
Using Filtered Cartesian Flattening and Microrebooting
to Build Enterprise Applications with Self-adaptive

Healing

J. White1, B. Dougherty1, H.D. Strowd2, and D.C. Schmidt1

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA

E-mail: {jules,briand,schmidt}@dre.vanderbilt.edu
2 Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

hstrowd@andrew.cmu.edu

Abstract. Building enterprise applications that can self-adapt to eliminate com-
ponent failures is hard. Existing approaches for building adaptive applications
exhibit significant limitations, such as requiring developers to manually handle
healing side-effects, such as lock release, thread synchronization, and transaction
cancellation. Moreover, these techniques require developers to write the complex
recovery logic needed to self-adapt without exceeding resource constraints.
This paper provides two contributions to R&D on self-adaptive applications.
First, it describes a microrebooting technique called Refresh that uses (1) fea-
ture models and a heuristic algorithm to derive a new and correct application
configuration that meets resource constraints and (2) an application’s component
container to shutdown the failed subsystems and reboot the subsystem with the
new component configuration. Second, we present results from experiments that
evaluate how fast Refresh can adapt an enterprise application to eliminate failed
components. These results show that Refresh can reconfigureand reboot failed
application subsystems in approximately 150ms. This levelof performance en-
ables Refresh to significantly improve enterprise application recovery time com-
pared to standard system or application container rebooting.

1 Introduction

Current trends and challenges.Enterprise applications are large-scale software systems
that execute complex business processes, such as order placement and inventory man-
agement. Since many enterprise applications receive considerable client traffic, they are
often hosted on multipleapplication serversdistributed across a local network. Most
enterprise applications utilize component middleware, such as Enterprise Java Beans
(EJB), to reduce the effort of developing the distributed communication infrastructure
by managing the complex distributed interactions between application components and
ensuring data integrity through distributed transaction controls.

The failure of an enterprise application can have considerable negative impact (e.g.,
lost orders, customer irritation, etc.) on an organization. As a consequence, high avail-
ability is important for most enterprise applications. Regardless of how much testing
and system validation is done, systems can and often do fail [10]. In these situations,
speedy recovery of system functionality is critical.

Many organizations use manual processes to recover from failures of enterprise ap-
plications [10]. For example, when an EJB application fails, system administrators may



2 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

restart a group of application servers to attempt to remedy the error. If the error is not
fixed by the restart, the administrators may begin collecting logs from the application
servers and scanning them for errors. These manual processes are time consuming and
error-prone and can leave an application offline for an extended period while the root
cause of the failure is identified and remedied.

To address the limitations of human-based recovery of application failure, self-
adaptive capabilities are needed that can identify failed components and perform self-
adaptive healing to quickly recover. Rather than being off-line for minutes or hours,
self-adaptive systems should be able to heal in milliseconds or seconds. Despite the po-
tential payoff associated with self-adaptive healing capabilities, enterprise applications
are rarely developed using these techniques since (1) developing the complex logic to
determine how to fix a failure cleanly is hard and (2) implementing healing actions
requires handling a plethora of challenging side-effects,such as the need to roll-back
distributed transactions.

Rather than focusing on fine-grained self-adaptive healingsystems, most organiza-
tions today leverage clustering and other redundancy mechanisms to ensure availabil-
ity. Although these macro-level approaches can improve availability, they require ad-
ditional hardware and complex system administration. Moreover, there are many types
of failures that macro-level approaches cannot fix. For example, if a database or remote
service that an enterprise application relies on becomes inaccessible due to a network
failure, an entire cluster of redundant application instances will be brought down. In
this situation, however, if the application could self-heal by loading additional compo-
nents to communicate with an alternative but not identically accessed database, it could
continue to function.

Since software development projects already have low success rates and high costs,
building an application capable of healing is hard [3]. Moreover, building adaptive
mechanisms greatly increases application complexity and can be hard to decouple from
application code if the development of the adaptive mechanism is not successful. In ad-
dition, most self-adaptive healing approaches are not suitable for enterprise applications
because they do not take into account transaction state, clean release of resources, and
other critical actions that must be coordinated with an enterprise application server.

Solution approach→Microrebooting and Feature-based ReconfigurationOur approach
to reducing the complexity of developing self-adaptive healing enterprise applications
is calledRefresh. Refresh uses a combination offeature models[15] (which describe
an application in terms of points of variability and their affect on each other) andmi-
crorebooting[8] (which is a technique for rebooting a small set of failed components
rather than an entire application server) to significantly reduce the complexity of im-
plementing an application with self-adaptive healing capabilities. When an application
component fails, Refresh (1) uses the application’s feature model to derive a new appli-
cation configuration, (2) uses the application server’s component container to shutdown
the failed component, and (3) reboots the component in the newly derived configuration.
Refresh relies on the ability to transform a feature model into a constraint satisfaction
problem (CSP) and use a constraint solver to autonomously derive a new configuration.

Our previous work [24, 22] showed how Refresh’s CSP-based healing could be used
to reduce the complexity of implementing self-adaptive healing applications. When the
self-adaptive healing mechanism needs to respect resourceconstraints, such as band-



Title Suppressed Due to Excessive Length 3

width or memory limits, a CSP-based approach for deriving application configurations
from feature models becomes too slow for enterprise applications. Selecting a feature
configuration that adheres to resource constraints is an NP-Hard problem that is time-
consuming to solve with a CSP-solver.

This paper extends our previous work by showing howFiltered Cartesian Flatten-
ing and multidimensional multiple-choice knapsack heuristicalgorithms can be used
as the feature selection mechanism to drastically reduce feature selection and conse-
quently, self-adaptive healing time. We show how these algorithms can be combined
with microrebooting, component middleware container hotswap capabilities, and fea-
ture models to create self-adaptive enterprise applications. We also present empirical
results that show the increase in scalability and speed provided by Filtered Cartesian
Flattening versus a CSP-based reconfiguration approach.

Paper organization.The remainder of this paper is organized as follows: Section2
presents the e-commerce application we use as a case study throughout the paper; Sec-
tion 3 enumerates current challenges in applying existing MDE techniques for building
self-adaptive healing applications that must adhere to resource constraints; Section 4 de-
scribes Refresh’s approach to using feature models, microrebooting, and Filtered Carte-
sian Flattening to reduce the complexity of modeling and implementing an application
that can heal; Section 5 analyzes empirical results obtained from applying Refresh to
our case study; Section 6 compares Refresh with related work; and Section 7 presents
concluding remarks.

Fig. 1: The ICred Instant Credit Enterprise Application



4 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

2 Case Study: ICred

Enterprise applications have a number of complex considerations that make it hard to
build an application capable of self-adaptive healing. To showcase these challenging
aspects of enterprise applications, we present a case studybased on an enterprise ap-
plication that provides instant credit decisions for in-store purchases. Throughout the
paper, we refer to our case study application asICred. The high-level architecture of
ICred is shown in Figure 1.

Java RMI

In-House

SOAP Converter 1

Vendor 1

Hessian

Vendor 2

SOAP Converter 1 OpenID

Vendor 3

CreditReportProvider

Fig. 2: Feature Model of the Available Credit Report Providers

When a customer in a retail store wishes to purchase an expensive item, such as a
computer projector, the store clerk can offer the customer an instant line of credit to
make the purchase and pay later. If the customer is interested in obtaining the line of
credit, the store clerk keys in the customer’s information and a request for credit is sent
to the remote ICred server for approval. ICred must pull the customer’s credit report
and other needed information to make the credit decision.

ICred is used for a number of different retailers and each retailer has a specific set
of requirements for validating a credit application and issuing an approval. Stores that
sell less expensive and less durable items, such as computerequipment, may require a
simple validation of the customer’s residence informationand bank accounts. Vendors
of more expensive items, such as car dealerships, require more extensive sets of infor-
mation, such as a full credit report and verification of a previous address. Each customer
is supported by a custom configuration of ICred that is not shared.

Instances of ICred are run and managed by an information supplier on behalf of
retail chains. Each piece of information needed for the credit decision can either be ob-
tained in-house or from another information supplier. Whenever ICred requests a piece
of information on a customer from another supplier, a small fee is paid to the infor-
mation vendor that services the request. Information can bepurchased from multiple
vendors at varying prices based on volume.

An ICred configuration receives instant credit requests from thousands of retail lo-
cations and must be continuously available. A failure to make a credit decision could
result in a customer not making a large purchase. When one of ICred’s information
suppliers becomes unavailable, ICred can fail over to another supplier. For example,
Figure 3, shows the different sources of information that can be used to obtain credit
reports.

Figure 3 shows a feature model for an e-commerce applicationcalledCreditReport-
Provider that represents a service for obtaining credit reports. TheCreditReportProvider
feature has different sub-features, such as different potential vendors that can serve as
the credit report provider service. If theVendor 1 feature is chosen, it excludes the
other potential providers’ services from being used (it constrains the other features). If



Title Suppressed Due to Excessive Length 5

Java RMI

In-House CRP

SOAP Converter 1

Vendor 1

Hessian

Vendor 2

SOAP Converter 1 OpenID

Vendor 3

CreditReportProvider

In-House

Hessian

Vendor 2

SOAP

Vendor 3

AddressVerifProvider

Single In-House

JTA

Multiple

Datasources

ICred

Fig. 3: Feature Model of the Available Credit Report Providers

Vendor 1 service fails, a new feature selection can be derived that does not include the
failed service’s feature. When a component failure occurs,Refresh uses an application’s
feature model and a constraint solver to derive an alternatebut legal configuration of
the application’s component that eliminates the failed component implementation.

Failing over to another supplier involves a number of complex activities. Informa-
tion vendors represent the same information using slightlydifferent formats and lever-
age different request protocols. Depending on the vendor chosen, it may be necessary
to load various special converter and protocol handlers into the application. Moreover,
since ICred receives a high request volume, it must try to ensure that the combination
of protocols used by its current configuration of information vendors will not saturate
the network. Finally, since per request prices vary across information vendors, ICred
must also try to minimize the cost incurred by the configuration of external information
vendors.

To showcase the complexity of performing self-adaptive healing in an enterprise
application, we explore the difficulty of failing over between local and external infor-
mation services in ICred. Section 3 presents the complexities of developing healing
logic and adaptation actions. Section 4 shows how Filtered Cartesian Flattening can
be used to derive a new application configuration to eliminate a failure and boot the
configuration using the application’s component container.

3 Self-adaptive Healing Challenges for Enterprise Applications

This section describes the challenges associated with implementing a self-adaptive heal-
ing enterprise application. First, we show that the need to adhere to resource constraints,
such as total available network bandwidth, makes finding a way of healing an enterprise
application an NP-Hard problem. Second, we discuss how evenif a way of healing the
application can be found, numerous accidental complexities, such as the need to prop-
erly handle in-process transactions, make it hard to implement healing actions.

3.1 Challenge 1: Resource constraints make adaptation actions extremely
complex

When an application component fails and requires healing, adaptation actions must be
run to reach a new and valid state. We term the sequence of adaptation actions that
are run to fix a failed application subsystem as arecovery path. A chief complexity of
implementing an application capable of self-adaptive healing is building the logic to
select a recovery path for a given application failure.

Recovery actions are used to perform two key types of activities: (1) performing
resource cleanup and release from failed application components and (2) determining



6 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

what new application components can be loaded to heal a failure. The difficulty in
building recovery logic is that the second critical activity, selecting the new components
to load, requires finding a series of application componentsthat fit into the resource
limits of the application. Selecting a series of componentsthat adheres to a resource
limit is an instance of the NP-Hard knapsack problem.

For example, consider the failure of theIn-House CRP. ICred’sIn-House CRP can
be swapped out to one of three remote services. When the localIn-House CRP fails, the
recovery logic must determine the optimal subset of these remote services to fail-over
to in order to fix the error. Furthermore, the recovery logic must attempt to minimize
the cost of the information provider services that are used in the new configuration.

Network bandwidth consumption must be accounted for in the healing process.
Each remote service uses a different protocol for communication and consumes vary-
ing amounts of network bandwidth. The Java RMI service uses the efficient binary IIOP
protocol. The SOAP service, however, sends comparatively large XML messages over
HTTP and consumes significantly more bandwidth. Depending on what combination
of services are currently being used by the application, thenetwork may or may not
have sufficient bandwidth to fail over to the SOAP-based service. Even if theVendor
1 SOAP-based service is the cheapest to fail-over to, it may not be possible due to
network bandwidth limitations.

If the SOAP-based service is the only of the three alternate remote services that is
reachable after the failure, the healing logic may need to shutdown and swap other parts
of the application (e.g., AddressVerifProvider, etc.) to less bandwidth consumptive re-
mote services so that the SOAP service can be used. For example, if theCreditReport-
Provider is using a SOAP-based remote service, it may need to be swapped toVendor
2’s Hessian-based service to allow the SOAP-based product service to be used. Finding
the right set of services to swap in and out of the applicationis NP-Hard and difficult to
do quickly at runtime. Performing simultaneous cost optimization is even harder.

Designing this type of complex adaptive logic to choose a recovery path is hard.
For most enterprise application development projects, this type of complex adaptation
logic is not feasible to develop from scratch. Moreover, with nearly 53% of software
development projects being completed over-budget and 18% of projects canceled [25,
17] adding this type of complex adaptive logic adds significant risk to a project. In
Section 4.2, we show how we use feature models and the Filtered Cartesian Flattening
algorithm to eliminate the need to write complex recovery path selection logic.

3.2 Challenge 2: Accidental complexity makes adaptation actions hard to
develop

Enterprise applications are typically built on top of component middleware, such as En-
terprise Java Beans. Component middleware provides anapplication container, which
manages the intricate details of thread synchronization, distributed/local transaction
control, and object pooling. One key challenge of developing self-adaptive healing
mechanisms for enterprise applications is properly and cleanly handling the nuanced
considerations related to these aspects of the application. For example, if a credit re-
port provider fails, the application must ensure that any distributed transactions associ-
ated with the provider are rolled back and cleanly terminated before a new provider is
swapped in. Figuring out the right way to terminate transactions, release locks, termi-
nate network connections, and release other resources whenhealing occurs is hard.



Title Suppressed Due to Excessive Length 7

When healing takes place, a further challenge of properly handling transactions and
other container managed services is that the application does not have direct control
over them. For example, EJBs are not allowed to perform thread synchronization or
manually obtain locks. If a failure occurs in a multi-threaded application, therefore, it
is hard for an EJB to ensure that data corruption does not occur if it reconfigures the
application’s internal structure.

An issue further complicating the healing process is that healing may require chang-
ing the policies the container uses to manage these services. In ICred, for example, if
ICred is using all local data sources, it can use standard local transaction management
through the container. If ICred fails over to a remote datasource, however, it must also
force the container to reconfigure itself to use the Java Transaction API (JTA) to manage
distributed transactions across both the local and remote datasources. It is hard to per-
form these numerous complex reconfiguration processes manually. Section 4 describes
how we use the application component container’s standard lifecycle mechanisms to
perform healing and eliminate the need to write custom recovery actions.

4 Solution Approach→Combining Refresh and Filtered Cartesian
Flattening

The challenges in Sections 3.1-3.2 stem from two primary causes: (1) the need for de-
velopers to implement complex recovery path selection logic that accounts for resource
constraints and (2) the need for developers to implement complex recovery actions that
correctly coordinate and handle the side-effects of healing, such as graceful transaction
failure. This section presents an overview ofRefresh[24] and shows how we extend it
with the Filtered Cartesian Flattening algorithm to address these challenges.

4.1 Overview of Refresh

Refresh uses feature models to capture the rules for what is acorrect system state, which
when combined with the Filtered Cartesian Flattening feature selection algorithm, can
be used to automate the selection of a new configuration to reboot into. After a new and
valid configuration is found, Refresh uses the application’s container to swap out the
failed components and boot the new alternate configuration.Automating the reconfigu-
ration process eliminates the need for developers to designand implement the recovery
path selection logic, which addresses Challenge 2 from Section 3.1.

Using the container’s normal lifecycle facilities to perform healing (e.g., rebooting
and hotswapping), eliminates the need for developers to manage the side-effects of heal-
ing since they are automatically managed by the container when lifecycle management
activities are performed. As shown in Section 5, using Filtered Cartesian Flattening
and container rebooting to perform resource constrained healing provides fast recov-
ery at a significantly reduced development cost compared to recovery action oriented
techniques.

Refresh is based on the concept of microrebooting [8]. When an error is observed
in the application, Refresh uses the application’s component container to shutdown and
reboot the application’s components. Using the application container to shutdown the
failed subsystem takes milliseconds as opposed to the seconds required for a full ap-
plication server reboot. Since it is likely that rebooting in the same configuration (e.g.



8 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

referencing the same failed remote service) will not fix the error, Refresh derives a new
application configuration from the application’s feature models that does not contain
the failed features (e.g., remote services).

The application configuration dictates the remote servicesused by the application.
The application configuration determines any local component implementations, such
a SOAP messaging classes, needed to communicate and interact properly with the re-
mote services. After deriving the new application configuration and service composi-
tion, Refresh uses the application container to reboot the application into the desired
configuration. The overall Refresh healing process is shownin Figure 4.

Fig. 4: Refresh Healing Process

Throughout the healing process, Refresh does not use any custom recovery ac-
tions. All error states are transitioned out of through a single recovery path, shutting
down the application components via the container, automatically deriving a new and
valid configuration/service composition, and restarting the application components. No
application-specific recovery action modeling or recoveryapplication implementations
are required.

Fig. 5: Mapping Failures to Features



Title Suppressed Due to Excessive Length 9

Refresh interacts directly with the application container, as shown in Figure 4. Dur-
ing the initial and subsequent container booting processes, Refresh transparently inserts
application probesinto the application to observe the application components. Obser-
vations from the application components are sent back to anevent stream processor
that runs queries against the application event data, such as exception events, to identify
errors. An example event stream query and mapping to the feature model is shown in
Figure 5. Whenever an application’s configuration requireshealing,environment probes
are used to determine available remote services and global application constraints, such
as whether or not JTA is present.

4.2 Feature Model Configuration Healing

At the core of the Refresh approach is its ability to derive a new configuration for the
application that both eliminates any failed components andadheres to resource limita-
tions. Refresh uses a feature model of the application to capture the rules for reconfig-
uration. When a failure occurs, the configuration space defined by the feature model is
searched for a new and valid configuration.

A feature model is used to define the configuration space of an enterprise application
by defining configuration rules, such as:

– What alternate implementations of components are available
– What dependencies (such as libraries, configuration files, etc.) must be used with

each component
– What combinations of components form a valid and complete application compo-

sition
– Annotations describing how much RAM, Bandwidth, etc. is consumed by each

feature

Searching a feature model’s solution space for a valid configuration is an instance of
the NP-complete circuit satisfiability problem. The feature model can define an arbitrary
boolean formula. Each boolean term represents the presenceof a specific feature. The
constraints in the feature model are the AND, OR, and NOT constraints used to form
the circuit satisfiability clauses. Numerous research approaches have applied techniques
such as SAT solvers [4, 18], Binary Decision Diagrams (BDDs)[9], and Constrant Sat-
isfaction Problem (CSP) solvers [20, 5], to find valid feature model configurations.

Our initial implementation of Refresh used the CSP-based approach proposed by
Benavides [5] and extended by us to include resource constraints [23, 21]. CSP-based
feature selection techniques work well when resource constraints are not included.
Through experiments that we performed [22], however, we observed significant scala-
bility problems for CSP-based feature derivation with resource constraints, as shown in
the results in Section 5.3. Other exponential exact derivation techniques, such as SAT
solvers and BDDs, suffer from these same scalability problems [22].

A number of heuristic techniques can be applied to improve the performance of
these exact solving techniques. For example, by choosing the correct variable ordering,
many BDD-based problems can be simplified significantly. Choosing the best variable
ordering, however, is an NP-Hard problem and must be performed on a per-problem
basis. Similar techniques can be applied to CSP-based configuration derivation, but
must also be performed on a per problem basis.



10 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

Since the goal of Refresh is to simplify the implementation process of applications
capable of self-adaptive healing, it would not be reasonable to expect these heuristic
techniques to be learned and applied by normal developers. Moreover, the application of
these techniques requires significant skill. Just as good application design is an art form,
knowing which of these heuristics to apply and how to apply them is also an art. We do
not think is reasonable to expect developers are willing and/or able to become experts
in these techniques. We have therefore not considered thesetechniques for Refresh.

4.3 Filtered Cartesian Flattening

To overcome the scalability issues associated with finding anew and valid feature con-
figuration, we incorporated the Filtered Cartesian Flattening feature selection algorithm
into Refresh. Filtered Cartesian Flattening is an polynomial-time algorithmic technique
that approximates a feature configuration problem with resource constraints as a mul-
tidimensional multiple-choice knapsack problem (MMKP) [22]. A standard knapsack
problem attempts to find a subset of a series of items that fits into a knapsack of limited
size and maximizes the value of the items inside the knapsack. An MMKP problem is
a variant of a knapsack problem where the items are subdivided into disjoint sets and
exactly one item must be chosen from each set to put into the knapsack. Both variants
of the problem are NP-Hard [19].

The reason that Filtered Cartesian Flattening approximates the feature configuration
problem as a MMKP problem is that there are a number of excellent polynomial-time
heuristic algorithms that have been developed for MMKPs. For example, the M-HEU
and C-HEU heuristic MMKP algorithms can solve large MMKPs inmilliseconds with
an average of over 95% optimality [19]. Once a feature configuration problem is repre-
sented as a MMKP, these heuristic algorithms can be used to derive a feature selection.
When a failure occurs, the speed of Filtered Cartesian Flattening, which uses MMKP
heuristic algorithms, is far more important than its minor tradeoff in healing solution
optimality.

Filtered Cartesian Flattening approximates a feature model as an MMKP problem
by finding a series of independent subtrees in the feature model that can be configured
independently. Each of these subtrees is represented as an MMKP set. The items within
the MMKP sets represent the valid configurations of their respective subtrees. Because
each MMKP set represents a subtree of the feature model, by choosing a configuration
from each MMKP set and composing them, a complete feature model configuration
will always be reached.

Since there may be an exponential number of possible configurations of each sub-
tree, Filtered Cartesian Flattening employs an approximation technique. As Filtered
Cartesian Flattening enumerates the possible configurations of each feature model sub-
tree, it bounds the MMKP set size and selectively filters which configurations are prop-
agated into the sets. Typically, a heuristic that selects configurations with the best ratio
of value/resource consumption is used as the selection criteria.

To derive a configuration that omits the failed feature whilestill adhering to resource
constraints, refresh utilizes Filtered Cartesian Flattening. During the enumeration pro-
cess, Filtered Cartesian Flattening disallows the inclusion of the failed feature to any of
the MMKP sets. Due to this exclusion, the feature can not belong to any configuration
that can be derived from the resulting MMKP problem, thus disallowing the failed fea-
ture to be present in the new feature set. After deriving the new feature configuration,



Title Suppressed Due to Excessive Length 11

the application container is used to shutdown the old configuration and boot the new
configuration.

5 Refresh and Filtered Cartesian Flattening Performance

This section presents results from experiments we performed to empirically evaluate
the performance of Refresh’s feature reconfiguration and container-based healing. We
used a reference implementation of an enterprise request processing application, im-
plemented on top of the Java Spring Framework [13], that could fail over between a
number of different remote and local data sources. The implementation was comprised
of roughly 15,000 lines of code using a combination of Java, Java Server Pages, XML,
and SQL.

Our prior work [24] conducted experiments to measure the reduction in implemen-
tation complexity provided by Refresh. This paper extends our prior work by evaluating
the performance of feature model and container-based healing. Moreover, we analyze
how automated feature selection techniques can be made morescalable to handle re-
source constraints and optimization goals.

5.1 Hardware and Software Testbed Configuration

The experiments with the application were performed on a Pentium Core DUO 2.4ghz
processor, with 3 gigabytes of RAM, running Windows XP. A Java Virtual Machine,
version 1.6, was run in client mode for all tests. We used Apache Tomcat 6 as the web
container for the application.

To test the performance of Refresh, we implemented a self-adaptive healing version
of the application and compared its performance to the conventional (non-adaptive)
implementation. The first set of experiments compared the performance of the Refresh-
based application to the conventional unmodified application to measure the overhead
of using a container-based healing approach. The second setof experiments extended
the Refresh application to adhere to a bandwidth constraint. We measured the configu-
ration derivation times of both the Filtered Cartesian Flattening configuration derivation
technique and the CSP-based technique to compare scalability.

5.2 Refresh Performance

To create an initial performance baseline to compare against, we used Apache JMeter
to simulate the concurrent access of 30 different customersto the application and the
time required to complete 1,000 requests. Figure 6 shows theaverage time required
to complete various parts of the request process throughoutthe experiment. We also
used Apache JMeter to simulate the concurrent access of 30 different customers to the
Refresh-enabled application and the time required to complete 1,000 requests. To mea-
sure Refresh’s worst case performance overhead, we used theCSP-based configuration
derivation technique for this experiment since it was slower than the Filtered Cartesian
Flattening technique. The performance results were identical to the conventional ap-
plication implementation. This result was expected since the time-consuming healing
process is only invoked during component failures. Moreover, our Refresh application
implementation used very lightweight Spring interceptorsto monitor components for



12 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

Fig. 6: Average Response Time for the Application

exceptions. We saw no measurable performance penalty for the use of these intercep-
tors.

To determine how quickly the Refresh application could self-heal, we ran a further
trial of Apache JMeter tests to simulate an additional 1,000requests. During the experi-
ment, we used fault injection to randomly simulate the failure of different services. The
faults were injected by adding code to the local services to throw Java runtime excep-
tions that would force Refresh to heal the application by swapping remote services for
the failed local services. After the local services were swapped to remote services, we
randomly shutdown the remote services used by the application to force the failover to
alternate remote services or back to a local service that hadbecome available.

Over the tests, shutting down a failed subsystem and rebooting the container into
a new configuration averaged roughly 140ms. The CSP technique required an average
of an additional 10ms to find the new configuration to reboot into. When this result is
compared to Figures 6, it can be seen that the healing time is slightly more than the
average time to complete an order.

Figure 7 overlays the application’s worst case response time using a local informa-
tion provider, a remote information provider, and a remote information provider that is
swapped back to a local provider because of a failure. The failure of the remote ser-
vice is easily discernible on request 7. Before the failure occurs, the application has
the same average performance as the conventional application using a remote service.
Once the failed service is healed, the application again hasthe same average perfor-
mance as the conventional application with the local service. This result indicates that
container-based healing incurs little or no pre- or post- healing performance penalties.



Title Suppressed Due to Excessive Length 13

Fig. 7: Application Performance Before and After Healing

5.3 Filtered Cartesian Flattening vs. CSP-based Configuration Derivation

The next set of experiments compared the scalability and speed of Filtered Cartesian
Flattening versus a CSP-based configuration derivation technique. We extended the Re-
fresh application’s healing configuration to attempt to respect a bandwidth constraint
while healing. Moreover, we directed the healing mechanismto also attempt to mini-
mize the total cost consumed by the new configuration’s services. Our CSP-based con-
figuration solver was based on the Java Choco open source constraint solver [1].

First, we compared the time for Filtered Cartesian Flattening and the CSP-based
techniques to derive a new configuration for the standard points of variability in the
application. We then iteratively added 32 additional information providers to consider
in the configuration derivation process. Both techniques found solutions for each size
configuration problem. The results from this experiment areshown in Figure 8.

Initially, the CSP technique requires 234ms to configure theconventional applica-
tion implementation with the additional resource constraints and bandwidth minimiza-
tion goal. In the experiments presented in Section 5.2, the CSP-based technique required
an average of 10ms to find a new and valid configuration withoutresources constraints.
The new constraints and optimization goal cause a significant increase in the solv-
ing time to 234ms. Furthermore, by the time the 32 additionalinformation providers
were added into the configuration, the CSP-based technique required over 30 minutes
(1,835,406ms) to derive a new configuration.

The time for Filtered Cartesian Flattening to derive a new configuration across the
different configuration sizes is shown by the red line in the lower part of Figure 8. Ini-
tially, Filtered Cartesian Flattening requires 15ms to derive a configuration, which is
substantially less than the CSP-based technique’s 234ms. Moreover, when the 32 addi-
tional providers are added, Filtered Cartesian Flatteningis able to derive a configuration
in 31ms. Filtered Cartesian Flattening’s 31ms is many orders of magnitude less than the
∼30mins for the CSP-based technique. This result shows that Filtered Cartesian Flat-



14 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

Fig. 8: Filtered Cartesian Flattening vs. CSP-based Configuration Derivation Time for the Appli-
cation

tening is significantly more scalable than the CSP-based technique for our case study
application.

6 Related Work

This section compares our work on Refresh and Filtered Cartesian Flattening with other
research work. First, we compare Refresh to the original technique of microrebooting.
Next, we compare and contrast Refresh with other feature-based self-adaptive healing
techniques. Finally, we compare Refresh to other non-feature based self-adaptive heal-
ing techniques.

Microrebooting related work.Refresh is based on the idea of Microrebooting [8]. Mi-
crorebooting restarts individual components or collections of components to fix an error.
The number of components that are rebooted continues to growif successive reboots do
not eliminate the error. Microrebooting can help to eliminate some types of problems
but may not fix all issues.

For example, if one of the information provider services fails, restarting the applica-
tion will not fix the error since it is in a remote component. Instead, the local application
must be rebooted in an alternate configuration to eliminate the error. As we showed in
Section 3.1 determining how to eliminate failed componentsis a challenging problem.
Refresh uses the Filtered Cartesian Flattening algorithm to eliminate this problem by
dynamically deriving a new application configuration to reboot the failed subsystem
into. This type of reconfiguration and rebooting can eliminate both local errors and
references to failed remote services, which microrebooting alone cannot fix.

Feature-based healing related work.Other approaches to application healing have been
developed that leverage a combination of goal modeling and feature models [16]. In the



Title Suppressed Due to Excessive Length 15

approach by Lapouchnian et al. feature models are used to findpoints of variation in
the application. The application adaptation is driven by Statecharts. As we showed in
Section 3.1, specifying the logic to solve the NP-Hard problem of reconfiguring the
application subject to resource constraints is hard to implement in either Java, C++, or
Statecharts.

The approach of using Statecharts to drive the adaptive healing of the application
burdens enterprise application developers with a extremely complex problem. More-
over, there can be an exponential number of states that may need to be modeled to
properly adapt in all resource availability scenarios. In contrast, Refresh does not re-
quire an explicit adaptation plan but instead a model of how the application can be
reconfigured. Refresh then automates the complex problem ofderiving a new applica-
tion configuration that fits the current available resources.

Self-adaptive healing related work.Other approaches also use the idea of identifying
error conditions and then planning adaptation actions thatshould be triggered [7, 14, 11,
6, 2, 16, 12]. These approaches also require developers to handle the complex problem
of determining how to best adapt the application’s configuration while adhering to a
resource constraint. Determining how to reconfigure in the face of a resource constraint
is an NP-Hard problem. In contrast, Refresh automates this recovery logic by using
the Filtered Cartesian Flattening approximation algorithm to derive a new application
feature set that can be used to continue functioning.

7 Concluding Remarks

A common approach to simplifying the development of self-adaptive healing applica-
tions is to use a model of an application’s adaptation logic to generate self-adaptive
healing code or guide self-adaptive healing at runtime [7, 14, 11, 6, 2, 16, 12]. This ap-
proach to simplifying the development of self-adaptive healing applications does not,
however, eliminate the key complexity, which is the logic needed to deduce how to heal
the application. Moreover, when resource constraints mustbe considered in the adapta-
tion process, determining how to adapt the application without exceeding the resource
limitations is an NP-Hard problem.

This paper showed how our Refresh technique—based on a combination of microre-
booting and dynamic reconfiguration using feature models—can simplify the develop-
ment of self-adaptive healing applications. Rather than simply rebooting in the same
configuration (which could cause errors involving remote services to persist), Refresh
dynamically derives a new application configuration to reboot into using the applica-
tion’s feature model. Moreover, we showed that by using the FCF algorithm to perform
the derivation of the new feature selection, Refresh could respect resource constraints
and still find alternate feature configurations fast.

The following list presents the lessons we have learned fromour experiences build-
ing self-adaptive healing enterprise applications using Refresh:

– CSP-based reconfiguration techniques are sufficient if no resource constraints
are present.If resource constraints are not considered in the reconfiguration pro-
cess, CSP and other exact techniques, such as SAT solvers, provide sufficient per-
formance to derive new configurations. Only when resource constraints are added
is FCF needed.



16 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

– Container lifefcycle methods can managing accidental healing complexities.
Containers must be able to release resources, roll back transactions, and perform
other cleanup whenever an application container is shutdown. By reusing this life-
cycle mechanism to perform healing, significant accidentalcomplexity is managed
by the container on the developer’s behalf.

– Optimization goals may not be easy to formalize.In many domains, resource
constraints and optimization goals can be hard to formalizesince it is not clear how
choosing one service over another affects cost and resourceconsumption. Interac-
tions between organizations, however, often do have a knownresource consumption
and cost associated with them.

– Service-oriented architectures fit well into the Refresh healing model.Many
standard enterprise applications that do not use remote services do not have vari-
ability built into the components that can be used to processrequests. Enterprise
applications that use service-oriented architectures typically do have the potential
to be swapped to fail over to alternate services at runtime.

Refresh is available in open-source form as part of theGEMS Model Intelligence
project atwww.sf.net/projects/gems.

References

1. Choco constraint programming system. http://choco.sourceforge.net/.
2. F. Barbier. MDE-based Design and Implementation of Autonomic Software Components.

Cognitive Informatics, 2006. ICCI 2006. 5th IEEE International Conference on, 1, 2006.
3. H. Barki, S. Rivard, and J. Talbot. Toward an assessment ofsoftware development risk.

Journal of Management Information Systems, 10(2):203–225, 1993.
4. D. Batory. Feature Models, Grammars, and Prepositional Formulas.Software Product

Lines: 9th International Conference, SPLC 2005, Rennes, France, September 26-29, 2005:
Proceedings, 2005.

5. D. Benavides, P. Trinidad, and A. Ruiz-Cortes. AutomatedReasoning on Feature Models.
17th Conference on Advanced Information Systems Engineering (CAiSEŠ05, Proceedings),
LNCS, 3520:491–503, 2005.

6. V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, and S. Abdelwahed. Enabling
Self-Managing Applications using Model-based Online Control Strategies.Proceedings of
the 3rd IEEE International Conference on Autonomic Computing, Dublin, Ireland, June
2006.

7. R. Calinescu. Model-Driven Autonomic Architecture.Proceedings of the 4th IEEE
International Conference on Autonomic Computing, Jacksonville, Florida, USA, June, 2007.

8. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.Microreboot-a technique for
cheap recovery.Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pages 31–44, 2004.

9. K. Czarnecki, M. Antkiewicz, C. Kim, S. Lau, and K. Pietroszek. FMP and FMP2RSM:
Eclipse Plug-ins for Modeling Features Using Model Templates.Conference on Object
Oriented Programming Systems Languages and Applications, pages 200–201, October
2005.

10. D. P. D. Oppenheimer, A. Ganapathi. Why do Internet Services Fail, and What can be
Done about It?Proceedings of the USENIX Symposium on Internet Techňnologies and
Systems, March 2003.

11. Denaro, Giovanni and Pezze, Mauro and Tosi, Davide. Designing Self-Adaptive
Service-Oriented Applications. 2007.

12. X. Elkorobarrutia, A. Izagirre, and G. Sagardui. A Self-Healing Mechanism for State
Machine Based Components.Proceedings of the 1st International Conference on
Ubiquitous Computing: Applications, Technology and Social Issues, Alcalá de Henares,
Madrid, Spain, June, 2006.

13. R. Johnson and J. Hoeller.Expert one-on-one J2EE development without EJB. Wrox, 2004.



Title Suppressed Due to Excessive Length 17

14. K. Joshi, W. Sanders, M. Hiltunen, and R. Schlichting. Automatic Model-Driven Recovery
in Distributed Systems.At the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pages 25–38, 2005.

15. K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A feature-; oriented reuse
method with domain-; specific reference architectures.Annals of Software Engineering,
5:143–168, 1998.

16. A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards Requirements-driven
Autonomic Systems Design.Proceedings of the 2005 workshop on Design and evolution of
autonomic application software, pages 1–7, 2005.

17. K. Linberg. Software developer perceptions about software project failure: a case study.
The Journal of Systems & Software, 49(2-3):177–192, 1999.

18. M. Mannion. Using First-order Logic for Product Line Model Validation.Proceedings of
the Second International Conference on Software Product Lines, 2379:176–187, 2002.

19. M. Mostofa Akbar, M. Sohel Rahman, M. Kaykobad, E. Manning, and G. Shoja. Solving
the Multidimensional Multiple-choice Knapsack Problem byconstructing convex hulls.
Computers and Operations Research, 33(5):1259–1273, 2006.

20. P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, andM. Toro. Automated error
analysis for the agilization of feature modeling.Journal of Systems and Software, in press,
2007.

21. J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wienands, E. Wuchner, and L. Fiege.
Automated Model-based Configuration of Enterprise Java Applications. InEDOC 2007,
October 2007.

22. J. White, B. Dougherty, and D. Schmidt. Filtered Cartesian Flattening.Workshop on
Analysis of Software Product-Lines at the International Conference on Software
Product-lines, October 2008.

23. J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt.Optimizing and Automating
Product-Line Variant Selection for Mobile Devices. In11th International Software Product
Line Conference, September 2007.

24. J. White, H. Strowd, and D. C. Schmidt. Creating Self-healing Service Compositions with
Feature Modeling and Microrebooting.The International Journal of Business Process
Integration and Management (IJBPIM), Special issue on Model-Driven Service-Oriented
Architectures, 2008.

25. B. Whittaker. What went wrong? Unsuccessful information technology projects.
INFORMATION MANAGEMENT AND COMPUTER SECURITY, 7:23–29, 1999.


