Automated Reasoning for Multi-step Software Product-line
Configuration Problems

Jules White, Brian Dougherty, and Doulas C. Schmidt David Benavides
Vanderbilt University University of Seville
Email:{jules, briand, schmidt}@dre.vanderbilt.edu Email:benavides@us.es

Abstract—The increasing complexity and cost of software- in Figure 1 can optionally include aAutomated Driving
intensive systems has led developers to seek ways of reusingontrol | er. If the car includes this feature it must also
software components across development projects. One apgach include theCol | i sion Avoi dance Breaking feature. Any

to increasing software reusability is to develop a Software bit fi fi b hecked inst the feat
Product-line (SPL), which is a software architecture that @n be arbitrary configuration can b€ Checked agains € tealure

reconfigured and reused across projects. Rather than devgiing Model to determine if it is a complete and correct configorati
software from scratch for a new project, a new configuration & of a software product.

the SPL is produced. It is hard, however, to find a configuratio When an SPL is configured for a new set of requirements,
of the SPL that meets an arbitrary requirement set and does nb developers must find a selection of the features from the

violate any configuration constraints in the SPL. . .
Existing research has focused on techniques that produce a [€ature model that (1) satisfy the requirements and (2) rdhe

configuration of the SPL in a single step. Budgetary constraits or {0 the rules in the feature model. This configuration process
other restrictions, however, may require multi-step configiration involves reasoning over a complex set of constraints to meet

processes. For gxample, an aut.omotive manufacturer may wan an end goal. Various tools [2], [13], [1], [4], [5], [16] have
to produce a series of configurations of a car over a span of yea jaap developed to help reduce the complexity of this process

without exceeding a yearly budget to add features. b t fi ts of the feat lecti
This paper provides three contributions to the study of muli- y automating parts of the feature selection process.

step configuration for SPLs. First, we present a formal modebf ~ Open problems.Some configuration problems require start-
multi-step SPL configuration and map this model to constrain ing at an arbitrary state and deriving a new configuration tha

satisfaction problems (CSPs). Second, we show how solut®to meets the target requirements. For instance, an automotive
these SPL configuration problems can be automatically dered gqfyyare designer using an SPL may start with no features
with a constraint solver by mapping them to CSPs. Third, . . .
we present empirical results demonstrating that our CSP-bsed selected and derive a selection of features for the autdmobi
reasoning technique can scale to SPL models with hundreds of Software to meet the needs of a new model year car. Often,
features and multiple configuration steps. however, constraints limit developers from directly ti&ing-
ing from the starting state to the desired end configuration.
For example, assume that a group of automotive SPL
The high-cost of developing distributed real-time and engevelopers want to modify the configuration of an existing
bedded (DRE) systems has pushed developers to find ndS8EIL car model to include automated driving capabilities, as
solutions to increase the reusability of software. One pgo1g shown in Figure 1. The developers have determined that the
reuse approach is Software Product-lines (SPLs) [6], waieh cost of adding all the new features will be 88 million dollars
software architectures that are designed with built-imtmof The developers only have a annual development budget of 35
variability that can be altered so that the software can beemanillion dollars to reconfigure the SPL variant, however, ehi
readily reused across projects. For example, an SPL for a oagans that the developers cannot simply add all features in
can be built with the ability to use multiple engine controa single year. Management has also asked the developers to
software components so it can be adapted to cars with differenake continual progress on developing the car by adding new
engine types. features to it every year.
Ensuring that a correct software product is produced fromTo manage these constraints, the developers must incre-
an SPL involves building models of the rules for configuringhentally add the desired features over a series of staps,
the points of variabilty. For example, an SPL configuratioaver several years the developers will produce a series of
for a car cannot simultaneously employ two different enginatermediate configurations that leverage each other tohrea
control software components or the wrong component for tilee desired configuration. For example, they can develop a
given engine type. A common technique for specifying SPsubset of the new features in the first year’'s car configuratio
configuration rules is &ature mode]12], which abstracts the add more of the remaining desired features in the second
components and points of variaiblity in a software prodwct ear, and add the rest of the desired features and reach the
features new configuration in the third year. This process of prodgcin
Feature models are typically implemented as tree-likecstrua series of intermediate configurationses a configuration
tures that specify how the components and points of vaitgbil path—is shown in Figure 2. We call this sequence of activities
affect one another. For example, the feature model of a @multi-step configuration problem

|. INTRODUCTION

Current Configuration

Automated
Driving
Controller

Sensors

\

Legend

Desired Configuration

L] As selected
(requires 88 million dollars in changes) (A |
A requires B
[B]
> Bis an
o optional
_— N feature of A
Automated A requires
ivi = ither B or C
Driving Sensor el
Controller [B] but not both

Cost to Add Features

\\ \ —OSOTE
\ Automated Driving 20
\ Controller

Collision
Avoidance Braking

Collision
Avoidance Braking

Parallel
Parking
I

Lateral Range
Finder

Collision
Avoidance Braking

Forward
Range Finder

\ \
Parallel Lateral Range Forward
Parking Finder Range Finder

I

Parallel Parking

Lateral Range
N A Finc 8

e S

Forward Range
Finder

Standard 1
Avoidance

Enhanced
Avoidance

Fig. 1: A Configuration Problem Requiring Multiple Steps

Feature Model
Rules Violated
n

Development
Budget
Exceeded !!!!

Year 1

Year 2 Year 3 Year 4

nvalid !!
Configuration
Path

kil T .

——— =

e R

‘U/</ahd

Configuration ,
Path /

] — ——— -
L - e e ——— =

Fig. 2: Potential Configuration Paths

A key challenge is that the developers cannot arbitrariék pi St andard Avoi dance one year (to simultaneously meet the
and choose features to add in a given year to meet the budgedget constraint and the feature model constraints) agnl th
constraint. For example, developers will violate the feamturemove theSt andard Avoi dance feature at a later step to
model rules if they choose to adhdral | el Parking in year add the desire@nhanced Avoi dance feature.

3 without Lat eral Range Fi nder, which is required via a Prior work on configuration analysis and automation [13],
cross-tree constraint, as shown in Figure 2. Developers mit, [4], [5], [18], [11] focused on creating one configuiaii
therefore not only adhere to their constraints on the chenghat meets a specific set of requiremerits,, they find a

that can be produced in a given year (such as the maximgonfiguration in one step and assume that it is possible to
allowed annual development budget) but also ensure that theectly transition to it. These techniques do not, howgver
changes they choose create a valid configuration at the end@pport the need to split the configuration over multiple
each year. The developers also cannot choose an intermedigdps to adhere to a change constraint, such as the maximum
configuration to transition through that will not functionda development budget per year. A gap therefore exists in gtrre
hence cannot be sold. technigues when developers need to reason about and aatomat

Further complicating the multi-step configuration problemonfiguration over multiple steps.
is that developers may need to foresee tradeoffs that must b&olution overview and contributions. To fill the gap in
made along the way. For example, it is not possible to simultexisting research, we have developed an automated method
neously addCol | i si on Avoi dance Braki ng andEnhanced for deriving a set of configurations that meet a series of
Avoi dance in the same year since their total developmeméquirements over a span of configuration steps. We call our
cost is 36 million dollars, as shown in Figure 2. Developechnique theMUIlti-step Software Configuration probLEm
ers must therefore adtbl |'i si on Avoi dance Braking and solver (MUSCLE). MUSCLE transforms multi-step feature

configuration problems into constraint satisfaction peofs Starting Desired

(CSPs) [9]. Once a CSP has been produced for the probler Configuration Cf"f'gurat'f"
MUSCLE uses a constraint solver (which is an automatec (* = stepd = Stip2 | } |
tool for finding solutions to CSPs) to generate a series o hg\ H}[BO , _CoO -{ - ‘
configurations that meet the multi-step constraints. \——

0

This paper provides the following contributions to the stud
of feature model configuration over a span of multiple steps: ’

1) We provide a formal model of multi-step configuration,

2) We show how the formal model of multi-step configu-
ration can be mapped to a CSP, ' Bi Ci

Cost to change from A~ ~
3) We show how multi-step requirements, such as limits Orconfiguration A to Bi
Intermediate ‘configurations
the cost of feature changes between two successive coi-
figurations, can be specified using our CSP formulation Fig. 3: A Graph of a Multi-step Configuration Problem
of multi-step configuration,

4) We describe mechanisms for optimally deriving a set
of configurations that meet the requirements and migiven intermediate step, there can®g") points (wheren is
imize or maximize a property of the configurations othe number of features in the feature model). In the worst,cas
configuration process, such as total configuration costherefore, there are'dotential permutations of the features in

5) We show how multi-step optimizations can be pethe feature model that could form a configuration. Moreover,
formed, such as deriving the series of configurations thiair a multi-step configuration problem oviértime steps, there
meet a set of end-goals in the fewest time steps, andare O(K2") possible intermediate points.

6) We present empirical results from experiments that Further compounding this problem is that for any inter-
demonstrate that MUSCLE can scale to feature modetsediate configuration at step, there are in the worst case
with hundreds of features and configured over multipl2" — 1 points at stepl + 1 that could be reached from it
steps. by adding or removing features to its feature selection. The

Paper organization. The remainder of the paper is orgaintermediate configurations that do not precede the end poin

nized as follows: Section Il summarizes the challenges of pavill therefore have 2— 1 outgoing edges. Section IV discusses
forming automated configuration reasoning over a sequeihncédl®w MUSCLE uses CSP-based automation to eliminate the
steps; Section Ill describes a formal model of multi-step-coneed for developers to manually find solutions to these multi
figuration; Section IV explains MUSCLE’s CSP-based aut@tep configuration problems, which reduces configuratioe ti
mated multi-step configuration reasoning approach; Sedtio and cost.

analyzes empirical results from experiments demonstyatia
scalability of MUSCLE; Section VI compares MUSCLE with
related work; and Section VII presents concluding remarks.

B. Challenge 2: Point Configuration Constraints

Although there are a substantial number of potential in-

termediate configurations, many of these configurationt wil
II. CHALLENGES not meet developer requirements. For example, many of the

A multi-step configuration problem for an SPL involvek2" arbitrary permutations of feature selections will repr¢se
transitioning from a starting configuration through a serieconfigurations that do not adhere to the feature model con-
of intermediate configurations to a configuration that meeg§aints. Moreover, other external constraints, such &stysa
a desired set of end state requirements. The solution spacecPnstraints requiring a specific feature to be selected lat al
producing a series of successive intermediate configmstidimes, may not be met. We term these constraints on the
to reach the desired end state can be represented as adiiredtewed configurations at a given stemint configuration
graph, as shown in Figure 3. Each successive series of poffgstraints
represents potential configurations of the feature model at Point configuration constraints eliminate many potential
given step. For example, the configuratidds .. B; represent configuration paths. These constraints may create small ad-
the intermediate Configurations that can be reached in @pe gﬂitional restrictions, such as that a particular featurestmu
from the starting configuration. In this section we use th@ways be selected. Complex step-based constraints may als
graph formulation of the problem’s solution space to shaecabe present, such as a particular automotive feature beasmes

the challenges of finding valid solutions. available after a specific time step (year) because the iguppl
) discontinues it. Finally, a multi-step configuration preol
A. Challenge 1: Graph Complexity may not dictate an exact starting and ending configuration,

A critical challenge to developers attempting to derivbut merely a series of point configuration constraints thastm
solutions to multi-step configuration problems manuallytar hold for the start and end points of the configuration patte Th
use a graph algorithm is that there are an exponential numbgyriad of possible point configuration constraints sigaifitty
of potential intermediate configurations and paths thatidcouincreases the challenge of finding a valid configuration path
be used to reach the desired end state. In the worst casg, atfana multi-step configuration problem. Section IV-C delses

how MUSCLE models these constraints using a CSP, whicbmplex optimizations on the properties of the configuratio
enables a CSP solver to automatically derive solutions thath. Section IV-E shows how optimization can be performed
adhere to these constraints and thus reduce tedious and ewn MUSCLE's CSP formulation of multi-step configuration
prone manual configuration. to allow developers to find the fastest and most cost-effecti
) .) means of achieving a configuration goal.

C. Challenge 3: Configuration Change/Edge Constraints

The automotive example in Figure 1 requires that developers ~ |ll. A FORMAL DEFINITION OF MULTI-STEP
adding new features spend no more than 35 million dollars CONFIGURATION

in one year. The cost of adding/removing features can berpis section presents a formal model of multi-step con-

captured as the length or weight of the edges connectifg ation. In its most general form, multi-step configuvati
two transitions. For example, to transition directly frolet ;. oves finding a sequence of at mdétconfigurations that
starting configuration to the desired end configurationiré§u gaiisty a series of point configuration constraints and edge
88 million dollars and has an edge weight of 88. constraints. This definition requires the start and end genfi
Developers must not only find a path that reaches Wgations meet a set of point constraints, but does not dictat

desired end state without violating the point configuratioga; there be ainglevalid starting and ending configuration.
constraints in Section II-B, but also ensure that any cairgs General formal model. We define a multi

on the edges connecting successive configurations are rggép configuration problem using the 6-tuple

Transitioning directly from the start configuration to en%sc:< E,PC,A(Fr,Fu), K, Fstart, Fend >, Where:
configuration would violate the edge constraint of the 35 L o ’ '

million dollar yearly development budget. Edge constsint
further reduce the number of valid paths and add compleaity t
the problem. Section IV-D shows how these edge restrictions®
can be encoded as constraints on MUSCLE’s CSP variables to
plan configuration paths that adhere to development budgets
which is hard to determine manually.

o E is the set of edge constraints, such as the maximum
development cost per year for features,

PC is the set of point configuration constraints that must
be met at each step, such as the feature model rules that
developers may require to be adhered to across all steps
(feature model rules do not have to be enforced at each
time step),

D. Challenge 4: Configuration Path Optimization « A(Fr,Ry) is a function that calculates the change cost or

There may often be multiple correct configuration paths that edge welgh_t of moving from a configuratidf at step
reach the desired end point. In these cases, developers woul T FO a conflggranorFU at step, . i .
like to optimize the path chosen, for example to minimizaltot *° K is the maximum number of steps in the configuration
cost (the sum of the edge weights). In other cases, it may be problgm,
more imperative to meet the desired end point constraints in® Fstart IS a set of configuration constraints on the starting
as few time steps as possible. configuration, such as a list of features that must initially

For example, in Figure 4, developers have an initial devel- be se_lected, , . .)
opment budget of 35 million dollars and then a subsequent® Fend is a set of configuration constraints on the final

yearly budget of 50 million dollars. Although the cost of the configuration, Slf'Ch as a list of fgatures _that must be
selected or maximum cost of the final configuration.

Endpoint (==) Desired We define a configuration path from st€poverK steps as
constraints___t Configuration a K-tuple
met at CO —

- N) (D P=< FI'7|:I'+17- o FI'+K71 >
gi BO 50 CO° @' , where the configuration at stép is denoted byFy. Each
o

configuration,Fr, denotes the set of selected features at step
T.

Section IV shows how this formal model can be specified
as a CSP. Although we use CSPs for reasoning on the formal
model, we could also use SAT solvers, propositional logic, o
other techniques to reason about this model. The formal mode
is thus applicable to a wide range of reasoning approaches.

Bi Ci

Fig. 4: Optimization of Total Steps . ,
A. Constraint and Function Examples
path through intermediate configuratioBsandC; is cheaper We now describe how the formal model presented above can
(70 million), developers may prefer to pass throghand be used to model typical SPL configuration constraints. We
Co since they will already have a configuration that meets tlsow how common configuration needs, such as the selection
end goals aCy. Developers must therefore not only contendf specific features or budgetary constraints, can be mapped
with numerous multi-step constraints, but must also perforto portions of our multi-step configuration problem tuple.

Edge constraint examplesThe set of edge constrainEs a CSP solver to automatically derive a valid configuration
can include numerous types of constraints on the transitipath on behalf of the developer. Automating the configuratio
from one configuration to another. For example, a constrajpath derivation helps reduce the complexity from Challenge
e; € E may dictate that the maximum weight of any edgé in Section II-A. Moreover, the CSP solver can be used to
between successive configurations B, Fr.1 € P have at perform optimizations that would be extremely hard to azhie
most weight 35 (for the automotive problem from Figure 1)manually.

Prior work on automated feature model configuration [3],
vT € (0.K—1), A(Fr,Fre1) <35 [16], [17] has yielded a framework for representing feature

Edge constraints may also vary depending on the step, fppdels and configuration problems as CSPs. This section

example a development budget may start at $35 million aghows how a new formulation of feature models and configura-
may expand as a function of the step: tion problems can be developed that (1) incorporates nieltip

35 steps, (2) allows a constraint solver to derive a configomati
VT € (0.K—-1), A(Fr,Fri1) < ————— path for evolving a feature selection over multiple intediage
1-(.01+T) steps to meet an end goal, (3) permits the specification ei-int
Edge constraints may also be attached to specific time stepwdiate configuration constraints, (4) allows for chandgée
constraints on the transition between feature selectiand,
VT €(0.4,6.K—1), A(Fr,Fre1) % (5) can be leveraged to optimize configuration path proprti
A(Fs, Fe) 40 such as path length or cost.

Point configuration constraint examples.The point config- A cSp Automated Configuration Background

uration constr_alnts spe_cn‘y properties that mu;t hold fur t. A CSP is a set of variables and a set of constraints over the
feature selection at a given step. Both the starting andhendj _ . . '
. X : . ! variables. For exampléX —Y > 0) A (X < 10) is a simple CSP
points for the multi-step configuration problem are defined &)
. nvolving the integer variableX andY. A constraint solver is
point configuration constraints on the first and last steps.

example, we want to start at a specific configuratfarand an automated tool that takes a CSP as input and produces a
P, , S P 9 labeling or set of values for the variables that simultaneously
reach another configuratidf:

satisfies all of the constraints. The solver can also be used t
(Fo=Fs) N (Fk =Fe)

find a labeling of the variables that maximizes or minimizes

) _ a function of the variableg.g. maximize X +Y yields X =
Another general constraintc; € PC could require that for 9,Y =8.
any stepr, the feature selectioRr satisfies the feature model A feature model can be modeled as a CSP through a series
constraints-c: of integer variable§ , where the variablé € F corresponds to
thei, feature in the feature model. A configuration is defined
as a series of values for these variables suchfthatl implies
Developers could also require that a specific set of featungait theiy, feature is selected in the configuration. If the
Fs, such as safety critical braking features, be selectedl at falature is not selected; = 0. Configuration rules from the
times: feature model are represented as constraints over thélesia
in F, as shown in Figure 5. More details on building a CSP

IAINA

VT € (0.K—1), Fr = Fc

VT € (0.K—1), FsC Fr

Change calculation function examples.The function

ol o t changing f p, Feature Model CcSP !
A(H,Fu) calcu ates.t e cpst of changing from one configura; Bis a (f=1)> (f = 1)
tion to another configuration at a different step. For exampl mandatory
the following change calculation function computes thet cos| B | child of A (fo=1)> (fa="1
of changing from one configuration to another: A Bis an
3 optional f.=1)> (f. =1
Fadded = Fu—Fr | B] feature of A (fo=1)=>(fa=1)
A(I:erU) == z fl *Ci, fl 6 Fadded A requires (fa = 1) 9 (fb+fc= 1)
wheref; is thei, added feature and is the price of adding = either B or C _ _
that feature. [B] but not both (fo=1)> (fa=1)
(fo=1)>(fa=1)

IV. A CSP MODEL OF MULTI-STEPCONFIGURATION

This section describes how MUSCLE uses CSPs to automat- Fig. 5: Mapping Feature Model Rules to a CSP

ically derive solutions to muIit—.step.config_uration prali® ¢om a feature model is described in [16], [3].

To address the challenges outlined in Section Il we show that _))

deriving a configuration path for a multi-step configuratio- 'ntroducing Multiple Steps into the CSP

problem can be modeled as a CSP [9] using the formalThe goal of automated configuration over multiple-steps is
framework from Section Ill. After a CSP formulation of ato find a configuration path that permutes a given starting con
multi-step configuration problem is built, MUSCLE can uséiguration through a sequence of intermediate configuration

to reach a desired end state. For example, the configuratio€SP model of point configuration constraints.A CSP
paths in Figure 2 capture sequential modifications to the qawint configuration constrainpg € PC, requires that:
configuration, shown in Figure 1, that will incorporate high
end features into the base automobile model. To reason about YT € Tpe, Fr=pq

a configuration path over a span of steps, we first introducegitrary point configuration constraints can be built @gin
notion of a configuration step into MUSCLE's CSP model ahjis model to restrict the valid configurations that are pess
configuration. through by the configuration path. This flexible point con-
CSP model of configuration stepsTo introduce config- figuration constraint mechanism allows developers to $peci
uration steps into MUSCLE's configuration CSP, we modifgnd automatically find solutions to problems involving the
the configuration CSP formulation outlined in Section IV-A¢onstraints from Challenge 2 in Section 1I-B.
We no longer use a variablf to refer to whether or not the csp point configuration constraint example Assume that
itn feature is selected or deselected. Insteeel refer to the \we want to find values foFr...Frik such that we never
selection state of each feature at a specific stép with the yijplate any of the feature model constraints at any steghEar
variablefir, i.e, if the iy, feature is selected at stdp fir =1. assume that the constraints in the feature model remaii stat
We refer to an entire configuration at a specific step as a selger theK steps (feature model changes over multiple steps
values for these variablesir € Fr. A solution to the CSP is can also be modeled). If thgy, feature is a mandatory child
configuration path defined by a labeling of all of the variablesf the iy, feature, we add the constraint:
in the K-tuple:< Fr,Fri1...Frok-1>.
For example, if theABS feature (denoted,) is not selected VT €(0...K), (fr=1) < (Fr=1)

at stepT and is selected at stép+1, then: That is, we require that at any stdp if the iy, feature Gr)

far=0 is selected, they, feature (j7) is also selected. Furthermore,

at any stepr, if the ji, feature Ejr) is selected, théy fea-

ture (fit) is also selected. Other example point configuration
Figure 6 shows a visualization of how tlig € Fr variables constraints can be mapped to the CSP as shown in Figure 7

fatr1=1

map to feature selections. and Figure 8.
Feature Model CSP Feature Model Over K Time cSP
Feature f; is f=1 Steps
selected 0 Bis always a | forall T in (0..K):
T T+1 mandatory (far =1) > (for = 1)
Feature f; is not ; 0 [B] child of A (for = 1) > (far = 1)
| b selected at step 1T = A B is always i .
T and selected fipeq = 1 LA i il T e
& an optional (for = 1) > (far = 1)
at step T+1 [B] feature of A
A always forall T in (0..K):
T T+1) = . requires (far = 1) > (for +fer=1)
£ Feature f; is | B JLC] eitherBor C (for=1) > (far=1)
a
selected at step fr=q but not both (fr=1)> (fx=1)
T and not firen =0 T o
szl sy Fig. 7: Example Mappings of Static Feature Model Constsaint
T+1 :
Over Multiple Steps to a CSP

Fig. 6: An Example of Variables Representing Feature Selec-

tion State at Specific Steps Feature Model csP
LS Feature f; ff =K+1
remains t=01t

C. CSP Point Configuration Constraints Siltz;ts?r;?;}(deﬂ: 0

To address Challenge 2 from Section 1I-B, the point con- E{> T=0 =0
figuration constraints (which are the constraints that @efin 7= -
. o) TS =0 G0 Fir=0) = 1

what constitutes a valid intermediate configuration) can be [f; | Feature fi is d

modeled as constraints on the variabfgsc Fr. Each point oty an

configuration constraint has a specific set of stépg, during : ! deselected %Od =0

which it must be meti.e., the constraint must only evaluate to Gt

true on the precise steps for which it is in effect. For examal
simple constraint would be that th8%and 3¢ configurations Fig. 8: Example Point Configuration Constraint Mappings to
must have the featuré selected. The set of steps for whickea CSP

this constraint must hold would BB, = {2, 3}.

D. CSP Edge/Change Constraints E. Multi-step Configuration Optimization

Challenge 3 from Section II-C described how developers Challenge 4 from Section 1I-D showed that optimizing the
must be able to specify and adhere to constraints on ténfiguration path is an important issue. CSP solvers can
difference between two configurations at different step®sE automatically perform optimization while finding valuesr fo
edge/change constraints can be modeled in the CSP as apB-variables in a CSP (though it may be impractical time-
straints over the variables in two configuratiofs and Fy. wise for some problems). We can define goal functions over
By extending the CSP techniques we have developed in pas§ CSP variables to leverage these optimization capabilit
work [17], we can specifically capture which features argnd address Challenge 4.
selected or deselected between any two steps and constraip some cases, developers may not want to just find any
these changes via budget or other restrictions. configuration path that ends in the desired state. Instead,

CSP model of edge/change constrainto capture differ- they may want a path that produces a configuration that
ences between feature selections between StepsdU, we meets the end goals as early as possible. For example, in
create two new sets of variabl8sy andDry. These variables the automotive problem from Section | developers may want

have the following constraints applied to them: to find a configuration path that meets their constraints and
Vstu €Sru, (stu=1) < (fir =0)A(fu=1) includes the high-end features in the base model in fewer tha
Vdiru € Dru, (dru=1) & (fr =1)A(fu=0) five years.

CSP model of path length.To support path length opti-
mization, we define a measure of the number of steps needed
to reach a valid end state. We must therefore determine if
the constraints on the final configuratiég,g (which is the
goal state) are met by some configuration prior to the last
configuration Er whereT < K —1). If we meet the final state
edgdT,U) =< Druy,Sru > constraints sooner than the final configuration, then we have

an edge is thus defined by the features deselected and selefqund @ configuration process that requires fewer configurat

to reach configuratiofy from configurationFr. The weight steps.

of the edgeweightedgdT,U)) can then be calculated as a T(_) track Whether or not_a conﬁguration has met the con-
function of the edge tuple. For example, if thefeature costs straints on the ending configurati®a,g, we create a series of
¢ to add or remove then variableswr € W to represent whether or not the configuration

n n Fr € P satisfiesFeng. For each configuratiorfr € P, if Feng
weightedgdT,U)) = EOSTU *C + Zod‘TU * Cj is satisifed:
i= i=

If a feature is selected at time st@p and not at time step
U, thereforedity is equal to 1. Similarly, if a feature is not
selected at stefp and selected at stdp, sty is equal to 1.

An edgeedgéT,U) between the configurations at steps
andU is defined as a 2-tuple:

(Fr = Fend) = (Wr =1)

CSP edge/change constraint exampl&@he cost of includ- = . . :
ing a particular feature may change over time. For examplé- if atany step (up to and including the last step) we satisfy
the cost of adding a GPS guidance system to a car does it €nd state requirements, st equal to 1. We also require
remain fixed, but instead typically decreases from one yearifiat after one step has reached a correct ending configuyatio
the next as GPS technology is commoditized. We can moddf remaining steps also keep the correct configuration and d

and account for these changes in MUSCLE’s CSP formulatigit alter it

and constrain the configuration path so that it adds features (Wr=1)= (Wwry1=1)

at times when they are sufficiently cheap. We will define n n

an edge constraint that takes into account changing feature wr=1)= (%STTHJF Z)diTTH =0)
modification costs and limits the change in cost between two i= i=

successive configurations to $35 million dollars. Optimization examples.We can optimize to find the short-

~ We assume we can calculate that the price of including t@gt configuration path to reach the goals over K steps by gskin
ith feature so that it is included in the feature selection gt stghe solver to maximize:

T by the function:

o K—-1
Cost(i,T) = =—— 72 wr
0.7) T+1 =0
We can then define the cost of adding features to a configkhe reason that maximizing this sum will minimize the
ration as: number of steps taken to reach the desired end state is that
: - ; the sooner the state is reached, the more sigpwill equal
weigh(edgeT.T+1)) = 5 (sr7+Cost(, T+1)) 1 !
& .

We can now limit the cost of any two succesive configurations The most straightforward optimization functions are define
via the edge constraint: as functions of the variables in the configuration pRtH-or

_ example, we can instruct the solver to minimize the cost of
VT € (0.K—1), weightledgeT, T +1)) <35 the ending configuration. Assume that the cosi;pffeature

at stepK is denoted by the variablg € Cx, minimize Cx, Moreover, we must ensure that the high-end features are

where: . included in the last configuration:
CK:-Z)fi*Ci Fend = (fra=0)A(foa=1) A (fra=1)A(faa=1)A
1= (faa=D) A (fas=1) A (fsa=1) A (fea=1)
Other optimizations can be performed on the weights of AN(fga=1)

the edges. For example, to find the configuration path WiEs]ur complete set of point configuration constraintdPs =
the lowest development cost, where the development cost(&:o)

the edge weight the goal is to minimize: Finally, we must specify how the change cost between two

K-1 configurations is calculated and enforce the edge constrain
12 weight(edgeT, T +1)) that at most $35 million dollars is spent per year.
=
F. A Complete Multi-step CSP Example AFrFria) = 2091+ 14srrin + 198741 + 857110

+11st7o1+ Is7rT41+ 16SeTT41

. . . E = (VT €(0.3), AFr,Fri1) <35)
Feature Variables F1 Point Constraint pcg

Given this CSP formulation, we can use a constraint solver
Car for — for=1

_ _ to automatically derive a solution to the multi-step auttisreo

etk fir (for=1) & (fr=1) - ; ; ; ;
Automnated 2 _ configuration problem described in Section .
Driving Controller for (for=1) — (for=1)
Collision (for=1) & (far=1) V. RESULTS
Avoidance far (far=1) > (fer +f7r=1) . .) _
Braking _ pco= As described in Section Il-A, configuring an SPL over
Parallel Parking | far forall _| (far=1) = (or+fs7=2) multiple steps is a highly combinatorial problem. An auto-
pateral Rangel) for | TRIN (04) p =) = (1= 1) mated multi-step SPL configuration technique should be able
Forward Range | for Tar= 1) — (= <) to scale to hundreds of features and multiple steps. Thi®sec
S't" Z’ ’ presents empirical results from experiments we perforroed t
Avoidance frr (frr=1) - (far=1) determine the scalability of MUSCLE. We tested a number of
Enhanced for — (far= 1) > (far+fsr=2) hypotheses related to the scalability of MUSCLE using u#sio

SPL configuration parameters, such as the total number of
Fig. 9: Point Configuration Constraints for the Automobile€onfiguration steps.
Example A. Experimental Platform

We now provide a complete mapping of the automotive Our experiments were performed with an implementation of
configuration problem in Section | to MUSCLE’s multi-stegh® MUSCLE provided by the open-source Ascent Design Stu-
CSP. For this problem, the automotive developers want P (available from code.google.com/p/ascent-desiguis).
include the high-end features into the base model over thBe Ascent Design Studio’s implementation of MUSCLE is
course of five yearskK = 5). We first create a series ofPuilt using the Java Choco open-source CSP solver (availabl
configuration variables to represent the feature seleatighe from choco.sourceforge.net). The experiments were peedr

end of each of the five years: on a computer with an Intel Core DUO 2.4GHZ CPU, 2
gigabytes of memory, Windows XP, and a version 1.6 Java
Fo = (foo, f10,- .. fao) Virtual Machine (JVM). The JVM was run in server mode
F1=(foo, f11,... fg1) using a heap size of 40 megabytes (-Xms40m) and a maximum
memory size of 256 megabytes (-Xmx256m).
Fa = (foo, f14,... faa) To test the scalability of MUSCLE we needed 1,000s of

The mappings of the automobile features from Figure 1 {gature models to test with, which posed a problem since
CSP variables can be seen in Figure 9. A configuration pdftere are not many large-scale feature models available to
is defined by a set of feature selections for each of the fij@Searchers. To solve this problem, we used a random feature
years: model generator developed in prior work [17]. The feature
P—<Fo,F1,...F4> model generator and code for these experiments is available
in open-source form along with the Ascent Design Studio. We
The point constraintpcy € PC, ensures that the feature modelised a maximum branching factor of 5 children per feature and
constraints are met by each year’s configuration, as showmaximum of 1/3 of the features were in an XOR gréup.
in Figure 9. We must also specify the point configuration Our experiments uncovered trends similar to what observed
constraint for the starting configuration: in prior work [17]. In particular, the branching factor, dip

and cross-tree constraints had little effect on configomati
Fsat = (foo=1)A(fio=1)A(f20=0) A (f30=0) ' ' garat

A(fao=0) A (fso= 0) A (feo=0) A fro= 0) IXOR feature groups are features that require the set of #micted
/\(fgo = O) children to satisfy a cardinality constraint (the constras 1..1 for XOR).

time. The key indicator of the solving complexity was the =Worst —Average ~ Best

number of XOR-feature groups in a model. The other key izzgz

indicators of solving complexity where whether or not opti- _ 14000 e
mization was used and the total number of time steps involve: £ 12000
in the configuration. £ 10000

8000
6000
4000

Hypothesis.We hypothesized that MUSCLE could scale up 2000
to hundreds of features and 10 or more time steps. We als 0
believed that a CSP solver would be fast enough to derive . 3 Y A & g . ¥ o
configuration path in a few seconds. Time Steps

Experiment design.To test the scalability of MUSCLE, we Fig. 11: Automated Configuration Time for Varying Numbers
generated random multi-step configuration problems and thef Time Steps
solved for configuration paths that involved larger and darg
numbers of steps. The problems were created by generating
a semi-random feature model with 500 features as well diferent configuration path properties, these resultscate
starting and ending configurations. MUSCLE was used tbat the technique may scale well as the number of time steps
derive a configuration path between the two configurationsgrows. Our future work is investigating the scalability b&t

Our initial experiments were performed witlarge-scale technique and improve MUSCLE’s CSP formulation.
configuration paths which were produced by forcing the
solver to find a configuration path that involved switching
between two children of the root feature that were involved This section compares MUSCLE with related work.
in an XOR group. Figure 10 shows an example large-scaleAutomated Single-step Configuration:Several single-step
configuration path problem where the solver must derivef@ature model configuration and validation techniques have
configuration path that switches from including featéréo been proposed [2], [13], [1], [4], [5], [16]. These technégu

featureB. With this type of configuration problem, the solvet!Se CSPs and propositional logic to derive feature model
configurations in a single stage as well as assure theiriyalid

These techniques help address the high complexity of finding
a valid feature selection for a feature model that meets a set
of intricate constraints.

While these techniques are useful for the derivation and
i : : . g ” validation of configurations in a single step, they do not-con

sider feature configuration over the course of multiple step
Fig. 10: Changing Between Two XOR Subtrees In scenarios, such as the automotive example from Section |,
the ability to reason about configuration over multiple step
was forced to change every feature selection in the startiggtical. MUSCLE provides this automated reasoning across
configuration to reach the end states., these experiments multiple steps. Moreover, MUSCLE can also be used for
maximized the number of changes that the solver could ewrigle-step configurations since it is a special case ofimult
be required to make. step configuration where there is only one skep- 1.

We generated and solved temporal configuration path prob-Staged Configuration: Czarnecki et al. [7] describe a
lems for feature models with 500 features. We successivehethod for using staged feature selection to achieve a final
increased the number of time steps involved in the configutarget configuration. This multi-stage selection considaises
tion path to produce larger and larger configuration pathe. Tin which the selection of features in a previous stage ingact
maximum number of changes per configuration checkpoithte validitiy of later stage feature selections. Our teghei
were bounded to 1/4 of the total number of features. Weso examines the production of a feature model configuratio
solved 100 randomly generated configuration path problemger multiple configuration steps. MUSCLE is complementary
per problem size. to Czarnecki et al’'s work and provides a general formal

Results and analysisThe results from the experiment ardramework that can be used to perform automated reasoning
shown in Figure 11. This figure shows the solving time ion staged configuration processes. Moreover, MUSCLE can
milliseconds for the configuration path derivation vershis t also be used to reason about other multi-step configuration
total number of time steps in the configuration problem. Asrocesses that do not fit into the staged configuration model,
shown in Figure 11, the solving time scales roughly linearlyuch as the the example from Section | where each step must
with the number of time steps. reach a valid configuration.

The apparent linear scaling of the technique with respect toStaged configuration can be modeled as a special instance
the number of time steps is a promising result. Although mooé multi-step configuration. Specifically, staged configiara
work is needed to show that this linear scaling continues fer an instance of a multi-step configuration problem where:

Solving T

B. Experiment: Multi-step Configuration Scalability

VI. RELATED WORK

Selected Feature T

i

Root

E =0, Fstat = 0, Feng= (Fk—1 = Fc), K is set to the number exploration. Our future work therefore plans to improve
of stagesA(Fr,Fy) is not defined, anéc is the set of feature our solving methods to increase performance.

model constraints. That is, there are no limitations on the. Multi-step SPL CSP linear scaling. Emprical data has
changes that can be made between successive configurations,shown that our technique scales linearly for varying
the starting configuration has no features selected, anehithe numbers of time steps. Our future work will therefore test
ing configuration yields a valid feature model configuration the scalability of MUSCLE in response to other factors,
The staged configuration definition can be refined to guagante including problem size and tightness of constraints.

that successive stages only add featurd@sc (0..K—1),Fr € Open-source implementations of MUSCLE are available in

Fria. the Ascent Design Studio (ascent-design-studio.googdkeco
Quality Attribute Evaluation: Several techniques havecom) and FAMA (www.isa.us.es/fama).

been proposed for using quality attribute evaluation[&]]]

[15], [14], [18], [11] to guide a configuration process. Taes

techniques provide a framework for assessing the impa€tl D. Batory. Feature Models, Grammars, and Prepositidf@imulas.

- Software Product Lines: 9th International Conference, SP2005,
of each feature selection on the overall capabilities of the Rennes, France, September 26-29, 2005: ProceedB5.

configured system. As a result, quality characteristic6hsu [2] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-CortdAMA:

as reliability, can be taken into account when selecting fea Tooling a framework for the automated analysis of featurel@m In

tures. These techniques are also designed for single step Ef“gfffv‘\jlg}ge_?;tg‘rf’srv'fts';;fénmast'?CilemorkOS;'Op on VaridgiModeliing

configuration processes. These techniques could be used[in b. Benavides, P. Trinidad, and A. Ruiz-Cortes. AutordatRea-
a complementary fashion to MUSCLE to produce the point soning on Feature Models. IRroceedings of the 17th Conference

. on Advanced Information Systems EngineeriRgrto, Portugal, 2005.
configuration, edge, and other constraints in the mulp-ste ,~\iiEIP/USENIX.

configuration model. [4] D. Beuche. Variant Management with Pure:: variants. Hfécal report,
Pure-Systems GmbH, http://www.pure-systems.com, 2003.

R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s Evipece with
a Reactive Software Product Line Approach.Aroceedings of the 5th
. . . . International Workshop on Product Family EngineerinSiena, ltaly,
Many production SPL configuration problems require de- \gvember 2003. P y Engineeqng Y
velopers to evolve a configuration over multiple steps,aath [6] P. Clements and L. NorthropSoftware Product Lines: Practices and

than in a single iteration. Multi-step configuration, howgv Patterns Addison-Wesley, Boston, USA, 2002. ,
t take int ¢ traint the chanae betweg K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Carafipn
must take INto account constraints on g Using Feature Models.Software Product Lines: Third International

successive configurations, such as the increase in cost of an Conference, SPLC 2004, Boston, MA, USA, August 30-Septeinbe
automobile’s configuration from one year to the next. More- 2004: Proceedings2004. o

h h figuration is performed over multi IéS] L. Etxeberria and G. Sagardui. Variability Driven QuglEvaluation in
over, even t oug : con '_gu _p p Software Product Lines. li$oftware Product Line Conference, 2008.
steps, a valid configuration must still be produced at the end SPLC'08. 12th Internationalpages 243-252, 2008.

of each year, further adding complexity while maintaining a9l P. V. Hentenryck.Constraint Satisfaction in Logic Programmin/lIT
Press, Cambridge, MA, USA, 1989.

REFERENCES

VIl. CONCLUDING REMARKS [5]

func_tlonal system cor_1f|gurat|on. ~[10] A. Immonen. A method for predicting reliability and dkedility at
It is hard to determine a sequence of feature model configu- the architectural level. Research Issues in Software Product-Lines-
rations and feature selections such that an initial corvitom Engineering and Management, T. Kakola and JC Duefias, El2005.

. . . . 11] S. Jarzabek, B. Yang, and S. Yoeun. Addressing qualitsibates
can be transformed into a desired target configuration. Tt[ns in domain analysis for product lines. Boftware, IEE Proceedings-

paper introduces a technique, called #elti-step Software volume 153, pages 61-73, 2006.

; ; i [12] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM
Configuration probLEm solvefMUSCLE), for modeling and A Feature-Oriented Reuse Method with Domain-specific Refes

solving multi-step configuration pf0b|ems- MUSCLE repre- architectures. Annals of Software EngineerinG(0):143-168, January
sents the problem as a CSP, which enables CSP solvers to 1998.

determine a path from a starting configuration to a tar @@] M. Mannion. Using first-order logic for product line meldvalidation.
. . P 9 g . 9 Proceedings of the Second International Conference owargtProd-
configuration. The output from MUSCLE is a valid sequence ¢t | ines 2379:176-187, 2002.

of feature selections that will lead from a starting confagion [14] E. Niemeld and A. Immonen. Capturing quality requireiseof product

i ; ; i i i family architecture. Information and Software Technology9(11-
to the desired target configuration while also taking into 12)'1107-1120, 2007.

account resource constraints. [15] F. Olumofin and V. Misic. Extending the ATAM ArchiteciiEvaluation
The following are lessons learned from our efforts examin- to Product Line Architectures. ItEEE/IFIP Working Conference on

. .) . - . Software Architecture, WICSAR005.
ing multi-step configuration using MUSCLE: [16] J. White, A. Nechypurenko, E. Wuchner, and D. C. SchnAditomating

o SPL multi-step optimziation. Multi-step optimizations Product-Line Variant Selection for Mobile Devices. Rroceedings

can be performed to minimize both the number of time of the 11th Annual Software Product Line Conference (SPKgdto,
Japan, Sept. 2007.

steps and the resource consumption required to reacki/ J. white, D. C. Schmidt, D. Benavides, P. Trinidad, andRAiz-Cortez.
target SPL configuration. Automated Diagnosis of Product-line Configuration ErrarsFeature

i ; ; ; ; Models. In Proceedings of the Software Product Lines Conference
« Multi-step SPL configuration complexity. For each time (SPLC) Limerick, Ireland, Sept. 2008,

step, there exists a worst case exponential number (0] H. zhang, S. Jarzabek, and B. Yang. Quality Predictiod Assessment
intermediate configurations. Due to this, it is paramount for Product LinesLECTURE NOTES IN COMPUTER SCIENGiages

to employ an algorithm that does not rely on exhaustive 681-695, 2003.

