key artifacts of our MDE

solution includes domain-specific modeling languages (DSMLs)
and generative technologies.

In [2] we outlined the vision behind this work. In this paper, we
focus on describing the framework including the DSMLs and their
metamodels, the model interpreters, and middleware capabilities
developed for simulation and automated deployment. Specifically,
this paper makes the following contributions to address the chal-
lenges outlined above:

• Performance, Cost and Resource estimation – we describe
a DSML that allows a cloud customer to describe their service and
resource needs. Generative capabilities associated with the DSML
generate scripts to drive a simulator for a CSP. Feedback from
executing these simulations provide customers an idea about per-
formance and cost estimates. Using a DSML shields the customer
from having to learn a simulator and its interface.

• Overcoming heterogeneity – the same models developed in
the first step are then used to synthesize deployment scripts for the
underlying CSP thereby shielding the user from having to manually
write scripts using low-level APIs, and promoting easy migration
between the CSPs.

The rest of the paper is organized as follows: Section 2 describes
the MDE process to analysis and deployment; Section 3 describes
related work; and finally Section 4 provides concluding remarks
and outlines future work.

2. A Holistic Model-driven Framework for Cloud
Hosting

Our MDE solution is described in three parts. First, we outline
the use of modeling in our solution. Second, we show how the
modeling capabilities are used in the context of a simulator to
conduct what-if analysis used in performance and cost estimation
for the different kinds of resources used to host the service. Third,
we show how the modeling tools can help automate the deployment
of the services to cloud platforms shielding the user from the
heterogeneity in cloud providers.

2.1 Overview of the Modeling Process
Our MDE solution comprises two DSMLs and associated tools:
a DSML for simulator-based analysis capability used to estimate
the performance and price for hosting a service in the cloud, and a
DSML for automating its deployment across a range of CSPs.

We have used the Generic Modeling Environment (GME) [9],
which is a language workbench.

2.2 Model-based Cloud Simulation
Estimating the performance of deployed services in the cloud is
not straightforward because of different and often varying number
of resources, such as hardware and network that exist in cloud data
centers, which are required by the hosted services. Additionally,
the impact on performance by resource scheduling and allocation
polices of the cloud platform may differ. Finally, varying and dy-
namic workloads and QoS requirements of services make it harder
to evaluate performance of these services on the cloud platforms.

To overcome these challenges, CloudSim [4] provides a simula-
tion environment of the cloud infrastructures and services. Devel-
opers can test the performance of their services deployed in het-
erogeneous cloud infrastructures, such as Amazon EC2 and Mi-
crosoft Azure via a simulation environment provided by CloudSim
as well as determine the cost of cloud hosting. CloudSim provides
diverse modeling and simulation features for cloud infrastructures:
large scale cloud data centers, virtualized server hosts with cus-

tomizable policies for provisioning host resources to virtual ma-
chines, energy-aware computational resources, and data center net-
work topologies.

Even though CloudSim offers a cloud computing simulation en-
vironment, it is not easy for users to use it without incurring a learn-
ing curve that includes understanding the CloudSim APIs available
in the Java programming language. Given the plethora of choices
and heterogeneity with cloud platforms, it is a significantly com-
prehensive and involved task of having to program the CloudSim
simulator. Moreover, it is difficult to integrate the simulation tool
with other tools, such as deployment tools and data center network
simulation tools.

We have used GME to address these interfacing and integration
challenges and develop a DSML and generative capabilities for the
domain of cloud simulation for performance and cost estimation
for resource allocations specified by the user. Figure 1 illustrates
the metamodel, which is at the heart of the DSML for cloud simu-
lation. The purpose of the different colors in the metamodels is to
distinguish entities from each other for the reader. The metamodel
primarily comprises first class entities, such as DataCenter, Data-
CenterBroker, virtual machine (VM), and Cloudlet. Although most
of these elements are generic cloud artifacts, the Cloudlet is specific
to the CloudSim simulator.

The metamodel components in the DSML and their responsibil-
ities are as follows:

• DataCenter: defines CSPs such as Amazon EC2, Windows
Azure, or private data centers. It is simply a resource provider
where host machines are virtualized. This component aims to
provide information for all the data center components such as
host, VM, and storage. It contains default attributes, but the at-
tributes such as specification of physical servers, VM allocation
policy, and pricing information can also be configured through
components (e.g. Cost and Host) by users.

• DataCenterCharacteristics: contains DataCenter component
and defines characteristics of the data center and the storage
components. It stores the properties of a datacenter such as
architecture, OS, and cost of using a specified resource.

• VM: is used to define requested VMs from clients. Attributes of
a VM include ID, millions of instructions per second (MIPS),
memory, image size, number of CPUs, bandwidth, size, and
virtual machine manager type.

• Host: represents a physical host in a data center. Memory, stor-
age, bandwidth, and number of CPUs are some of the attributes
that could be defined.

• Cloudlet: defines the application services deployed in clouds.
CPU, memory, and bandwidth utilization models are some of
the attributes it stores. Based on this template, the number of
the Cloudlets can be configured by users.

• DatacenterBroker: acts as a bridge between cloud data centers
and cloud users. Therefore, the VMs and the Cloudlets defined
by cloud users are connected to the Datacenter via the Data-
centerBroker component.

• Cost: aims to simulate the cost information when the service
model is deployed and executed in the datacenter defined in the
simulation. It stores cost per memory, cost per second, cost per
bandwidth, and cost per storage attributes, and provides them
to the DataCenterCharacteristics component

• Storage: our proof of concept application does not require cloud
storage, so we integrated the simplified version of it only for the
benefit of future enhancements.

Figure 1. Metamodel for Estimating Cloud-based Service Performance and Cost, and Cloud Resource Usage

A simple example model of cloud simulation using the DSML
is shown in Figure 2. In the figure, DSML components to sim-
ulate a cloud environment, such as a VM template, a Cloudlets
template, a DatacenterBroker, and a Datacenter are defined. The
VM template contains default attributes, such as CPU, RAM, net-
work bandwidth, and the hypervisor (e.g. Xen, KVM, and HyperV).
The default attributes can be modified according to users’ environ-
ment. Users can also change the number of VMs defined by the
VM template. The Cloudlet template, which defines cloud-based
application services such as content delivery, social networking,
and business workflow [4], also has configurable attributes such
as pre-assigned instruction length and data transfer overhead.

The overall process of the example model is that the defined
VMs and Cloudlets are submitted to the DatacenterBroker, which
is mediated by the DatacenterBroker, which in turn makes requests
for deploying VMs and cloud application services to the Data-
center on behalf of a user. After the configuration of the example
CloudSim model is completed, the example model is transformed
into Java-based CloudSim codes to simulate the cloud environment.
Once the generated code is executed, cost and performance are sim-
ulated by CloudSim application.

2.3 Model-based Automated Deployment in the Cloud
The second modeling capability in our MDE approach enables au-
tomated deployment to the cloud, which is needed to overcome
the challenges resulting from heterogeneity in CSP APIs and de-
ployment policies. The metamodel of the deployment model in our
DSML is depicted in Figure 3, which consists of Print, Sleep,
Upload, Download, RunApp, Terminate, CreateInstance, Wait-
forStartup, Connect, Entity, and Keyfile model components, which
are used during the modeling process.

The metamodel was partitioned into three viewpoints (called
Aspects in GME), which show or hide the design details, named
as AllKeywords, DisplayKeywords, and ActionKeywords. The con-

Figure 2. Model Example

nections between components are also defined in the metamodel,
such as CreateInstance component could connect to WaitforStartup
component, and the components of ActionKeywords and Dis-
playKeywords aspects. The aws access key id, host, and port
are some of the attributes associated with the Connect component.
The rest of the attributes associated with each component are also
defined in the metamodel.

The metamodel components in the DSML and their responsibil-
ities are as follows:

• Print: prints a message specified on the screen. This command
aims to provide information to the cloud user during the deploy-
ment.

• Sleep: stops the program flow and waits for an interval speci-
fied. Generally, even though VMs are switched to the running
status from pending status after they are created, physically they

Figure 3. The Metamodel for Automated Deployment in the Cloud

might not be available instantaneously and at the running status
yet. Copying a file onto the created VM will not succeed. There-
fore, this command is needed to wait for VMs to launch. Ad-
ditionally, it allows applications to run for a while and retrieve
their outputs.

• Entity: keeps the information of an entity which will run a
command or the file name to be uploaded or downloaded. To
upload or download a file, the file name needs to be known. To
execute a command on a VM, what command will be executed
needs to be provided. Therefore, this information is supplied by
this command.

• Upload: contains entities such as text file, executable file, or
any other library files and uploads them onto the VMs that it is
connected to. This command is used to copy the application’s
set up and log files from a local directory to another directory
on a VM in the cloud.

• Download: is used to download entities from the VMs it is con-
nected to. This command copies the log file of an application
from a directory on a VM in the cloud to a local directory.

• RunApp: is used to execute the commands specified by differ-
ent entities against the VMs it is connected to. After an appli-
cation is deployed in the cloud, it is required to launch it. This
command simply runs the application deployed in the cloud re-
motely.

• Terminate: stops all the VMs created by each CreateInstance
component. After the mission of the application deployed in the
cloud is accomplished, it might no longer be needed to have all
the VMs running, and hence this command is used to terminate
all the running VMs associated with an application.

• CreateInstance: creates a VM and runs it. Image id and key
name properties of the VM are specified by its attributes. To
deploy an application in the cloud, a VM(s) is needed to be
created first, which is responsibility of this command.

• WaitforStartup: waits for all the VMs that it is connected to be
launched. It checks for their status and lets the flow continue af-
ter all the instances are at the “running” status. A VM has to be

in the running status to start the deployment process. Therefore,
this command is a kind of switch to initiate migration process.

• Connect: creates a connection to the host and port number
specified. This command represents a connection object to the
cloud.

• Keyfile: keeps the file name of the key file to make ssh connec-
tion. To make ssh connection to a VM, the local machine should
authenticate first. This command provides the name of the key
file previously created for authentication purposes.

In Figure 4, an example model of automated deployment us-
ing the DSML in Figure 3 is depicted. The connections back to
CreateInstance component from Download, Upload, and RunApp
components are to indicate the target such as Download compo-
nent downloads the file specified in its attribute from the VM that it
is connected to. The deployment script generation algorithm finds
the Connect and Keyfile components in the model first and then
processes the model recursively starting from the Connect compo-
nent till it reaches the Terminate component when the interpreter is
run. We used the Builder Object Network (BON2) in GME to code
the model interpretation, which generates the deployment script in
Python. For this model, the generated code deploys a network ap-
plication, which comprises (1) two server applications, (2) a client
application, and (3) a fault manager application, in the cloud. The
overall picture and further details of each application being de-
ployed in the cloud is outside the scope of this paper, and hence
not described further. Each application is deployed onto a separate
VM, respectively.

The model interpreter for our example in Figure 4 generates a
deployment script which will execute the following steps:

1. A connection to the public or private cloud server which is a
public interface to the clients is created

2. Four VM instances are created and run

3. Waits for all the VMs to be advanced to the running state

4. Prints “Waiting 30 sec” before copying files over to the newly
created instance(s)

Figure 4. An Example Model of Model-based Automated Deploy-
ment in the cloud

5. Waits for 30 sec after all the VMs are at running state before the
Upload component is interpreted

6. Uploads entities specified under each Upload component onto
the VMs that they are associated with. (The entities under each
Upload components are Server.exe, Server.exe, Client.exe, and
FaultManager.exe, respectively)

7. RunApp component executes the command in the entities under
it against the VM that it is associated with. Basically, these are
the commands that need to be executed as part of launching the
application deployed.

8. Prints Waiting 1 min to get output files

9. Prints “Please terminate the main server” 1 min later: kill -9
process ID

10. Waits for 180 sec after all the applications are executed before
the Download component is interpreted.

11. Downloads entities specified under each Download component
onto the VMs that they are associated with. (The entities un-
der each Download component are Server.txt, Server.txt, Main-
client.txt, and FaultManager.txt respectively)

12. Waits for 10 sec after all the files are downloaded from the VMs

13. Finally terminates all the VMs created

3. Related Work
The work presented in [11] provides a model-based proxy for
unified Infrastructure as a Service (IaaS) management. The purpose
is to manage services provided by any cloud platform from a
common interface. Amazon Elastic Compute Cloud (EC2) service
is the only cloud platform supported by that work. The work in that
paper differs from this research in that it does not provide price
simulation and automated deployment. However, similar concepts
of having model-based structure and providing unified proxy are
present in both works. Our approach intends to be cloud platform-
agnostic and through its generative mechanism be able to operate
with the platform.

Unlike Deltacloud [5] and Libcloud [6], however, our work in
this paper comprises the price simulation, automated deployment,
and limited support on VM management tasks. In contrast, they
already provide a single API with multiple cloud platforms with no
model-based interaction.

EMUSIM is another simulation environment which supports
the modeling, evaluation, and validation of performance of Cloud
computing applications. It is built on top of Cloudsim that we have
used in our research [3].

Uni4Cloud [10] is an approach promising (1) automated de-
ployment independent of cloud service-providers and (2) deploy-
ment of an application components over multiple clouds. They
propose modeling, deployment, and management of applications
in multicloud platforms and facilitate the Open Virtualization For-
mat (OVF) format to deploy an application to different clouds. Our
work has synergies with this related work in the context of being
applicable to multiple cloud platforms. In contrast, however, our
work provides price and performance simulation in advance of de-
ployment.

4. Conclusions and Future Work
This paper presented the results of investigations on the DSMLs
and generative capabilities that yield the model-based simulation
and automated deployment in the cloud. Cost and performance
results for a given model are simulated, and automated deployment
scripts are generated by the MDE tooling. This helps shield the
users from possible complex price calculations, uncertainties, and
the low-level API details.

The current MDE capabilities can be extended further to han-
dle more complex analysis problems for the users when they must
handle more complex, multi-objective optimization functions to
transition to the cloud. Similar objectives exist for codifying de-
ployment and resource management approaches within model-
ing frameworks. This research will finally yield to a complete

MDE tooling and model-based middleware supporting all the cloud
service-provider APIs and many cloud simulation tools. Our aim
is to move in the direction of making these two DSMLs as mature
and industry-strength languages.

References
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A View of Cloud
Computing. Communications of the ACM, 53(4):50–58, 2010.

[2] F. Caglar, K. An, A. Gokhale, and T. Levendovszky. Transitioning
to the cloud?: a model-driven analysis and automated deployment
capability for cloud services. In Proceedings of the 1st International
Workshop on Model-Driven Engineering for High Performance and
CLoud computing, page 8. ACM, 2012.

[3] Calheiros, R. N., Netto, M. A.S., C. A. De Rose, and R. Buyya.
EMUSIM: An Integrated Emulation and Simulation Environment
for Modeling, Evaluation, and Validation of performance of Cloud
Computing Applications. Software: Practice and Experience, pages
00–00, 2012.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms. Software: Practice and Experience, 41(1):23–50, jan
2011.

[5] deltacloud.org. Deltacloud. deltacloud.org, 2012.
[6] incubator.apache.org. Libcloud. incubator.apache.org/

libcloud/, 2012.
[7] jclouds.incubator.apache.org. jclouds. jclouds.incubator.

apache.org/, 2013.
[8] jets3t.s3.amazonaws.com. JetS3t. jets3t.s3.amazonaws.com,

2013.
[9] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom,

J. Sprinkle, and G. Karsai. Composing Domain-Specific Design
Environments. Computer, 34(11):44–51, 2001.

[10] A. Sampaio and N. Mendona. Uni4Cloud: An Approach based on
Open Standards for Deployment and Management of Multi-cloud
Applications. 2011.

[11] S. Yan, B. S. Lee, and S. Singhal. A Model-Based Proxy for Unified
IaaS Management. 2010.

