
Automated Reasoning for Multi-step Software Product-line
Configuration Problems

Jules White, Brian Dougherty, and Doulas C. Schmidt
Vanderbilt University

Email:{jules, briand, schmidt}@dre.vanderbilt.edu

David Benavides
University of Seville

Email:benavides@us.es

Abstract—The increasing complexity and cost of software-
intensive systems has led developers to seek ways of reusing
software components across development projects. One approach
to increasing software reusability is to develop a Software
Product-line (SPL), which is a software architecture that can be
reconfigured and reused across projects. Rather than developing
software from scratch for a new project, a new configuration of
the SPL is produced. It is hard, however, to find a configuration
of the SPL that meets an arbitrary requirement set and does not
violate any configuration constraints in the SPL.

Existing research has focused on techniques that produce a
configuration of the SPL in a single step. Budgetary constraints or
other restrictions, however, may require multi-step configuration
processes. For example, an automotive manufacturer may want
to produce a series of configurations of a car over a span of years
without exceeding a yearly budget to add features.

This paper provides three contributions to the study of multi-
step configuration for SPLs. First, we present a formal modelof
multi-step SPL configuration and map this model to constraint
satisfaction problems (CSPs). Second, we show how solutions to
these SPL configuration problems can be automatically derived
with a constraint solver by mapping them to CSPs. Third,
we present empirical results demonstrating that our CSP-based
reasoning technique can scale to SPL models with hundreds of
features and multiple configuration steps.

I. I NTRODUCTION

The high-cost of developing distributed real-time and em-
bedded (DRE) systems has pushed developers to find novel
solutions to increase the reusability of software. One promising
reuse approach is Software Product-lines (SPLs) [6], whichare
software architectures that are designed with built-in points of
variability that can be altered so that the software can be more
readily reused across projects. For example, an SPL for a car
can be built with the ability to use multiple engine control
software components so it can be adapted to cars with different
engine types.

Ensuring that a correct software product is produced from
an SPL involves building models of the rules for configuring
the points of variabilty. For example, an SPL configuration
for a car cannot simultaneously employ two different engine
control software components or the wrong component for the
given engine type. A common technique for specifying SPL
configuration rules is afeature model[12], which abstracts the
components and points of variaiblity in a software product as
features.

Feature models are typically implemented as tree-like struc-
tures that specify how the components and points of variability
affect one another. For example, the feature model of a car

in Figure 1 can optionally include anAutomated Driving
Controller. If the car includes this feature it must also
include theCollision Avoidance Breaking feature. Any
arbitrary configuration can be checked against the feature
model to determine if it is a complete and correct configuration
of a software product.

When an SPL is configured for a new set of requirements,
developers must find a selection of the features from the
feature model that (1) satisfy the requirements and (2) adhere
to the rules in the feature model. This configuration process
involves reasoning over a complex set of constraints to meet
an end goal. Various tools [2], [13], [1], [4], [5], [16] have
been developed to help reduce the complexity of this process
by automating parts of the feature selection process.

Open problems.Some configuration problems require start-
ing at an arbitrary state and deriving a new configuration that
meets the target requirements. For instance, an automotive
software designer using an SPL may start with no features
selected and derive a selection of features for the automobile
software to meet the needs of a new model year car. Often,
however, constraints limit developers from directly transition-
ing from the starting state to the desired end configuration.

For example, assume that a group of automotive SPL
developers want to modify the configuration of an existing
SPL car model to include automated driving capabilities, as
shown in Figure 1. The developers have determined that the
cost of adding all the new features will be 88 million dollars.
The developers only have a annual development budget of 35
million dollars to reconfigure the SPL variant, however, which
means that the developers cannot simply add all features in
a single year. Management has also asked the developers to
make continual progress on developing the car by adding new
features to it every year.

To manage these constraints, the developers must incre-
mentally add the desired features over a series of steps,i.e.,
over several years the developers will produce a series of
intermediate configurations that leverage each other to reach
the desired configuration. For example, they can develop a
subset of the new features in the first year’s car configuration,
add more of the remaining desired features in the second
year, and add the rest of the desired features and reach the
new configuration in the third year. This process of producing
a series of intermediate configurations—i.e., a configuration
path—is shown in Figure 2. We call this sequence of activities
a multi-step configuration problem.

Fig. 1: A Configuration Problem Requiring Multiple Steps

Year 1 Year 2 Year 3 Year 4

Year 1 Year 2 Year 3 Year 4

Development

Budget

Exceeded !!!!

Feature Model

Rules Violated

!!!!

!! Invalid !!

Configuration

Path

Valid

Configuration

Path

Fig. 2: Potential Configuration Paths

A key challenge is that the developers cannot arbitrarily pick
and choose features to add in a given year to meet the budget
constraint. For example, developers will violate the feature
model rules if they choose to addParallel Parking in year
3 without Lateral Range Finder, which is required via a
cross-tree constraint, as shown in Figure 2. Developers must
therefore not only adhere to their constraints on the changes
that can be produced in a given year (such as the maximum
allowed annual development budget) but also ensure that the
changes they choose create a valid configuration at the end of
each year. The developers also cannot choose an intermediate
configuration to transition through that will not function and
hence cannot be sold.

Further complicating the multi-step configuration problem
is that developers may need to foresee tradeoffs that must be
made along the way. For example, it is not possible to simulta-
neously addCollision Avoidance Braking andEnhanced
Avoidance in the same year since their total development
cost is 36 million dollars, as shown in Figure 2. Develop-
ers must therefore addCollision Avoidance Braking and

Standard Avoidance one year (to simultaneously meet the
budget constraint and the feature model constraints) and then
remove theStandard Avoidance feature at a later step to
add the desiredEnhanced Avoidance feature.

Prior work on configuration analysis and automation [13],
[1], [4], [5], [18], [11] focused on creating one configuration
that meets a specific set of requirements,i.e., they find a
configuration in one step and assume that it is possible to
directly transition to it. These techniques do not, however,
support the need to split the configuration over multiple
steps to adhere to a change constraint, such as the maximum
development budget per year. A gap therefore exists in current
techniques when developers need to reason about and automate
configuration over multiple steps.

Solution overview and contributions. To fill the gap in
existing research, we have developed an automated method
for deriving a set of configurations that meet a series of
requirements over a span of configuration steps. We call our
technique theMUlti-step Software Configuration probLEm
solver (MUSCLE). MUSCLE transforms multi-step feature

configuration problems into constraint satisfaction problems
(CSPs) [9]. Once a CSP has been produced for the problem,
MUSCLE uses a constraint solver (which is an automated
tool for finding solutions to CSPs) to generate a series of
configurations that meet the multi-step constraints.

This paper provides the following contributions to the study
of feature model configuration over a span of multiple steps:

1) We provide a formal model of multi-step configuration,
2) We show how the formal model of multi-step configu-

ration can be mapped to a CSP,
3) We show how multi-step requirements, such as limits on

the cost of feature changes between two successive con-
figurations, can be specified using our CSP formulation
of multi-step configuration,

4) We describe mechanisms for optimally deriving a set
of configurations that meet the requirements and min-
imize or maximize a property of the configurations or
configuration process, such as total configuration cost,

5) We show how multi-step optimizations can be per-
formed, such as deriving the series of configurations that
meet a set of end-goals in the fewest time steps, and

6) We present empirical results from experiments that
demonstrate that MUSCLE can scale to feature models
with hundreds of features and configured over multiple
steps.

Paper organization. The remainder of the paper is orga-
nized as follows: Section II summarizes the challenges of per-
forming automated configuration reasoning over a sequence of
steps; Section III describes a formal model of multi-step con-
figuration; Section IV explains MUSCLE’s CSP-based auto-
mated multi-step configuration reasoning approach; Section V
analyzes empirical results from experiments demonstrating the
scalability of MUSCLE; Section VI compares MUSCLE with
related work; and Section VII presents concluding remarks.

II. CHALLENGES

A multi-step configuration problem for an SPL involves
transitioning from a starting configuration through a series
of intermediate configurations to a configuration that meets
a desired set of end state requirements. The solution space for
producing a series of successive intermediate configurations
to reach the desired end state can be represented as a directed
graph, as shown in Figure 3. Each successive series of points
represents potential configurations of the feature model ata
given step. For example, the configurationsB0 . . .Bi represent
the intermediate configurations that can be reached in one step
from the starting configuration. In this section we use this
graph formulation of the problem’s solution space to showcase
the challenges of finding valid solutions.

A. Challenge 1: Graph Complexity

A critical challenge to developers attempting to derive
solutions to multi-step configuration problems manually orto
use a graph algorithm is that there are an exponential number
of potential intermediate configurations and paths that could
be used to reach the desired end state. In the worst case, at any

Fig. 3: A Graph of a Multi-step Configuration Problem

given intermediate step, there can beO(2n) points (wheren is
the number of features in the feature model). In the worst case,
therefore, there are 2n potential permutations of the features in
the feature model that could form a configuration. Moreover,
for a multi-step configuration problem overK time steps, there
areO(K2n) possible intermediate points.

Further compounding this problem is that for any inter-
mediate configuration at stepT, there are in the worst case
2n − 1 points at stepT + 1 that could be reached from it
by adding or removing features to its feature selection. The
intermediate configurations that do not precede the end point
will therefore have 2n−1 outgoing edges. Section IV discusses
how MUSCLE uses CSP-based automation to eliminate the
need for developers to manually find solutions to these multi-
step configuration problems, which reduces configuration time
and cost.

B. Challenge 2: Point Configuration Constraints

Although there are a substantial number of potential in-
termediate configurations, many of these configurations will
not meet developer requirements. For example, many of the
K2n arbitrary permutations of feature selections will represent
configurations that do not adhere to the feature model con-
straints. Moreover, other external constraints, such as safety
constraints requiring a specific feature to be selected at all
times, may not be met. We term these constraints on the
allowed configurations at a given steppoint configuration
constraints.

Point configuration constraints eliminate many potential
configuration paths. These constraints may create small ad-
ditional restrictions, such as that a particular feature must
always be selected. Complex step-based constraints may also
be present, such as a particular automotive feature becomesun-
available after a specific time step (year) because the supplier
discontinues it. Finally, a multi-step configuration problem
may not dictate an exact starting and ending configuration,
but merely a series of point configuration constraints that must
hold for the start and end points of the configuration path. The
myriad of possible point configuration constraints significantly
increases the challenge of finding a valid configuration path
for a multi-step configuration problem. Section IV-C describes

how MUSCLE models these constraints using a CSP, which
enables a CSP solver to automatically derive solutions that
adhere to these constraints and thus reduce tedious and error-
prone manual configuration.

C. Challenge 3: Configuration Change/Edge Constraints

The automotive example in Figure 1 requires that developers
adding new features spend no more than 35 million dollars
in one year. The cost of adding/removing features can be
captured as the length or weight of the edges connecting
two transitions. For example, to transition directly from the
starting configuration to the desired end configuration requires
88 million dollars and has an edge weight of 88.

Developers must not only find a path that reaches the
desired end state without violating the point configuration
constraints in Section II-B, but also ensure that any constraints
on the edges connecting successive configurations are met.
Transitioning directly from the start configuration to end
configuration would violate the edge constraint of the 35
million dollar yearly development budget. Edge constraints
further reduce the number of valid paths and add complexity to
the problem. Section IV-D shows how these edge restrictions
can be encoded as constraints on MUSCLE’s CSP variables to
plan configuration paths that adhere to development budgets,
which is hard to determine manually.

D. Challenge 4: Configuration Path Optimization

There may often be multiple correct configuration paths that
reach the desired end point. In these cases, developers would
like to optimize the path chosen, for example to minimize total
cost (the sum of the edge weights). In other cases, it may be
more imperative to meet the desired end point constraints in
as few time steps as possible.

For example, in Figure 4, developers have an initial devel-
opment budget of 35 million dollars and then a subsequent
yearly budget of 50 million dollars. Although the cost of the

Fig. 4: Optimization of Total Steps

path through intermediate configurationsBi andCi is cheaper
(70 million), developers may prefer to pass throughB0 and
C0 since they will already have a configuration that meets the
end goals atC0. Developers must therefore not only contend
with numerous multi-step constraints, but must also perform

complex optimizations on the properties of the configuration
path. Section IV-E shows how optimization can be performed
on MUSCLE’s CSP formulation of multi-step configuration
to allow developers to find the fastest and most cost-effective
means of achieving a configuration goal.

III. A F ORMAL DEFINITION OF MULTI -STEP

CONFIGURATION

This section presents a formal model of multi-step con-
figuration. In its most general form, multi-step configuration
involves finding a sequence of at mostK configurations that
satisfy a series of point configuration constraints and edge
constraints. This definition requires the start and end config-
urations meet a set of point constraints, but does not dictate
that there be asinglevalid starting and ending configuration.

General formal model. We define a multi-
step configuration problem using the 6-tuple
Msc=< E,PC,∆(FT ,FU),K,FStart,Fend >, where:

• E is the set of edge constraints, such as the maximum
development cost per year for features,

• PC is the set of point configuration constraints that must
be met at each step, such as the feature model rules that
developers may require to be adhered to across all steps
(feature model rules do not have to be enforced at each
time step),

• ∆(FT ,FU) is a function that calculates the change cost or
edge weight of moving from a configurationFT at step
T to a configurationFU at stepU ,

• K is the maximum number of steps in the configuration
problem,

• FStart is a set of configuration constraints on the starting
configuration, such as a list of features that must initially
be selected,

• Fend is a set of configuration constraints on the final
configuration, such as a list of features that must be
selected or maximum cost of the final configuration.

We define a configuration path from stepT overK steps as
a K-tuple

P =< FT ,FT+1, . . .FT+K−1 >

, where the configuration at stepT is denoted byFT . Each
configuration,FT , denotes the set of selected features at step
T.

Section IV shows how this formal model can be specified
as a CSP. Although we use CSPs for reasoning on the formal
model, we could also use SAT solvers, propositional logic, or
other techniques to reason about this model. The formal model
is thus applicable to a wide range of reasoning approaches.

A. Constraint and Function Examples

We now describe how the formal model presented above can
be used to model typical SPL configuration constraints. We
show how common configuration needs, such as the selection
of specific features or budgetary constraints, can be mapped
to portions of our multi-step configuration problem tuple.

Edge constraint examples.The set of edge constraintsE
can include numerous types of constraints on the transition
from one configuration to another. For example, a constraint
e1 ∈ E may dictate that the maximum weight of any edge
between successive configurations inFT ,FT+1 ∈ P have at
most weight 35 (for the automotive problem from Figure 1):

∀T ∈ (0..K−1), ∆(FT ,FT+1) ≤ 35

Edge constraints may also vary depending on the step, for
example a development budget may start at $35 million and
may expand as a function of the step:

∀T ∈ (0..K−1), ∆(FT ,FT+1) ≤
35

1− (.01∗T)

Edge constraints may also be attached to specific time steps:

∀T ∈ (0..4,6..K−1), ∆(FT ,FT+1) ≤ 35
1−(.01∗T)

∆(F5,F6) ≤ 40

Point configuration constraint examples.The point config-
uration constraints specify properties that must hold for the
feature selection at a given step. Both the starting and ending
points for the multi-step configuration problem are defined as
point configuration constraints on the first and last steps. For
example, we want to start at a specific configurationFs and
reach another configurationFe:

(F0 = Fs)∧ (FK = Fe)

Another general constraintpc1 ∈ PC could require that for
any stepT, the feature selectionFT satisfies the feature model
constraintsFc:

∀T ∈ (0..K−1), FT ⇒ Fc

Developers could also require that a specific set of features
Fs, such as safety critical braking features, be selected at all
times:

∀T ∈ (0..K−1), Fs ⊂ FT

Change calculation function examples.The function
∆(FT ,FU) calculates the cost of changing from one configura-
tion to another configuration at a different step. For example,
the following change calculation function computes the cost
of changing from one configuration to another:

Fadded = FU −FT

∆(FT ,FU) = ∑ fi ∗ ci, fi ∈ Fadded

where fi is the ith added feature andci is the price of adding
that feature.

IV. A CSP MODEL OF MULTI -STEPCONFIGURATION

This section describes how MUSCLE uses CSPs to automat-
ically derive solutions to mulit-step configuration problems.
To address the challenges outlined in Section II we show that
deriving a configuration path for a multi-step configuration
problem can be modeled as a CSP [9] using the formal
framework from Section III. After a CSP formulation of a
multi-step configuration problem is built, MUSCLE can use

a CSP solver to automatically derive a valid configuration
path on behalf of the developer. Automating the configuration
path derivation helps reduce the complexity from Challenge
1 in Section II-A. Moreover, the CSP solver can be used to
perform optimizations that would be extremely hard to achieve
manually.

Prior work on automated feature model configuration [3],
[16], [17] has yielded a framework for representing feature
models and configuration problems as CSPs. This section
shows how a new formulation of feature models and configura-
tion problems can be developed that (1) incorporates multiple
steps, (2) allows a constraint solver to derive a configuration
path for evolving a feature selection over multiple intermediate
steps to meet an end goal, (3) permits the specification of inter-
mediate configuration constraints, (4) allows for change/edge
constraints on the transition between feature selections,and
(5) can be leveraged to optimize configuration path properties,
such as path length or cost.

A. CSP Automated Configuration Background

A CSP is a set of variables and a set of constraints over the
variables. For example,(X−Y > 0)∧(X < 10) is a simple CSP
involving the integer variablesX andY. A constraint solver is
an automated tool that takes a CSP as input and produces a
labeling or set of values for the variables that simultaneously
satisfies all of the constraints. The solver can also be used to
find a labeling of the variables that maximizes or minimizes
a function of the variablese.g. maximizeX +Y yields X =
9,Y = 8.

A feature model can be modeled as a CSP through a series
of integer variablesF , where the variablefi ∈F corresponds to
the ith feature in the feature model. A configuration is defined
as a series of values for these variables such thatfi = 1 implies
that theith feature is selected in the configuration. If theith
feature is not selected,fi = 0. Configuration rules from the
feature model are represented as constraints over the variables
in F , as shown in Figure 5. More details on building a CSP

Fig. 5: Mapping Feature Model Rules to a CSP

from a feature model is described in [16], [3].

B. Introducing Multiple Steps into the CSP

The goal of automated configuration over multiple-steps is
to find a configuration path that permutes a given starting con-
figuration through a sequence of intermediate configurations

to reach a desired end state. For example, the configuration
paths in Figure 2 capture sequential modifications to the car
configuration, shown in Figure 1, that will incorporate high-
end features into the base automobile model. To reason about
a configuration path over a span of steps, we first introduce a
notion of a configuration step into MUSCLE’s CSP model of
configuration.

CSP model of configuration steps.To introduce config-
uration steps into MUSCLE’s configuration CSP, we modify
the configuration CSP formulation outlined in Section IV-A.
We no longer use a variablefi to refer to whether or not the
ith feature is selected or deselected. Instead,we refer to the
selection state of each feature at a specific stepT with the
variable fiT , i.e., if the ith feature is selected at stepT, fiT = 1.
We refer to an entire configuration at a specific step as a set of
values for these variables,fiT ∈ FT . A solution to the CSP is
configuration path defined by a labeling of all of the variables
in the K-tuple:< FT ,FT+1 . . .FT+K−1 >.

For example, if theABS feature (denotedfa) is not selected
at stepT and is selected at stepT +1, then:

faT = 0
faT+1 = 1

Figure 6 shows a visualization of how thefiT ∈ FT variables
map to feature selections.

Fig. 6: An Example of Variables Representing Feature Selec-
tion State at Specific Steps

C. CSP Point Configuration Constraints

To address Challenge 2 from Section II-B, the point con-
figuration constraints (which are the constraints that define
what constitutes a valid intermediate configuration) can be
modeled as constraints on the variablesfiT ∈ FT . Each point
configuration constraint has a specific set of steps,Tpc, during
which it must be met,i.e., the constraint must only evaluate to
true on the precise steps for which it is in effect. For example, a
simple constraint would be that the 2nd and 3rd configurations
must have the featuref1 selected. The set of steps for which
this constraint must hold would beTpc = {2,3}.

CSP model of point configuration constraints.A CSP
point configuration constraint,pci ∈ PC, requires that:

∀T ∈ Tpc, FT ⇒ pci

Arbitrary point configuration constraints can be built using
this model to restrict the valid configurations that are passed
through by the configuration path. This flexible point con-
figuration constraint mechanism allows developers to specify
and automatically find solutions to problems involving the
constraints from Challenge 2 in Section II-B.

CSP point configuration constraint example.Assume that
we want to find values forFT . . .FT+K such that we never
violate any of the feature model constraints at any step. Further
assume that the constraints in the feature model remain static
over theK steps (feature model changes over multiple steps
can also be modeled). If thejth feature is a mandatory child
of the ith feature, we add the constraint:

∀T ∈ (0. . .K), (fiT = 1) ⇔ (FjT = 1)

That is, we require that at any stepT, if the ith feature (FiT)
is selected, thejth feature (f jT) is also selected. Furthermore,
at any stepT, if the jth feature (FjT) is selected, theith fea-
ture (fiT) is also selected. Other example point configuration
constraints can be mapped to the CSP as shown in Figure 7
and Figure 8.

Fig. 7: Example Mappings of Static Feature Model Constraints
Over Multiple Steps to a CSP

Fig. 8: Example Point Configuration Constraint Mappings to
a CSP

D. CSP Edge/Change Constraints

Challenge 3 from Section II-C described how developers
must be able to specify and adhere to constraints on the
difference between two configurations at different steps. These
edge/change constraints can be modeled in the CSP as con-
straints over the variables in two configurationsFT and FU .
By extending the CSP techniques we have developed in past
work [17], we can specifically capture which features are
selected or deselected between any two steps and constrain
these changes via budget or other restrictions.

CSP model of edge/change constraints.To capture differ-
ences between feature selections between stepsT andU , we
create two new sets of variablesSTU andDTU. These variables
have the following constraints applied to them:

∀siTU ∈ STU, (siTU = 1) ⇔ (fiT = 0)∧ (fiU = 1)
∀diTU ∈ DTU, (diTU = 1) ⇔ (fiT = 1)∧ (fiU = 0)

If a feature is selected at time stepT and not at time step
U , therefore,diTU is equal to 1. Similarly, if a feature is not
selected at stepT and selected at stepU , siTU is equal to 1.

An edgeedge(T,U) between the configurations at stepsT
andU is defined as a 2-tuple:

edge(T,U) =< DTU,STU >

an edge is thus defined by the features deselected and selected
to reach configurationFU from configurationFT . The weight
of the edgeweight(edge(T,U)) can then be calculated as a
function of the edge tuple. For example, if theith feature costs
ci to add or remove then

weight(edge(T,U)) =
n

∑
i=0

siTU ∗ ci +
n

∑
i=0

diTU ∗ ci

CSP edge/change constraint example.The cost of includ-
ing a particular feature may change over time. For example,
the cost of adding a GPS guidance system to a car does not
remain fixed, but instead typically decreases from one year to
the next as GPS technology is commoditized. We can model
and account for these changes in MUSCLE’s CSP formulation
and constrain the configuration path so that it adds features
at times when they are sufficiently cheap. We will define
an edge constraint that takes into account changing feature
modification costs and limits the change in cost between two
successive configurations to $35 million dollars.

We assume we can calculate that the price of including the
ith feature so that it is included in the feature selection at step
T by the function:

Cost(i,T) =
ci

T +1
We can then define the cost of adding features to a configu-
ration as:

weight(edge(T,T +1)) =
n

∑
i=1

(siTT+1 ∗Cost(i,T +1))

We can now limit the cost of any two succesive configurations
via the edge constraint:

∀T ∈ (0..K−1), weight(edge(T,T +1))≤ 35

E. Multi-step Configuration Optimization

Challenge 4 from Section II-D showed that optimizing the
configuration path is an important issue. CSP solvers can
automatically perform optimization while finding values for
the variables in a CSP (though it may be impractical time-
wise for some problems). We can define goal functions over
the CSP variables to leverage these optimization capabilities
and address Challenge 4.

In some cases, developers may not want to just find any
configuration path that ends in the desired state. Instead,
they may want a path that produces a configuration that
meets the end goals as early as possible. For example, in
the automotive problem from Section I developers may want
to find a configuration path that meets their constraints and
includes the high-end features in the base model in fewer than
five years.

CSP model of path length.To support path length opti-
mization, we define a measure of the number of steps needed
to reach a valid end state. We must therefore determine if
the constraints on the final configurationFend (which is the
goal state) are met by some configuration prior to the last
configuration (FT whereT < K−1). If we meet the final state
constraints sooner than the final configuration, then we have
found a configuration process that requires fewer configuration
steps.

To track whether or not a configuration has met the con-
straints on the ending configurationFend, we create a series of
variableswT ∈W to represent whether or not the configuration
FT ∈ P satisfiesFend. For each configuration,FT ∈ P, if Fend

is satisifed:
(FT ⇒ Fend) ⇒ (wT = 1)

i.e., if at any step (up to and including the last step) we satisfy
the end state requirements, setwT equal to 1. We also require
that after one step has reached a correct ending configuration,
the remaining steps also keep the correct configuration and do
not alter it:

(wT = 1) ⇒ (wT+1 = 1)

(wT = 1) ⇒ (
n

∑
i=0

siT T+1 +
n

∑
i=0

diTT+1 = 0)

Optimization examples.We can optimize to find the short-
est configuration path to reach the goals over K steps by asking
the solver to maximize:

K−1

∑
T=0

wT

The reason that maximizing this sum will minimize the
number of steps taken to reach the desired end state is that
the sooner the state is reached, the more stepswT will equal
1.

The most straightforward optimization functions are defined
as functions of the variables in the configuration pathP. For
example, we can instruct the solver to minimize the cost of
the ending configuration. Assume that the cost ofith feature

at stepK is denoted by the variableci ∈ CK , minimize CK ,
where:

CK =
n

∑
i=0

fi ∗ ci

Other optimizations can be performed on the weights of
the edges. For example, to find the configuration path with
the lowest development cost, where the development cost is
the edge weight the goal is to minimize:

K−1

∑
T=0

weight(edge(T,T +1))

F. A Complete Multi-step CSP Example

Fig. 9: Point Configuration Constraints for the Automobile
Example

We now provide a complete mapping of the automotive
configuration problem in Section I to MUSCLE’s multi-step
CSP. For this problem, the automotive developers want to
include the high-end features into the base model over the
course of five years (K = 5). We first create a series of
configuration variables to represent the feature selectionat the
end of each of the five years:

F0 = (f00, f10, . . . f80)
F1 = (f00, f11, . . . f81)

. . .

F4 = (f00, f14, . . . f84)

The mappings of the automobile features from Figure 1 to
CSP variables can be seen in Figure 9. A configuration path
is defined by a set of feature selections for each of the five
years:

P =< F0,F1, . . .F4 >

The point constraint,pc0 ∈PC, ensures that the feature model
constraints are met by each year’s configuration, as shown
in Figure 9. We must also specify the point configuration
constraint for the starting configuration:

Fstart = (f00 = 1)∧ (f10 = 1)∧ (f20 = 0)∧ (f30 = 0)
∧(f40 = 0)∧ (f50 = 0)∧ (f60 = 0)∧ f70 = 0)
∧(f80 = 0)

Moreover, we must ensure that the high-end features are
included in the last configuration:

Fend = (f74 = 0)∧ (f04 = 1)∧ (f14 = 1)∧ (f24 = 1)∧
(f34 = 1)∧ (f44 = 1)∧ (f54 = 1)∧ (f64 = 1)
∧(f84 = 1)

Our complete set of point configuration constraints isPC =
(pc0).

Finally, we must specify how the change cost between two
configurations is calculated and enforce the edge constraint
that at most $35 million dollars is spent per year.

∆(FT ,FT+1) = 20s2TT+1 +14s3TT+1 +19s4TT+1 +8s5TT+1

+11s6TT+1 +1s7TT+1 +16s8TT+1

E = (∀T ∈ (0..3), ∆(FT ,FT+1) ≤ 35)

Given this CSP formulation, we can use a constraint solver
to automatically derive a solution to the multi-step automotive
configuration problem described in Section I.

V. RESULTS

As described in Section II-A, configuring an SPL over
multiple steps is a highly combinatorial problem. An auto-
mated multi-step SPL configuration technique should be able
to scale to hundreds of features and multiple steps. This section
presents empirical results from experiments we performed to
determine the scalability of MUSCLE. We tested a number of
hypotheses related to the scalability of MUSCLE using various
SPL configuration parameters, such as the total number of
configuration steps.

A. Experimental Platform

Our experiments were performed with an implementation of
the MUSCLE provided by the open-source Ascent Design Stu-
dio (available from code.google.com/p/ascent-design-studio).
The Ascent Design Studio’s implementation of MUSCLE is
built using the Java Choco open-source CSP solver (available
from choco.sourceforge.net). The experiments were performed
on a computer with an Intel Core DUO 2.4GHZ CPU, 2
gigabytes of memory, Windows XP, and a version 1.6 Java
Virtual Machine (JVM). The JVM was run in server mode
using a heap size of 40 megabytes (-Xms40m) and a maximum
memory size of 256 megabytes (-Xmx256m).

To test the scalability of MUSCLE we needed 1,000s of
feature models to test with, which posed a problem since
there are not many large-scale feature models available to
researchers. To solve this problem, we used a random feature
model generator developed in prior work [17]. The feature
model generator and code for these experiments is available
in open-source form along with the Ascent Design Studio. We
used a maximum branching factor of 5 children per feature and
a maximum of 1/3 of the features were in an XOR group.1

Our experiments uncovered trends similar to what observed
in prior work [17]. In particular, the branching factor, depth,
and cross-tree constraints had little effect on configuration

1XOR feature groups are features that require the set of theirselected
children to satisfy a cardinality constraint (the constraint is 1..1 for XOR).

time. The key indicator of the solving complexity was the
number of XOR-feature groups in a model. The other key
indicators of solving complexity where whether or not opti-
mization was used and the total number of time steps involved
in the configuration.

B. Experiment: Multi-step Configuration Scalability

Hypothesis.We hypothesized that MUSCLE could scale up
to hundreds of features and 10 or more time steps. We also
believed that a CSP solver would be fast enough to derive a
configuration path in a few seconds.

Experiment design.To test the scalability of MUSCLE, we
generated random multi-step configuration problems and then
solved for configuration paths that involved larger and larger
numbers of steps. The problems were created by generating
a semi-random feature model with 500 features as well as
starting and ending configurations. MUSCLE was used to
derive a configuration path between the two configurations.

Our initial experiments were performed withlarge-scale
configuration paths, which were produced by forcing the
solver to find a configuration path that involved switching
between two children of the root feature that were involved
in an XOR group. Figure 10 shows an example large-scale
configuration path problem where the solver must derive a
configuration path that switches from including featureA to
featureB. With this type of configuration problem, the solver

Fig. 10: Changing Between Two XOR Subtrees

was forced to change every feature selection in the starting
configuration to reach the end state,i.e., these experiments
maximized the number of changes that the solver could ever
be required to make.

We generated and solved temporal configuration path prob-
lems for feature models with 500 features. We successively
increased the number of time steps involved in the configura-
tion path to produce larger and larger configuration paths. The
maximum number of changes per configuration checkpoint
were bounded to 1/4 of the total number of features. We
solved 100 randomly generated configuration path problems
per problem size.

Results and analysis.The results from the experiment are
shown in Figure 11. This figure shows the solving time in
milliseconds for the configuration path derivation versus the
total number of time steps in the configuration problem. As
shown in Figure 11, the solving time scales roughly linearly
with the number of time steps.

The apparent linear scaling of the technique with respect to
the number of time steps is a promising result. Although more
work is needed to show that this linear scaling continues for

Fig. 11: Automated Configuration Time for Varying Numbers
of Time Steps

different configuration path properties, these results indicate
that the technique may scale well as the number of time steps
grows. Our future work is investigating the scalability of the
technique and improve MUSCLE’s CSP formulation.

VI. RELATED WORK

This section compares MUSCLE with related work.
Automated Single-step Configuration:Several single-step

feature model configuration and validation techniques have
been proposed [2], [13], [1], [4], [5], [16]. These techniques
use CSPs and propositional logic to derive feature model
configurations in a single stage as well as assure their validity.
These techniques help address the high complexity of finding
a valid feature selection for a feature model that meets a set
of intricate constraints.

While these techniques are useful for the derivation and
validation of configurations in a single step, they do not con-
sider feature configuration over the course of multiple steps.
In scenarios, such as the automotive example from Section I,
the ability to reason about configuration over multiple steps is
critical. MUSCLE provides this automated reasoning across
multiple steps. Moreover, MUSCLE can also be used for
single-step configurations since it is a special case of multi-
step configuration where there is only one stepK = 1.

Staged Configuration: Czarnecki et al. [7] describe a
method for using staged feature selection to achieve a final
target configuration. This multi-stage selection considers cases
in which the selection of features in a previous stage impacts
the validitiy of later stage feature selections. Our technique
also examines the production of a feature model configuration
over multiple configuration steps. MUSCLE is complementary
to Czarnecki et al.’s work and provides a general formal
framework that can be used to perform automated reasoning
on staged configuration processes. Moreover, MUSCLE can
also be used to reason about other multi-step configuration
processes that do not fit into the staged configuration model,
such as the the example from Section I where each step must
reach a valid configuration.

Staged configuration can be modeled as a special instance
of multi-step configuration. Specifically, staged configuration
is an instance of a multi-step configuration problem where:

E = /0, Fstart = /0, Fend= (FK−1 ⇒ Fc), K is set to the number
of stages,∆(FT ,FU) is not defined, andFc is the set of feature
model constraints. That is, there are no limitations on the
changes that can be made between successive configurations,
the starting configuration has no features selected, and theend-
ing configuration yields a valid feature model configuration.
The staged configuration definition can be refined to guarantee
that successive stages only add features:∀T ∈ (0..K−1),FT ⊂
FT+1.

Quality Attribute Evaluation: Several techniques have
been proposed for using quality attribute evaluation[8], [10],
[15], [14], [18], [11] to guide a configuration process. These
techniques provide a framework for assessing the impact
of each feature selection on the overall capabilities of the
configured system. As a result, quality characteristics, such
as reliability, can be taken into account when selecting fea-
tures. These techniques are also designed for single step
configuration processes. These techniques could be used in
a complementary fashion to MUSCLE to produce the point
configuration, edge, and other constraints in the multi-step
configuration model.

VII. C ONCLUDING REMARKS

Many production SPL configuration problems require de-
velopers to evolve a configuration over multiple steps, rather
than in a single iteration. Multi-step configuration, however,
must take into account constraints on the change between
successive configurations, such as the increase in cost of an
automobile’s configuration from one year to the next. More-
over, even though configuration is performed over multiple
steps, a valid configuration must still be produced at the end
of each year, further adding complexity while maintaining a
functional system configuration.

It is hard to determine a sequence of feature model configu-
rations and feature selections such that an initial configuration
can be transformed into a desired target configuration. This
paper introduces a technique, called theMUlti-step Software
Configuration probLEm solver(MUSCLE), for modeling and
solving multi-step configuration problems. MUSCLE repre-
sents the problem as a CSP, which enables CSP solvers to
determine a path from a starting configuration to a target
configuration. The output from MUSCLE is a valid sequence
of feature selections that will lead from a starting configuration
to the desired target configuration while also taking into
account resource constraints.

The following are lessons learned from our efforts examin-
ing multi-step configuration using MUSCLE:

• SPL multi-step optimziation. Multi-step optimizations
can be performed to minimize both the number of time
steps and the resource consumption required to reach a
target SPL configuration.

• Multi-step SPL configuration complexity. For each time
step, there exists a worst case exponential number of
intermediate configurations. Due to this, it is paramount
to employ an algorithm that does not rely on exhaustive

exploration. Our future work therefore plans to improve
our solving methods to increase performance.

• Multi-step SPL CSP linear scaling.Emprical data has
shown that our technique scales linearly for varying
numbers of time steps. Our future work will therefore test
the scalability of MUSCLE in response to other factors,
including problem size and tightness of constraints.

Open-source implementations of MUSCLE are available in
the Ascent Design Studio (ascent-design-studio.googlecode.
com) and FAMA (www.isa.us.es/fama).

REFERENCES

[1] D. Batory. Feature Models, Grammars, and PrepositionalFormulas.
Software Product Lines: 9th International Conference, SPLC 2005,
Rennes, France, September 26-29, 2005: Proceedings, 2005.

[2] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA:
Tooling a framework for the automated analysis of feature models. In
Proceeding of the First International Workshop on Variability Modelling
of Software-intensive Systems (VAMOS), 2007.

[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Rea-
soning on Feature Models. InProceedings of the 17th Conference
on Advanced Information Systems Engineering, Porto, Portugal, 2005.
ACM/IFIP/USENIX.

[4] D. Beuche. Variant Management with Pure:: variants. Technical report,
Pure-Systems GmbH, http://www.pure-systems.com, 2003.

[5] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s Experience with
a Reactive Software Product Line Approach. InProceedings of the 5th
International Workshop on Product Family Engineering, Siena, Italy,
November 2003.

[6] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, USA, 2002.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration
Using Feature Models.Software Product Lines: Third International
Conference, SPLC 2004, Boston, MA, USA, August 30-September 2,
2004: Proceedings, 2004.

[8] L. Etxeberria and G. Sagardui. Variability Driven Quality Evaluation in
Software Product Lines. InSoftware Product Line Conference, 2008.
SPLC’08. 12th International, pages 243–252, 2008.

[9] P. V. Hentenryck.Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, USA, 1989.

[10] A. Immonen. A method for predicting reliability and availability at
the architectural level. Research Issues in Software Product-Lines-
Engineering and Management, T. Käkölä and JC Dueñas, Editors, 2005.

[11] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes
in domain analysis for product lines. InSoftware, IEE Proceedings-,
volume 153, pages 61–73, 2006.

[12] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM:
A Feature-Oriented Reuse Method with Domain-specific Reference
Architectures. Annals of Software Engineering, 5(0):143–168, January
1998.

[13] M. Mannion. Using first-order logic for product line model validation.
Proceedings of the Second International Conference on Software Prod-
uct Lines, 2379:176–187, 2002.

[14] E. Niemelä and A. Immonen. Capturing quality requirements of product
family architecture. Information and Software Technology, 49(11-
12):1107–1120, 2007.

[15] F. Olumofin and V. Misic. Extending the ATAM Architecture Evaluation
to Product Line Architectures. InIEEE/IFIP Working Conference on
Software Architecture, WICSA, 2005.

[16] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt. Automating
Product-Line Variant Selection for Mobile Devices. InProceedings
of the 11th Annual Software Product Line Conference (SPLC), Kyoto,
Japan, Sept. 2007.

[17] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortez.
Automated Diagnosis of Product-line Configuration Errors in Feature
Models. In Proceedings of the Software Product Lines Conference
(SPLC), Limerick, Ireland, Sept. 2008.

[18] H. Zhang, S. Jarzabek, and B. Yang. Quality Prediction and Assessment
for Product Lines.LECTURE NOTES IN COMPUTER SCIENCE, pages
681–695, 2003.

