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Abstract

Software Product-lines (SPLs) use modular software
components that can be reconfigured into different
variants for different requirements sets. Feature mod-
eling is a common method for capturing the configu-
ration rules for an SPL architecture. A key challenge
for developers is determining how to optimally select
a set of features while simultaneously honoring re-
source constraints. For example, optimally selecting
a set of features that fit the development budget is an
NP problem. Although resource consumption prob-
lems have been extensively studied in the Artificial
Intelligence and Distributed Computing communi-
ties, the algorithms that these communities have de-
veloped, such as Multiple-choice Knapsack Problems
(MMKP) approximation algorithms, have not been
extensively applied to feature selection subject to re-
source constraints. The paper provides the following
contributions to the study of automated feature se-
lection for SPL variants: (1) we present a polynomial
time approximation technique called Filtered Carte-
sian Flattening (FCF) for deriving approximately op-
timal solutions to feature selection problems with re-
source constraints by transforming the problems into
equivalent MMKP problems and using MMKP ap-
proximation algorithms, (2) we show that FCF can
operate on large feature models that would not be

possible with existing algorithmic approaches, and
(3) we present empirical results from initial experi-
ments performed using FCF. Our results show that
FCF is 93%+ optimal on feature models with 5,000
features.

1 Introduction

Software Product-Lines (SPLs) [5] define reusable
software architectures where applications are assem-
bled from modular components. Each time a new
version of an SPL application (called a variant) is
created, the rules governing the composition of the
SPLs modular components must be strictly adhered
to. Feature Modeling [7] is a common modeling tech-
nique used to capture an SPL’s configuration rules.

A feature model is a tree-like structure where each
node in the tree represents a variation or increment
in application functionality. Parent-child relation-
ships in the tree indicate the refinement of application
functionality. For example, in a feature model for an
Magnetic Resonance Imaging system a parent feature
would be Magnet Strength and the children would be
1.5 Tesla Magnet or 3 Tesla Magnet.

Each SPL variant is described as a selection or
list of features that are present in the variant. The
construction of a variant is bounded by adding con-
straints on how features are selected. If a feature is
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selected, the feature’s parent must also be selected.
Moreover, features can be required, optional, or in-
volved in XOR/Cardinality relationships with other
features to model a wide range of configuration rules.

A key challenge when selecting features for an SPL
variant is determining how to select an optimal set
of features while simultaneously adhering to one or
more resource constraints. For example, in a med-
ical imaging system, if each hardware feature has a
cost and value associated with it, selecting a set of
features that maximizes the resulting variant’s value
but also fits within a customer’s procurement budget
is hard. Proofs that this problem is an NP prob-
lem can be built by showing that any instance of
the NP Multi-dimensional Multiple-choice Knapsack
Problem [1] (MMKP) can be reduced to a feature
selection problem with resource constraints, as de-
scribed in Section 3.1.

Existing techniques for deriving solutions to fea-
ture selection problems [4, 8, 3, 13] have utilized exact
methods, such as integer programming [12] or SAT
solvers [9]. Although these approaches provide guar-
anteed optimal answers they have exponential algo-
rithmic complexity. As a result, these algorithms do
not scale well to large feature selection problems with
resource constraints.

Resource constraints have been extensively studied
in the Artificial Intelligence and distributed comput-
ing communities. Although there are a number of
good approximation algorithms that have been devel-
oped for problems involving resource constraints [1],
these algorithms have so far not been applied to fea-
ture modeling. One key obstacle to applying existing
MMKP algorithms to feature selection subject to re-
source constraints is that the hierarchical structure of
a feature model does not fit into the MMKP problem
paradigm.

To address the lack of approximation algorithms
for selecting featues subject to resource constri-
ants, we have created a polynomial-time approxima-
tion technique, called Filtered Cartesian Flattening
(FCF), for selecting approximately optimal feature
sets while adhering to multi-dimensional resource
constraints. This paper provides several contribu-
tions to the automated construction of SPL vari-
ants. First, we present the polynomial time FCF

technique for selecting approximately optimal fea-
ture sets while respecting resource constraints. We
then show how FCF can be combined with different
MMKP approximation algorithms to provide differ-
ent levels of optimality and time complexity. Finally,
we present initial empirical data showing that FCF
provides roughly 93%+ optimality on feature models
with 5,000 features.

The remainder of this paper is organized as fol-
lows: Section 2 describes the challenge of optimally
selecting a set of features subject to a set of re-
source constraints; Section 3 presents our FCF ap-
proximation technique for selecting nearly-optimal
feature sets subject to resource constraints; Section 4
presents empirical results showing that our algorithm
averages 93%+ optimality on feature models of 5,000
features; Section 5 compares our work to related re-
search; and Section 6 presents concluding remarks
and lessons learned.

2 Challenge: Optimally Select-

ing Features Subject to Re-

source Constraints

A common goal in selecting features is to maximize
the perceived value or quality of the variant pro-
duced. In the context of medical imaging systems,
for instance, a key goal is to maximize the accuracy
of the images produced. The problem is that there
are usually additional constraints on the feature se-
lection that are not captured in the feature model
and that make the optimization process hard.

For example, features often have costs associated
with them, such as the cost of different strength mag-
nets for a Magnetic Resonance Imaging (MRI) ma-
chine. A producer of an MRI machine cannot force
its customers to buy an MRI variant that exceeds
the customer’s budget. When a customer requests
an MRI machine, therefore, the producer must select
a set of features for which the sum is less than the
customer’s budget, which also maximizes the accu-
racy of the machine.

We call this problem optimal feature selection sub-
ject to resource constraints. As shown in Section 3.1,
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any instance of another NP problem (the MMKP
problem) can be reduced to an instance of this prob-
lem. Optimal feature selection subject to resource
constraints is thus also in NP.

Large-scale industrial feature models, such as those
for the automation software in continuous casting
steel plants, can contain on the order of 30,000 fea-
tures [11]. Existing techniques [4, 8, 3, 13] that use
exact but exponential algorithms do not scale well to
these large problem sizes. Other existing NP approx-
imation algorithms, such as those for MMKP prob-
lems cannot be directly applied to optimal feature
selection subject to resource constraints. Since exact
algorithms do not scale well for these problems and
existing approximation algorithms cannot be applied,
it is hard to automate feature models for large-scale
applications.

3 Filtered Cartesian Flattening

This section presents the Filtered Cartesian Flatten-
ing (FCF) approximation technique for optimal fea-
ture selection subject to resource constraints. FCF
transforms an optimal feature selection problem with
resource constraints into an equivalent MMKP prob-
lem and then solves it using an MMKP approxima-
tion algorithm.

3.1 MMKP Problems

A W:21, H:1 B W:17, H:6 C W:23, H:10

Set 1

D W:24, H:3 E W:29, H:1 F W:2, H:1

Set 2

MMKP Solution

Figure 1: A Feature Model of an MMKP Problem
Instance

A Knapsack problem [6] is an NP problem where
there is a knapsack of fixed size and the goal is to
place as many items as possible from a set into the
knapsack. An MMKP problem is a variation on the
Knapsack problem where the items are divided into
X disjoint sets and at most one item from each set
may be placed in the knapsack. Values are typically

assigned to each item and the goal is to maximize the
value of the items placed in the knapsack.

MMKP problems can be reduced to optimal fea-
ture selection problems with resource constraints.
First, a single root feature denoting the solution is
created. Next, for each set, a required child feature
representing the set is added to the feature model as a
child of the root. For each set, the corresponding fea-
ture in the feature model is populated with a child
XOR group1 containing the items in the set. The
available resources for the feature selection problem
are defined as the size of the knapsack. The resources
consumed by each feature are assigned to the length,
width, and height of the original MMKP item. An ex-
ample feature model of an MMKP problem is shown
in Figure 1.

1 Tesla 1.5 Tesla 3 Tesla

Magnet

Alg. 1 Alg. 2

Alg. 3a Alg. 3b Alg. 3c

Alg. 3

Alg.

MRI

Figure 2: An Example MRI Feature Model

FCF works by performing the reverse process–
transforming feature selection problems with resource
constraints into MMKP problems. The steps in the
FCF technique are designed to flatten the hierar-
chically structured feature model into a number of
independent MMKP sets to form an MMKP prob-
lem. Figure 2 shows an example feature model of an
MRI machine and Figure 3 illustrates the equivalent
MMKP problem. Each item in these sets represents
a potential valid partial feature selection from the
feature model. There are an exponential number of
potential feature selections and thus some of the po-
tential configurations must be filtered out to limit the
time complexity of the technique. FCF performs this
filtering in the third step of the algorithm, described
in Section 3.4.

Since each MMKP set that is produced by FCF

1An XOR group is a set of features of which exactly one of

the features may be selected at a time.
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MMKP Set 1:

<MRI, Magnet, 1 Tesla>,

<MRI, Magnet, 1.5 Tesla>,

<MRI, Magnet, 3 Tesla>

MMKP Set 2:

<Alg., Alg 1>,

<Alg., Alg 2>,

<Alg., Alg 3, Alg. 3a>,

<Alg., Alg 3, Alg. 3b>,

<Alg., Alg 3, Alg. 3c>

Note:

(items/feature selections denoted with ’< >’)

Figure 3: MMKP Sets for MRI Feature Model

contains items representing valid partial feature selec-
tions, the technique must ensure that choosing items
from any of the X MMKP sets produces a feature
selection that is both valid and complete. The FCF
algorithm accomplishes this task in its first step (see
Section 3.2) by creating one MMKP set for the sub-
tree of features directly required by the root feature.
The remaining MMKP sets are produced from the
subtrees of features that are connected to the root
through an optional feature. The technique does
not currently support cross-tree constraints, although
this is part of our future research.

3.2 Step 1: Cutting the Feature

Model Graph

The first step in FCF is to subdivide the feature
model into a number of independent subtrees. The
goal is to choose the subtrees so that the selection of
features in one subtree does not affect the selection of
features in other subtrees. One MMKP set will later
be produced for each subtree.

We define features that are optional or involved
in an XOR group or a cardinality group as choice
points. A cardinality group is a group of features
that when selected must adhere to a cardinality ex-
pression (e.g., select 2 . . . 3 of the features X, Y, and
Z). An XOR group is a special case of a cardinality

group where exactly one feature from the group must
be selected (e.g., it has cardinality 1 . . . 1). Starting
from the root, a depth-first search is performed to
find each optional feature with no ancestors that are
choice points. At each optional feature with no choice
point ancestors, a cut is performed to produce a new
independent subtree, as shown in Figure 4.

Figure 4: Cutting to Create Independent subtrees

3.3 Step 2: Converting All Feature

Constraints to XOR Groups

Each MMKP set forms an XOR group of elements.
Since MMKP does not support any other relation-
ship operators, such as cardinality, nor does it sup-
port hierarchy, we must flatten each of the subtrees
and convert all of their relationship types into XOR.
This conversion allows the conversion of the feature
model’s independent subtrees into a series of MMKP
sets.

Cardinality groups are converted to XOR groups
by replacing the cardinality group with an XOR
group containing all possible combinations of the car-
dinality group’s elements that satisfy the cardinality
expression. Each new item produced from the Carte-
sian product has the combined resource consumption
and value of its constituent features. Since this con-
version could create an exponential number of ele-
ments, we bound the maximum number of elements
that are generated to a constant number K. Rather
than requiring exponential time, therefore, the con-
version can be performed in constant time.

The conversion of cardinality groups is one of the
first steps where approximation occurs. We define
a filtering operation that chooses which K elements
from the possible combinations of the cardinality
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group’s elements to add to the XOR group. All other
elements are discarded.

Any number of potential filtering options can be
used. Our experiments evaluated a number of filter-
ing strategies, such as choosing (1) the K highest val-
ued items, (2) a random group of K items, and (3) a
group of K items evenly distributed across the items’
range of weights. We define a feature’s weight or size
as the amount of each resource consumed by the fea-
ture. We found that selecting the K items with the
best ratio of V alue√

P

rc2

i

, where rci is the amount of the

ith resource consumed by the item, provided the best
results. This sorting critera has been used success-
fully by a number of other MMKP algorithms [2]. An
example conversion with K = 3 and random selection
of items is shown in Figure 5.

Figure 5: Converting a cardinality group to an XOR
Group with K=3 and Random Selection

Individual features with cardinality expressions at-
tached to them are converted to XOR groups using
the same method. The feature is considered as a car-
dinality group containing M copies of the feature,
where M is the upper bound on the cardinality ex-
pression (e.g. [L..M ] or [M ]). The conversion then
proceeds identically to cardinality groups.

Optional features are converted to XOR groups by
replacing the optional feature O with a new required
feature O′. O′ in turn, has two child features, O

and ∅ forming an XOR group. O′ and ∅ have zero
weight and value. An example conversion is shown
in Figure 6.

3.4 Step 3: Flattening with Filtered

Cartesian Products

For each independent subtree of features that now
only have XOR and required relationships, an

Figure 6: Converting an Optional Feature into an
XOR Group

MMKP set needs to be produced. Each MMKP set
needs to consist of a single top-level XOR group. To
create a single top-level XOR group, we perform a se-
ries of recursive flattening steps using filtered Carte-
sian products to produce an MMKP set containing
complete and valid partial feature selections for the
subtree.

For each feature with a series of required children,
a set of items is produced from a filtered Cartesian
product of the sets produced by recursively running
the algorithm on its children. For each feature with
an XOR group child, a set of items is produced con-
sisting of the Cartesian product of the feature and the
union of the sets produced by recursively applying the
algorithm to the features in its XOR subgroup. This
process is repeated until a single set of items remains.
A visualization of this process is shown in Figure 7.

Figure 7: Flattening an XOR Group

Once each independent subtree has been converted
into an MMKP set, we must mark those sets which
represent optional configuration choices. For each set
that does not include the root feature, we add an item
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∅ with zero weight and zero value indicating that no
features in the set are chosen. This standard MMKP
method handles situations where choosing an item
from some sets is optional. Since the root feature
must always be chosen, the ∅ item is not added to its
set.

3.5 Step 4: MMKP Approximation

The first three steps produce an MMKP problem
where each set contains items representing potential
partial configurations of different parts of the feature
model. One set contains partial configurations for
the mandatory portions of the feature model con-
nected to the root. The remaining sets contain partial
configurations of the optional subtrees of the feature
model.

The final step in deriving an optimal architectural
feature selection is to run an existing MMKP approx-
imation algorithm to select a group of partial config-
urations to form the feature selection. For our imple-
mentation of FCF, we used a simple modification of
the M-HEU algorithm [2] that puts an upper limit on
the number of upgrades and downgrades that can be
performed. Since FCF produces an MMKP problem,
we can use any other MMKP approximation algo-
rithm, such as C-HEU [10]) which uses convex hulls
to search the solution space. The solution optimality
and solving time will vary depending on the algo-
rithm chosen.

3.6 Algorithmic Complexity

The complexity of FCF’s constituent steps can be
analyzed as follows:

• The first step in the FCF algorithm, cutting the
tree, requires O(n) time to traverse the tree and
find where to make the top-level optional fea-
tures.

• The second step of the algorithm requires
O(Kn ∗ S) steps, where S is the time required
to perform the filtering operation. Simple fil-
tering operations, such as random selection, do
not add any algorithmic complexity. In these

cases, at most n sets of K items must be cre-
ated to convert the tree to XOR groups, yielding
O(Kn). In our experiments, we selected the K

items with the best value to resource consump-
tion ratio. With this strategy, the sets must be
sorted, yielding O(Kn2 log n).

• The third step in the algorithm requires flatten-
ing at most n groups using filtered Cartesian
products, which yields a total time of O(Kn∗S).

• The solving step incurs the algorithmic complex-
ity of the MMKP approximation algorithm cho-
sen.

This analysis yields a total general algorithmic
complexity for FCF of (n + (Kn ∗ S) + (Kn ∗ S) +
MMKP +n) = O(Kn∗S+MMKP +n). As long as
a polynomial time filtering operation is applied, FCF
will have an overall polynomial time complexity. For
large-scale problems, this polynomial time complex-
ity is significantly better than an exponential running
time.

4 Results

To evaluate our FCF approximation technique, we
generated random feature models and then created
random feature selection problems with resource con-
straints from the feature models. For example, we
would first generate a feature model and then assign
each feature an amount of RAM, CPU, etc. that it
consumed. Each feature was also associated with a
value. We randomly generated a series of available
resources values and asked the FCF algorithm to de-
rive the feature selection that maximized the sum of
the value attributes while not exceeding the randomly
generated available resources. Finally, we compared
the FCF answer to the optimum answer.

We performed the experiments using 8 dual proces-
sor 2.4ghz Intel Xenon nodes with 2 GB RAM. Each
node was loaded with Fedora Core 4. We launched
2 threads on each machine, enabling us to generate
and solve 16 optimal feature selection with resource
constraints problems in parallel.
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The results from solving 18,500 different feature se-
lection problems, each with a feature model of 5,000
features and 2 resource types (RAM and CPU) is
shown in Figure 8. We set the max set size, K, in
the filtering steps to 2,500. The X axis shows the per-
centage of optimality. The Y axis shows the number
of problem instances or samples that were solved with
the given optimality. The overall average optimality
was 93%.

Figure 8: FCF Optimality on 18,500 Feature Models
with 5,000 Features and 2 Resources

5 Related Work

Benavides et al. [4] present a technique for using Con-
straint Satisfaction Problems (CSPs) to model and
solve feature selection problems. This technique can
be modified to solve feature selection problems sub-
ject to resource constraints [13]. Their technique
works well for small-scale problems, where an ap-
proximation technique is not needed. For larger-scale
problems, however, their technique is too computa-
tionally demanding. In contrast, FCF performs well
on these large-scale problems.

Other approaches to automated feature selection
rely on propositional logic, such as those presented

by Mannion [8] and Batory [3]. These techniques
were not designed to handle integer resource con-
straints and thus are not equipped to handle optimal
feature selection problems subject to resource con-
straints. Moreover, these techniques rely on SAT
solvers that use exponential algorithms. FCF is a
polynomial-time algorithm that can handle integer
resource constraints and thus can perform optimal
feature selection subject to resource constraints on
large-scale problems.

6 Conclusion

Approximation algorithms are needed to optimally
select features for large-scale feature models subject
to resource constraints. Although there are numer-
ous approximation algorithms for other NP problems,
they do not directly support optimal feature selection
subject to resource constraints. The closest possible
class of approximation algorithms that could be ap-
plied are MMKP approximation algorithms but these
algorithms are not designed to handle the hierarchi-
cal structure and non-XOR constraints in a feature
model. This lack of approximation algorithms lim-
its the scale of model on which automated feature
selection subject to resource constraints can be per-
formed.

This paper shows how the Filtered Cartesian Flat-
tening (FCF) approximation technique can be ap-
plied to optimally select features subject to resource
constraints. FCF creates a series of filtered Cartesian
products from a feature model to produce an equiv-
alent MMKP problem. After an equivalent MMKP
problem is obtained, existing MMKP approximation
algorithms can be used to solve for a feature selection.
The empirical results in Section 4 show how FCF can
achieve an average of at least 93% optimality for large
feature models. The results can be improved by using
more exact MMKP approximation algorithms, such
as M-HEU [2].

From our experience with FCF, we have learned
the following lessons:

• For small-scale feature models (e.g., with < 100
features) MMKP approximation algorithms do
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not provide optimal results. For these smaller
problems, exact techniques, such as those de-
signed by Benavides et al. [4], should be used.

• For large-scale feature models (e.g., with > 5,000
features) exact techniques typically require days,
months, or more, to solve optimal feature selec-
tion problems subject to resource constraints. In
contrast, FCF typically requires between 1-5 sec-
onds for a 5,000 feature problem.

• Once a feature model has been subdivided into a
number of independent subtrees, these subtrees
can be distributed across independent processors
to flatten and solve in parallel. The FCF tech-
nique is thus highly amenable to multi-core pro-
cessors and parallel computing.

An implementation of FCF is included with the
open-source GEMS Model Intelligence project and is
available from eclipse.org/gmt/gems.
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