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Abstract—Power and performance tradeoffs are critical and
challenging issues faced by cloud service providers (CSPs) while
managing their data centers. On the one hand, CSPs strive to
reduce power consumption of their data centers to not only de-
crease their energy costs but to also reduce adverse impact on the
environment. On the other hand, CSPs must deliver performance
expected by the applications hosted in their cloud in accordance
with predefined Service Level Agreements (SLAs). Not doing
so will lead to loss of customers and thereby major revenue
losses for the CSPs. Addressing these dual set of challenges is
hard for the CSPs because power management and performance
assurance are conflicting objectives, particularly in the context
of multi-tenant cloud systems where multiple virtual machines
(VMs) may be hosted on a single physical server. The problem
becomes even harder when real-time applications are hosted in
these VMs. To address these challenges and make appropriate
tradeoffs, we present iPlace, which is an intelligent and tunable
power- and performance-aware VM placement middleware. The
placement strategy is based on a two-level artificial neural
network which predicts (1) CPU usage at the first level, and (2)
power consumption and performance of a host machine at the
second level that uses the predicted CPU usage. The efficacy of
iPlace is evaluated in the context of a VM consolidation algorithm
that is applied to running virtual machines and host machines in
a private cloud.

Keywords—virtual machine placement, cloud computing, de-
ployment algorithm, power and performance tradeoffs.

I. INTRODUCTION

Cloud data centers are massive-scale farms of networked
servers and other resource types, such as storage, that are used
to host different kinds of services simultaneously from multiple
different customers. Due to the use of commodity hardware for
the resources, failures are common within data centers that can
cause some disruptions in the hosted services. Another major
factor that can cause disruptions in data centers stems from the
massive power requirements of the data centers both to operate
the hardware as well as for cooling. Power outages due to
excess demand can result in substantial disruptions to the data
center. For instance, several prominent cloud service providers
(CSPs) reported days-long partial or complete outages of their
cloud services platform.1 As an example of the adverse impact
this can cause, in 2012 an intrinsic outage in Amadeus airline
reservation system’s data center triggered long lines and delays
at many airports worldwide. Power outages are also shown to

1A recent incident is reported at www.datacenterknowledge.com/archives/
2012/07/10/major-outage-salesforce-com/.

have an adverse impact on environment because they produce
diesel exhaust.

Reducing energy consumption in data centers is thus an
important criteria to reduce the chances of outages. This
issue is particularly important considering an increasing trend
towards hosting applications with soft real-time requirements
in the cloud [1], [2], which cannot sustain significant service
disruptions. For these applications, performance concerns, such
as response time and service availability, are vital requirements
and hence disruptions in data centers is often not desirable.

One promising approach to maintaining availability and
performance requirements of real-time applications after par-
tial disruptions within the same data center is via live mi-
gration [3] of virtual machines (VMs).2 VM migrations help
in hardware maintenance, fault-tolerance and load-balancing.
However, live migration may incur significant cost in terms of
substantial network usage particularly when multiple simul-
taneous VM migrations are active at any given time thereby
adding to the energy consumption. One key reason for the
increased network usage is that existing approaches that use
live VM migrations often tend to ignore the placement issues
for the backup VMs, which in turn leads to unwanted usage of
network and other resources thereby causing increased energy
consumption.

For example, cloud-based high availability and perfor-
mance solutions such as Remus [4], Paratus [5], and Ke-
mari [6], require capturing the entire executions of the VM and
transferring them to the backup machine as swiftly and seam-
lessly as possible. While these solutions are much desirable
for maintaining application performance and availability, they
tend to shift the responsibility of choosing the backup VMs
to the cloud user. A solution that will relieve the cloud user
of these responsibilities and automate the choice of backup
VMs is desirable. In prior work [7], [8] we addressed this
limitation in the Remus high availability solution by providing
a backup VM placement mechanism that was based on simple
bin packing heuristics. However, this work did not consider
energy conservation as a criteria.

Another technique used by CSPs to improve resource
utilization, reduce energy consumption, and thereby saving on
energy bills is to employ “Resource Overbooking” [9], [10],
[11]. Even in the case of resource overbooking, the placement

2Live migrations may be feasible across data centers but will incur addi-
tional and unpredictable networking delays, which may not be suitable for
real-time applications.

www.datacenterknowledge.com/archives/2012/07/10/major-outage-salesforce-com/
www.datacenterknowledge.com/archives/2012/07/10/major-outage-salesforce-com/


of VMs on aptly suited host machines where SLA is not
violated is crucial. We have observed that even idle VMs that
are overbooked on a host machine might affect the perfor-
mance of applications running in other collocated VMs on that
host because of performance interference between collocated
VMs [12], [13], [14] when resources are overbooked. Thus,
the need for effective VM placement is a key requirement.

In summary, energy conservation in data centers is in-
creasingly becoming the focus of CSPs who are seeking ways
to save on energy bills, reduce the chances of outages, and
reduce adverse impact on the environment. Reducing energy
consumption would imply shutting down large portions of the
data center and employing resource overbooking. However,
a naive approach to conserving energy may lead to applica-
tions not meeting their performance requirements, which is
not acceptable to real time applications hosted in the cloud.
Techniques that support both performance and availability in
the cloud must continue to work. As we have seen above, a
common theme that pervades these requirements is the need
for effective VM placement in the data center. A common
practice for VM placement decisions at the hypervisor level
is bin packing heuristics such as first-fit, best-fit, and next-
fit. However, these bin packing techniques do not consider
power concerns of the CSPs nor performance requirements of
applications.

To address these objectives, this paper presents iPlace,
which is an intelligent and tunable power- and performance-
aware virtual machine placement technique that is realized
as cloud infrastructure middleware. The key contributions of
iPlace include:

• An intelligent tunable power- and performance-aware
virtual machine placement strategy in virtualized envi-
ronments that satisfies soft real-time application QoS.
The novelty of our VM placement approach stems
from its use of a two-stage neural network which
predicts (1) CPU usage at the first level and (2) uses
the predicted CPU usage at the first level to predict
the power consumption and performance of a host
machine at the second level. Section III delves into
the details of this contribution.

• It analyzes how energy consumption of data centers
can be reduced while performance of soft real-time ap-
plications are ensured by employing iPlace. Section IV
presents results of our empirical studies.

The remainder of this paper is organized as follows:
Section II introduces, compares, and discusses several recent
prior efforts synergistic with iPlace; Section III provides an
architectural view of the iPlace middleware and the design of
the two-stage artificial neural network; Section IV-A presents
the test and evaluation results of iPlace; and finally, Section V
presents concluding remarks alluding to future work.

II. RELATED WORK

This section explores prior work that employ schemes like
live migration and server consolidation techniques that aim
to address one or more of the performance, availability and
energy consumption issues in cloud data centers.

Akiyama et. al propose MiyakoDori [15] which employs
“memory reusing” technique to reduce the amount of memory
transferred thereby reducing unnecessary energy consumption
during the live migration. When a virtual machine monitor
(VMM) initiates a live migration command, MiyakoDori re-
tains the memory image of the VM on the source node.
Identical memory pages are not transferred; only the ma-
nipulated memory content is transferred when that VM is
migrated back to the original node. MiyakoDori saves substan-
tial amount of memory between migrations thereby reducing
energy consumption. This related work considers identical
memory pages to reduce the energy consumption during live
migrations whereas our work focuses on both reducing energy
consumption and guaranteeing application performance. It is
feasible that our work can leverage MiyakoDori in the live
migration process.

Deshpande et al. address the problem of migrating several
collocated VMs simultaneously [16]. In a data center, it
is highly likely that collocated VMs might have the same
operating system, similar software, and libraries installed on it.
Therefore, the basic idea in the paper is transferring identical
contents across the collocated VMs only once. Our work is
once again complementary to this approach since we focus
on finding an aptly suited host machine for a VM. Thus, it
is possible for our approach to leverage this related work for
additional benefits.

The work closest to ours is by Hirofuchi et al. [17],
[18] who propose an energy-efficient VM consolidation tech-
nique for optimizing VM locations to achieve energy savings
while guaranteeing performance. In this work, post-copy live
migration is utilized as opposed to pre-copy live migration
since post-copy migration reacts to sudden load changes more
quickly than pre-copy. Data center servers are categorized as
shared and dedicated servers. Shared servers host the idle
VMs while dedicated servers host CPU-intensive VMs. Shared
servers take advantage of extra memory to host many idle
VMs. The technique utilized in their paper is to migrate
as many idle machines into shared servers as possible from
dedicated servers and finally switch-off the dedicated servers
in which no more VMs are left. Our work also comes under the
purview of consolidation algorithms. In contrast to this work,
our work does not differentiate between shared and dedicated
servers, which reduces the complexity of our technique.

Berral et al. [19] propose a framework that provides
intelligent dynamic consolidation of VMs in which deadline-
sensitive applications are executing. A machine learning-based
technique is employed to reduce the energy consumption while
meeting SLA requirements for high performance computing
(HPC) environments where applications have deadline con-
straints. This work differs from our work in that their work
targets a HPC environment, which are more controlled and
where exclusive access to resources is granted is targeted,
whereas we primarily target public cloud environments.

Piao [20] proposes a VM placement and migration ap-
proach to optimize the heavy data transfer over the network.
Due to the nature of network- and data-intensive workloads,
applications hosted on various VMs often communicate with
each other frequently over the network which in turn adversely
affects the application performance and network overhead.
Moreover, it might lead to network congestion and unex-



pected network latency. Therefore, migrating these kinds of
applications within a close proximity of their counterparts
reduces the traffic on the network and ultimately optimizes
the performance. The work in that paper differs from our work
in that it attempts migrating highly coupled VMs to closeby
locations. In contrast, we target compute-intensive applications
and discover aptly suited host machine for their VMs with
respect to power and performance. As future work, we will
consider accounting for network usage as suggested in this
prior work.

Khosravi et al. [21] have taken into account carbon foot-
print rate and power usage effectiveness (PUE) for design-
ing VM placement strategy in data centers. The VM place-
ment problem is considered as a bin packing problem with
(datacenter×cluster×host) placement options. The authors
propose Energy and Carbon-Efficient (ECE) VM placement
algorithm based on best-fit heuristic to find a solution to
the problem, and evaluate the algorithm using simulation. A
difference with our work is that we have evaluated our solution
inside a cloud data center and applied machine learning to
account for a large set of factors affecting power and per-
formance which are difficult to model in the system. In this
related work, the authors considered power consumption as a
function of CPU frequency, whereas we have taken several
factors including memory, network, overbooking rate etc. into
account for predicting performance and power.

Dong et al. [22] propose a VM placement scheme to
reduce both the number of physical machines and network
elements in a data center to reduce overall energy consumption.
The optimization of physical servers is considered as a bin
packing algorithm, while network optimization is formulated
as a quadratic assignment problem. The proposed method
is a combination of hierarchical clustering and best-fit to
solve the optimization problem for VM placement and is
evaluated based on simulations. In contrast, our work provides
an intelligent placement algorithm which considers VM-based
host overbooking, power consumption and performance, which
is evaluated in a real data center.

III. VIRTUAL MACHINE PLACEMENT USING IPLACE

Figure 1 depicts the strategy of iPlace, which is our intelli-
gent power- and performance-aware virtual machine placement
algorithm. The goal of iPlace is to find an aptly suited host
machine by carefully considering the energy efficiency of the
data center and performance requirements of soft-real time
applications running on host machines. iPlace takes power
changes and performance effects to the applications running on
VMs for its placement decision. A tunable parameter named
performance preference level is provided to iPlace in advance
to set the performance requirement.

To find the aptly suited host machine, a two-level artificial
neural network (ANN) is employed by our VM placement mid-
dleware, which are at the core of our system design and serve
as the predictor mechanism. To train the ANNs, iPlace employs
the Levenberg-Marquardt back-propagation algorithm [23]. At
the first level, the mean CPU usage of a host machine after a
VM were to be migrated to it is predicted by running the CPU
usage predictor ANN. Subsequently, this predicted CPU usage
value is utilized by the second level ANN. At the second level,

power consumption and mean performance of the host machine
is predicted by the power and performance predictor ANN. At
runtime, the middleware will consult the prediction engine and
if the predicted values are acceptable, the middleware will take
the decision of placing the VM on a given host.

Figure 1: Illustration of iPlace’s Virtual Machine Placement
Strategy

To understand how these ANNs are used to make runtime
decisions, consider the case when one of the consolidation
algorithms, high availability solutions, or scheduling mecha-
nisms would like to migrate a VM from one host machine
to another one. iPlace finds the aptly suited host machine
by predicting the power consumption and performance values
for each host machines in the cluster as though the VM
was migrated on to it. As illustrated in Figure 1, iPlace
employs both CPU usage predictor and power and performance
predictor sequentially by feeding their required input values.

In our current design, iPlace targets only compute-intensive
applications, therefore 1/(CPUtime) metric was utilized in
this work as the performance indicator of an application. The
higher the performance value, the better the performance.
Additionally, we assume that CSPs overbook their underlying
cloud infrastructure to save energy costs. Details of the ANNs
are described below.

A. CPU Usage Predictor

The structure of the CPU usage predictor ANN is depicted
in Figure 2. The purpose of the CPU usage predictor is to
estimate the amount of CPU usage of the host machine after
a VM were to migrate onto it. Due to the CPU contention in
over utilized virtualized environments, the mean CPU usage of
a host machine might not increase by the same amount of CPU
usage currently been illustrated by the VM being migrated.
Thus, a simple subtraction on one machine and addition on
another machine does not work. Therefore, iPlace employs a
CPU usage predictor ANN for this prediction so that the power
consumption and performance of the host machine could be
determined effectively by knowing the CPU usage of the host
machine.



Figure 2: Structure of the CPU Usage Predictor ANN

The topology of the CPU usage predictor ANN is shown
below.

Input Layer : hcu− a, cor − a, vcu− a, vmc

Hidden Layer : 9 neurons
Activation Function (in hidden layer)

: Tangent Sigmoid
Output Layer : hcu− n

Transfer Function (in output layer)
: Pure Linear

where
hcu− a = Actual mean CPU usage of the host

machine before VM is migrated on it
cor − a = Actual CPU overbooking ratio of the

host machine before VM is migrated on it
vcu− a = Actual CPU usage of the VM being

migrated onto the host machine
vmc = Actual VM count on the host machine

before VM is migrated on it
hcu− n = CPU usage of the host machine

after VM is migrated onto it

The CPU overbooking ratio and mean CPU usage of
the host machine provided to this ANN are computed by
Equations (2) and (4).

Total vCPU Requested =

m∑
i=0

vCPUi (1)

CPU Overbooking Ratio =
Total vCPU Requested

Total pCPU Cores
(2)

Total CPU Usage =

m∑
i=0

vmCPUUsagei (3)

Host Mean CPU Usage =
Total CPU Usage

m
(4)

where
Total vCPU Requested : Total number of virtual CPU

cores requested on a host
machine

m : Total number of the guest
VMs on a host machine

vCPU : Number of virtual CPU cores
of a VM

Total pCPU Cores : Total number of physical
CPU cores of a host machine

The number of neurons in the hidden layer is determined
based on experimentation by trying different numbers and
examining the system results. The reliability and accuracy of
ANNs employed by iPlace is examined by carefully looking
into the mean squared error (MSE) and regression (R) values.
The MSE value provides average squared difference between
input and output whereas the R value describes how the
input of the system is correlated with its output. The best
performance of the CPU usage predictor ANN was produced
with 9 neurons in the hidden layer, and MSE of 0.00044 and
R of 0.99. As shown in Figure 3, these MSE and R values
clearly indicate that CPU usage predictor precisely estimates
the host machine’s CPU usage.

Figure 3: Comparison of Actual and Predicted CPU Usage of
Host Machine

B. Power and Performance Predictor

The structure of the power and performance predictor ANN
is depicted in Figure 4. The output of the CPU usage predictor
ANN is provided as input to the power and performance pre-
dictor ANN. The purpose of power and performance predictor
is to predict power consumption and performance of the host
machine if the VM were to migrate to it.



(a) Power Consumption (b) Performance

Figure 5: Comparison of Actual and Predicted Power Consumption and Performance Value Results of Host Machine

Figure 4: Structure of the Power and Performance Predictor
Artificial Neural Network

The topology of power and performance predictor ANN is
detailed below.

Input Layer : cu, cor,mor, vmc
Hidden Layer : 12 neurons

Activation Function (in hidden layer)
: Tangent Sigmoid

Output Layer : Pow, Perf
Transfer Function (in output layer)

: Pure Linear
where

cu = Mean CPU usage of the host machine
cor = CPU overbooking ratio of the host

machine
mor = Memory overbooking ratio of the host

machine
vmc = VM count on the host machine
Pow = Power consumption of the host

machine
Perf = Performance value of the host

machine (i.e. mean performance of all the
guest VMs running on the host machine)

The best performance of the power and performance pre-
dictor ANN was produced with 12 neurons in the hidden layer,
MSE of 0.008, and R of 0.97. These MSE and R values
clearly show that the power and performance predictor ANN
precisely estimates the host machine’s power consumption and
performance. Figure 5 depicts the comparison of actual power
consumption and performance values of host machine along
with the predicted values of power and performance predictor.

By carefully observing the data generated by our simulation
software, we determined the mean performance value (µ) as
1.75 and the standard deviation (σ) as 1.17. These values
are the assumed indicators for performance requirement of
the soft real-time application and utilized to check whether
the performance requirement of the soft real-time application
validated by the Equation (5). This performance indicator is
assured on the host machine where it will be migrated with
best effort. α in Equation (5) is basically the performance
preference level parameter passed by the system user. The
tighter performance requirement might cause iPlace not to be
able to find any host machine.

Pr =µ+ α ∗ σ (5)

where
Pr : Performance requirement of the VM
µ : Mean performance value

computed by looking the
values in the cluster

α : Performance preference level
σ : Standard deviation value

values in the cluster
computed by looking the
values in the cluster

This performance parameter along with the resource usage
information is provided to iPlace. iPlace employs the CPU
usage predictor ANN first and feeds the predicted CPU usage



of the host machine to the power and performance predictor
ANN then.

After receiving the CPU usage, iPlace finds all the host
machines satisfying the performance requirement in Equa-
tion (5) by comparing these predicted performance values with
the value returned from Equation (5) by starting from the
performance preference level. If none of the host machines
satisfies the requested performance preference level, iPlace
gradually lower the performance preference level by one and
checks each host machine again to find another host machine
that will satisfy this new performance requirement. Then,
iPlace computes the power change on the each host machine
satisfying the performance requirement to see how much power
will increase. Finally, the placement decision is made onto the
host machine which satisfies the performance requirement and
has the minimum power change.

IV. VALIDATING THE IPLACE APPROACH

The iPlace framework consists of two stage neural network.
For accurate predictions, the training data set for both the
stages should be as close as possible to real-world data. To
achieve the same, we have used a private data center consisting
of five hosts on which we have emulated a workload that
is similar to that of a production data released by Google
Inc. from one of their cluster’s trace log [24]. Our private
data center comprises a homogeneous set of machines and
is managed by the OpenNebula cloud management solution
version 3.2.1. Table I provides the configuration of each host
used as a cluster node. Each host is connected to a Watts
Up? Pro power meter, which can report consumed power with
frequency of once a second and an accuracy of a tenth of a
watt.

Table I: Hardware and Software specification of Cluster Nodes

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Hard disk 8 TB

Operating System Ubuntu 10.04 64-bit
Hypervisor Xen 4.1.2

Guest virtualization mode Para

The Google cluster trace contains a dataset for about
12,000 distinct machines collected over a 29 day period in
the month of May, 2011. We chose one of the host with
ID 257408495 from the cluster and reproduced the workload
on one of the host in our data center for one day. The VM
configuration and resource usage in the dataset was normalized
which we scaled according to host configuration and pruned
the data which did not fit the characteristics of our host.

The workload on the host was generated using our simu-
lation software coded in Python which used OpenNebula to
create and delete virtual machines. We executed Lookbusy,
a synthetic load generator, processes to mimic the CPU and
memory workloads. Our resource monitoring application was
coded in C++, which runs to collect the resource usage
information of the host using libvirt library at certain specified
interval.

Matlab software is used to train and run the ANNs as well
as deciding the placement decision. Additionally, a SQL server
database management system is utilized to import the resource
information data of each host machine and prepare the training
set for ANNs.

A. Experimental Results

In this section we show the experimental results of iPlace
that we have tested and evaluated by following two test cases
we have defined. The initial configuration of our cluster is
depicted in Figure 6. In Figure 6, the tuple under each VM
name represents the resource capacity of the VM in the format
of <cpu, memory>. Additionally, initial resource usage and
overbooking ratios of each host machine in the cluster is
illustrated in Table II.

Table II: Initial Resource Usage of Host Machines in the
Cluster

CPU
Usage

CPU Over-
booking Ra-
tio

Memory
Overbooking
Ratio

HOST 1 16% 4 0.75
HOST 2 18% 0.17 0.06
HOST 3 30% 2.6 0.81
HOST 4 23% 3.3 0.69
HOST 5 1.5% 1.3 0.5

Use Case 1: In this use case, we assumed that there was an
abnormal activity causing performance degradation of VM2,
which is a high priority VM on Host 1. Therefore, a decision
was made to migrate it to another host machine in the cluster.
We analyzed and compared the results of placement decision of
iPlace with a first-fit heuristic of bin packing algorithm in the
context of power and performance. We have tested iPlace with
three different performance preference levels (i.e. α values of
-1, 0, 1).

Recall that performance preference level is the tunable
performance parameter passed by the system user. It is also
used in the performance requirement equation 5 with α as
the parameter. Based on that performance preference level, the
standard deviation is adjusted and performance requirement is
either tightened or softened. As the performance preference
level goes below 0, -1, -2 ..., the performance requirement of
the application is softened and vice versa.

As expected, the placement decision of first-fit heuristic is
to place the VM on the first host machine in which it fits.
Therefore, a first-fit heuristic placed VM2 on to Host 2. iPlace
decides the target host machine by observing power changes
on host machines and performance effects on the applications
running on the VM. Thus, the placement decision for each
performance preference level presented in Table III for this
use case might be dissimilar for any other use cases.

As shown in Table III, iPlace decided to migrate VM2 to
Host 5 at both performance preference levels of α = -1 and
α= 0. iPlace assured the performance requirement of VM2
on none of the host machines in the cluster for the tighter
performance preference level of α = 1.



Figure 6: Initial Configuration of the Cluster Utilized in Test Cases

Table III: Test Results of Use Case 1

Performance Preference Level
(α) Placement Decision

-1 HOST 5
0 HOST 5
1 NONE

To detail the case where performance preference level of
α =0, iPlace predicted that only Host 3 and Host 5 satisfied
the performance requirement in Equation (5). However, iPlace
decided to migrate VM2 onto the Host 5 due to the prediction
of lower amount of power increase by 0.0274kW on Host 5
versus 0.0281kW on Host 3.

Compared to the first-fit heuristic, iPlace could not assure
the performance requirement of VM2 on Host 2 even though
VM2 fits on it. Therefore, it discarded Host 2 for its placement
decision for VM2.

Use Case 2: In this use case, we assumed that a decision
was made to migrate all VMs residing on one of the less
utilized host machines onto the rest of the host machines
decided by iPlace. Host 2 was selected as the target due to
having only one VM. Therefore, VM7 will be migrated and
Host 2 will be shut down.

At initial run with performance preference level of α =
0, iPlace could not find a host machine for that criteria. It
determined Host 3, Host 4, and Host 5 after iterating till
the performance preference level of α = -2. However, iPlace
decided to migrate VM7 onto the Host 3 due to the power
change concerns.

After migrating VM7 onto the Host 3, Host 2 becomes idle
and started to consume 0.091kW power with no VMs running
on it. Therefore, we assumed it was turned off and computed
the overall power consumption of the cluster. The total power
consumption of the cluster dropped from 0.708kW to 0.614kW
which saved about 13% of power consumed by the cluster.

V. CONCLUSION

In this paper we proposed iPlace, an intelligent tunable
power- and performance-aware virtual machine placement
strategy. The work was motivated by the need to conserve
energy in data centers yet manage the performance and avail-
ability requirements of soft real-time applications that are

increasingly being hosted in cloud data centers. To that end,
we have developed a two-level artificial neural network (ANN)
with stage one responsible for CPU usage prediction, and
stage two responsible for power and performance prediction.
The two stage ANN was designed, trained and employed to
forecast the host machine’s CPU usage, power consumption,
and performance. For training purposes and evaluation, we
generated workloads in our private cloud that emulated data
from a Google’s production server. We have tested and eval-
uated iPlace in our private cloud and compared results with
first-fit bin-packing heuristic. The results shows that iPlace
could help to save certain degrees of power consumption by
satisfying variety of performance requirements. Compared to
the first-fit heuristic, iPlace places VMs on host machines
where application performance is assured and energy efficiency
is maximized.

Since the private cloud environment where we tested and
evaluated iPlace is a homogeneous environment, our test
results were validated only in a homogeneous environment.
However, iPlace could easily be employed in a heterogeneous
environment by providing additional host machine capacity
information parameters to the ANNs, such as number of cores
and memory size. In this work, we targeted only the compute-
intensive applications due to the performance metric we uti-
lized. By integrating more generic application performance
metrics, such as response time or throughput, iPlace could
support a variety of application types in the cloud environment.
These dimensions will form the basis of our future work.

The source code for iPlace is available for download at
www.dre.vanderbilt.edu/~caglarf/download/iPlace.
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