Using Filtered Cartesian Flattening and Microrebooting
to Build Enterprise Applications with Self-adaptive
Healing

J. Whité", B. Dougherty, H.D. Strowd, and D.C. Schmidt

1 Department of Electrical Engineering and Computer Scignce
Vanderbilt University, Nashville, TN, USA
E-mail: {jules,briand,schmidt}@dre.vanderbilt.edu

2 |nstitute for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA
hstrowd@andrew.cmu.edu

Abstract. Building enterprise applications that can self-adapt tmielate com-
ponent failures is hard. Existing approaches for buildidgpive applications
exhibit significant limitations, such as requiring devedopto manually handle
healing side-effects, such as lock release, thread synidatton, and transaction
cancellation. Moreover, these techniques require deeesdip write the complex
recovery logic needed to self-adapt without exceedinguesoconstraints.

This paper provides two contributions to R&D on self-adaptapplications.
First, it describes a microrebooting technique called &&frthat uses (1) fea-
ture models and a heuristic algorithm to derive a new andecbrpplication
configuration that meets resource constraints and (2) dicappn’s component
container to shutdown the failed subsystems and rebootuth®ystem with the
new component configuration. Second, we present results ésgperiments that
evaluate how fast Refresh can adapt an enterprise apphdatieliminate failed
components. These results show that Refresh can reconfigdreeboot failed
application subsystems in approximately 150ms. This le¥gerformance en-
ables Refresh to significantly improve enterprise appboatecovery time com-
pared to standard system or application container relgotin

1 Introduction

Current trends and challenge&nterprise applications are large-scale software systems
that execute complex business processes, such as ordemglacand inventory man-
agement. Since many enterprise applications receivederadile client traffic, they are
often hosted on multiplapplication serverglistributed across a local network. Most
enterprise applications utilize component middlewarehsas Enterprise Java Beans
(EJB), to reduce the effort of developing the distributechamunication infrastructure
by managing the complex distributed interactions betwexati@ation components and
ensuring data integrity through distributed transactiontrols.

The failure of an enterprise application can have consilersegative impace(g,
lost orders, customer irritation, etc.) on an organizatisma consequence, high avail-
ability is important for most enterprise applications. Retless of how much testing
and system validation is done, systems can and often dolf@jil [n these situations,
speedy recovery of system functionality is critical.

Many organizations use manual processes to recover fraungaiof enterprise ap-
plications [10]. For example, when an EJB application fastem administrators may

2 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

restart a group of application servers to attempt to remeé\etror. If the error is not
fixed by the restart, the administrators may begin collgckiys from the application
servers and scanning them for errors. These manual precasséme consuming and
error-prone and can leave an application offline for an eleédmeriod while the root
cause of the failure is identified and remedied.

To address the limitations of human-based recovery of egiitin failure, self-
adaptive capabilities are needed that can identify faimdmonents and perform self-
adaptive healing to quickly recover. Rather than beinglio#-for minutes or hours,
self-adaptive systems should be able to heal in millises@ndeconds. Despite the po-
tential payoff associated with self-adaptive healing téfes, enterprise applications
are rarely developed using these techniques since (1)ajsaglthe complex logic to
determine how to fix a failure cleanly is hard and (2) impletirenhealing actions
requires handling a plethora of challenging side-effesish as the need to roll-back
distributed transactions.

Rather than focusing on fine-grained self-adaptive healysgems, most organiza-
tions today leverage clustering and other redundancy nmésiing to ensure availabil-
ity. Although these macro-level approaches can improvédadbibity, they require ad-
ditional hardware and complex system administration. Moee, there are many types
of failures that macro-level approaches cannot fix. For eptanif a database or remote
service that an enterprise application relies on beconsz@ssible due to a network
failure, an entire cluster of redundant application inseenwill be brought down. In
this situation, however, if the application could self-healoading additional compo-
nents to communicate with an alternative but not identjcaticessed database, it could
continue to function.

Since software development projects already have low ssaeges and high costs,
building an application capable of healing is hard [3]. Mwrer, building adaptive
mechanisms greatly increases application complexity ande hard to decouple from
application code if the development of the adaptive mecmaiis not successful. In ad-
dition, most self-adaptive healing approaches are nalskeifor enterprise applications
because they do not take into account transaction state) oidease of resources, and
other critical actions that must be coordinated with anmmise application server.

Solution approach- Microrebooting and Feature-based Reconfiguratioor approach
to reducing the complexity of developing self-adaptivelingaenterprise applications
is calledRefresh Refresh uses a combinationfefiture models[15] (which describe
an application in terms of points of variability and theifeat on each other) anuhi-
crorebooting[8] (which is a technique for rebooting a small set of failesmponents
rather than an entire application server) to significanglguce the complexity of im-
plementing an application with self-adaptive healing ¢dlgges. When an application
component fails, Refresh (1) uses the application’s featuwdel to derive a new appli-
cation configuration, (2) uses the application server'sponent container to shutdown
the failed component, and (3) reboots the componentin tviyrieerived configuration.
Refresh relies on the ability to transform a feature modil anconstraint satisfaction
problem (CSP) and use a constraint solver to autonomousiyeceenew configuration.
Our previous work [24, 22] showed how Refresh’s CSP-basatirtgecould be used
to reduce the complexity of implementing self-adaptivelingeapplications. When the
self-adaptive healing mechanism needs to respect resoanstraints, such as band-

Title Suppressed Due to Excessive Length 3

width or memory limits, a CSP-based approach for derivingliagtion configurations
from feature models becomes too slow for enterprise afjits. Selecting a feature
configuration that adheres to resource constraints is arl&tB-problem that is time-
consuming to solve with a CSP-solver.

This paper extends our previous work by showing Hkered Cartesian Flatten-
ing and multidimensional multiple-choice knapsack heuriatgorithms can be used
as the feature selection mechanism to drastically reduaterk selection and conse-
quently, self-adaptive healing time. We show how theserdlyns can be combined
with microrebooting, component middleware container Wwafs capabilities, and fea-
ture models to create self-adaptive enterprise applicatid/e also present empirical
results that show the increase in scalability and speedigedwby Filtered Cartesian
Flattening versus a CSP-based reconfiguration approach.

Paper organization. The remainder of this paper is organized as follows: Secion
presents the e-commerce application we use as a case stadghibout the paper; Sec-
tion 3 enumerates current challenges in applying existimf=Mechniques for building
self-adaptive healing applications that must adhere twureg constraints; Section 4 de-
scribes Refresh’s approach to using feature models, neiloomting, and Filtered Carte-
sian Flattening to reduce the complexity of modeling andl@m@nting an application
that can heal; Section 5 analyzes empirical results olddimen applying Refresh to
our case study; Section 6 compares Refresh with related;\madkSection 7 presents
concluding remarks.

Credit Repon Providers

In-House
Providers
SOAP
r "” <
W Vendor 2 P &
Credit Reports Vendor 1
: S Address Information Providers
= 2. Get Credit
Report Hessnan ‘
- SOAP W '
3. Address Vendor 2

Verification Vendor 3

Retail Stores
ICred 1 |nstant Credit \ ﬁ
Requests
M \\ﬁ)
»

i

Fig. 1: The ICred Instant Credit Enterprise Application

4 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt
2 Case Study: ICred

Enterprise applications have a number of complex condidasathat make it hard to
build an application capable of self-adaptive healing. iovecase these challenging
aspects of enterprise applications, we present a case lsts#yl on an enterprise ap-
plication that provides instant credit decisions for inrstpurchases. Throughout the
paper, we refer to our case study application@®d. The high-level architecture of
ICred is shown in Figure 1.

R
Y
[In-House] [Vendor 1] [vendor 2| [Vendor 3]

Java RMI SOAP| | Converter Hessiaﬂ ‘SOAP Converter 1 [OpeniD|

Fig. 2: Feature Model of the Available Credit Report Provéde

When a customer in a retail store wishes to purchase an expeten, such as a
computer projector, the store clerk can offer the customenstant line of credit to
make the purchase and pay later. If the customer is intef@stebtaining the line of
credit, the store clerk keys in the customer’s informatiod a request for credit is sent
to the remote ICred server for approval. ICred must pull thet@mer’s credit report
and other needed information to make the credit decision.

ICred is used for a number of different retailers and eadhilegthas a specific set
of requirements for validating a credit application andiisg an approval. Stores that
sell less expensive and less durable items, such as congmutgmment, may require a
simple validation of the customer’s residence informatiod bank accounts. Vendors
of more expensive items, such as car dealerships, require extensive sets of infor-
mation, such as a full credit report and verification of a pyes address. Each customer
is supported by a custom configuration of ICred that is notesha

Instances of ICred are run and managed by an informationlisugm behalf of
retail chains. Each piece of information needed for theitditision can either be ob-
tained in-house or from another information supplier. Wéean ICred requests a piece
of information on a customer from another supplier, a snedl i paid to the infor-
mation vendor that services the request. Information capusehased from multiple
vendors at varying prices based on volume.

An ICred configuration receives instant credit requestsiftoousands of retail lo-
cations and must be continuously available. A failure to enalcredit decision could
result in a customer not making a large purchase. When on€reflls information
suppliers becomes unavailable, ICred can fail over to arathpplier. For example,
Figure 3, shows the different sources of information thax loa used to obtain credit
reports.

Figure 3 shows a feature model for an e-commerce applicedibedCr edi t Report -
Provi der thatrepresents a service for obtaining credit reportsCrbeéi t Repor t Provi der
feature has different sub-features, such as differentnpiatevendors that can serve as
the credit report provider service. If thiendor 1 feature is chosen, it excludes the
other potential providers’ services from being used (itstoains the other features). If

Title Suppressed Due to Excessive Length 5

CreditReportProvider AddressVerifProvide)
Y D

[In-House CRR [Vendor 1] [Vendor 2| [Vendor 3| [In-House] [Vendor 2] [Vendor 3 [Single In-Housd Multiple |
‘Java RMI‘ ‘ Converter1| ‘ Hessiad ‘ Converter]l ‘ OpenID|

Fig. 3: Feature Model of the Available Credit Report Provéde

Vendor 1 service fails, a new feature selection can be derived thed dot include the
failed service’s feature. When a component failure ocdre$resh uses an application’s
feature model and a constraint solver to derive an altetmattéegal configuration of
the application’s component that eliminates the failed ponent implementation.

Failing over to another supplier involves a number of completivities. Informa-
tion vendors represent the same information using slighiffgrent formats and lever-
age different request protocols. Depending on the vendaserh it may be necessary
to load various special converter and protocol handlerstimt application. Moreover,
since ICred receives a high request volume, it must try taenthat the combination
of protocols used by its current configuration of informatiendors will not saturate
the network. Finally, since per request prices vary acrogsrnation vendors, ICred
must also try to minimize the cost incurred by the configoratf external information
vendors.

To showcase the complexity of performing self-adaptivelihgan an enterprise
application, we explore the difficulty of failing over beterelocal and external infor-
mation services in ICred. Section 3 presents the compdsxai developing healing
logic and adaptation actions. Section 4 shows how FilteradeSian Flattening can
be used to derive a new application configuration to elingireafailure and boot the
configuration using the application’s component container

3 Self-adaptive Healing Challenges for Enterprise Applicdons

This section describes the challenges associated witleimgriting a self-adaptive heal-
ing enterprise application. First, we show that the need®ge to resource constraints,
such as total available network bandwidth, makes findingyaaf&ealing an enterprise
application an NP-Hard problem. Second, we discuss how iéeaway of healing the
application can be found, numerous accidental complexisiech as the need to prop-
erly handle in-process transactions, make it hard to imptarealing actions.

3.1 Challenge 1: Resource constraints make adaptation aotis extremely
complex

When an application component fails and requires healid@ptation actions must be
run to reach a new and valid state. We term the sequence ofadidapactions that
are run to fix a failed application subsystem as@overy pathA chief complexity of
implementing an application capable of self-adaptive ingalk building the logic to
select a recovery path for a given application failure.

Recovery actions are used to perform two key types of aietdzi{1) performing
resource cleanup and release from failed application coempis and (2) determining

6 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

what new application components can be loaded to heal adailthe difficulty in
building recovery logic is that the second critical actiygelecting the new components
to load, requires finding a series of application compontrdsfit into the resource
limits of the application. Selecting a series of compondind$ adheres to a resource
limit is an instance of the NP-Hard knapsack problem.

For example, consider the failure of the- House CRP. ICred’sl n- House CRP can
be swapped out to one of three remote services. When thd loddduse CRP fails, the
recovery logic must determine the optimal subset of thes®te services to fail-over
to in order to fix the error. Furthermore, the recovery logigstrattempt to minimize
the cost of the information provider services that are usédeé new configuration.

Network bandwidth consumption must be accounted for in thalihg process.
Each remote service uses a different protocol for commtinicand consumes vary-
ing amounts of network bandwidth. The Java RMI service usesfficient binary IOP
protocol. The SOAP service, however, sends comparatigefiel XML messages over
HTTP and consumes significantly more bandwidth. Dependmgvloat combination
of services are currently being used by the applicationngtevork may or may not
have sufficient bandwidth to fail over to the SOAP-basedisenEven if theVendor
1 SOAP-based service is the cheapest to fail-over to, it maybagossible due to
network bandwidth limitations.

If the SOAP-based service is the only of the three alterret®te services that is
reachable after the failure, the healing logic may needtitdgiwn and swap other parts
of the application€.g., AddressVerifProvider, etc.) to less bandwidth congtive re-
mote services so thatthe SOAP service can be used. For exahtipéCr edi t Report -
Provi der is using a SOAP-based remote service, it may need to be sdap@gendor
2’s Hessian-based service to allow the SOAP-based prodmtedo be used. Finding
the right set of services to swap in and out of the applicatidiP-Hard and difficult to
do quickly at runtime. Performing simultaneous cost optation is even harder.

Designing this type of complex adaptive logic to choose avery path is hard.
For most enterprise application development projects,tifpe of complex adaptation
logic is not feasible to develop from scratch. Moreoverhwiearly 53% of software
development projects being completed over-budget and 1fg8ogects canceled [25,
17] adding this type of complex adaptive logic adds significask to a project. In
Section 4.2, we show how we use feature models and the Fil@aetesian Flattening
algorithm to eliminate the need to write complex recoverhszlection logic.

3.2 Challenge 2: Accidental complexity makes adaptation @ions hard to
develop

Enterprise applications are typically built on top of compot middleware, such as En-
terprise Java Beans. Component middleware providegpalication containerwhich
manages the intricate details of thread synchronizati@trillited/local transaction
control, and object pooling. One key challenge of develgmalf-adaptive healing
mechanisms for enterprise applications is properly andntjehandling the nuanced
considerations related to these aspects of the applic&mmexample, if a credit re-
port provider fails, the application must ensure that asyriiuted transactions associ-
ated with the provider are rolled back and cleanly termichdtefore a new provider is
swapped in. Figuring out the right way to terminate trarisast release locks, termi-
nate network connections, and release other resourceshvelading occurs is hard.

Title Suppressed Due to Excessive Length 7

When healing takes place, a further challenge of propertylliag transactions and
other container managed services is that the applicaties dot have direct control
over them. For example, EJBs are not allowed to perform theyachronization or
manually obtain locks. If a failure occurs in a multi-threddapplication, therefore, it
is hard for an EJB to ensure that data corruption does notratitureconfigures the
application’s internal structure.

An issue further complicating the healing process is thalihg may require chang-
ing the policies the container uses to manage these serticESred, for example, if
ICred is using all local data sources, it can use standaal torensaction management
through the container. If ICred fails over to a remote datase, however, it must also
force the container to reconfigure itself to use the Javasketion API (JTA) to manage
distributed transactions across both the local and renmattesdurces. It is hard to per-
form these numerous complex reconfiguration processesattartection 4 describes
how we use the application component container’s standi@acy/tle mechanisms to
perform healing and eliminate the need to write custom reigo&ctions.

4 Solution Approach—Combining Refresh and Filtered Cartesian
Flattening

The challenges in Sections 3.1-3.2 stem from two primargesu(1) the need for de-

velopers to implement complex recovery path selectiorcldwat accounts for resource
constraints and (2) the need for developers to implemenpéoamecovery actions that

correctly coordinate and handle the side-effects of hgatinch as graceful transaction
failure. This section presents an overviewR#fresi24] and shows how we extend it
with the Filtered Cartesian Flattening algorithm to additbese challenges.

4.1 Overview of Refresh

Refresh uses feature models to capture the rules for whabisect system state, which
when combined with the Filtered Cartesian Flattening feaselection algorithm, can
be used to automate the selection of a new configuration tmtéto. After a new and
valid configuration is found, Refresh uses the applica@untainer to swap out the
failed components and boot the new alternate configuradiotemating the reconfigu-
ration process eliminates the need for developers to desigimplement the recovery
path selection logic, which addresses Challenge 2 fromi@est1.

Using the container’s normal lifecycle facilities to perfohealing €.g, rebooting
and hotswapping), eliminates the need for developers tagethe side-effects of heal-
ing since they are automatically managed by the containenvifecycle management
activities are performed. As shown in Section 5, using FélfeCartesian Flattening
and container rebooting to perform resource constrainetinfgeprovides fast recov-
ery at a significantly reduced development cost compareddovery action oriented
techniques.

Refresh is based on the concept of microrebooting [8]. Whneareor is observed
in the application, Refresh uses the application’s compboentainer to shutdown and
reboot the application’s components. Using the applicationtainer to shutdown the
failed subsystem takes milliseconds as opposed to the decequired for a full ap-
plication server reboot. Since it is likely that rebootimgthe same configuratiore.q.

8 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

referencing the same failed remote service) will not fix threre Refresh derives a new
application configuration from the application’s featuredals that does not contain
the failed featuresg(g, remote services).

The application configuration dictates the remote servises! by the application.
The application configuration determines any local compbimeplementations, such
a SOAP messaging classes, needed to communicate and tieygerly with the re-
mote services. After deriving the new application configjoraand service composi-
tion, Refresh uses the application container to reboot pipdication into the desired
configuration. The overall Refresh healing process is shovagure 4.

1. Exception ﬁ

Occurs /

2. Exception Mapped
e ——— to Failed Feature

.
4. New Conflguratlon EI [:'4 3 New

Booted into Configuration
Component Derived

Container

Fig. 4: Refresh Healing Process

Throughout the healing process, Refresh does not use atgntuscovery ac-
tions. All error states are transitioned out of through aynecovery path, shutting
down the application components via the container, auticalbt deriving a new and
valid configuration/service composition, and restartimgdpplication components. No
application-specific recovery action modeling or recoagglication implementations
are required.

Queries are used to
map failures to the
Event Stream Query: feature model
P Select * from Exception where ”
component.id =‘CreditReportSvc’

Fig. 5: Mapping Failures to Features

Title Suppressed Due to Excessive Length 9

Refresh interacts directly with the application contajasrshown in Figure 4. Dur-
ing the initial and subsequent container booting proces&fsesh transparently inserts
application probesnto the application to observe the application componebbser-
vations from the application components are sent back tevemt stream processor
that runs queries against the application event data, suekception events, to identify
errors. An example event stream query and mapping to tharteatodel is shown in
Figure 5. Whenever an application’s configuration requiesding environment probes
are used to determine available remote services and glppb¢ation constraints, such
as whether or not JTA is present.

4.2 Feature Model Configuration Healing

At the core of the Refresh approach is its ability to deriveear monfiguration for the
application that both eliminates any failed componentsaditeres to resource limita-
tions. Refresh uses a feature model of the application tauoaphe rules for reconfig-
uration. When a failure occurs, the configuration space défioy the feature model is
searched for a new and valid configuration.

A feature modelis used to define the configuration space afitemrise application
by defining configuration rules, such as:

— What alternate implementations of components are availabl

— What dependencies (such as libraries, configuration fites), must be used with
each component

— What combinations of components form a valid and complepdiegtion compo-
sition

— Annotations describing how much RAM, Bandwidth, etc. is uomed by each
feature

Searching a feature model’s solution space for a valid cardigpn is an instance of
the NP-complete circuit satisfiability problem. The featarodel can define an arbitrary
boolean formula. Each boolean term represents the presémacgpecific feature. The
constraints in the feature model are the AND, OR, and NOT tcaimés used to form
the circuit satisfiability clauses. Numerous research@ggres have applied techniques
such as SAT solvers [4, 18], Binary Decision Diagrams (BDP§)and Constrant Sat-
isfaction Problem (CSP) solvers [20, 5], to find valid featorodel configurations.

Our initial implementation of Refresh used the CSP-basegutagzh proposed by
Benavides [5] and extended by us to include resource comstf23, 21]. CSP-based
feature selection techniques work well when resource caings are not included.
Through experiments that we performed [22], however, weplesl significant scala-
bility problems for CSP-based feature derivation with tese constraints, as shown in
the results in Section 5.3. Other exponential exact deéomdechniques, such as SAT
solvers and BDDs, suffer from these same scalability problR2].

A number of heuristic techniques can be applied to improeepérformance of
these exact solving techniques. For example, by choosegdirect variable ordering,
many BDD-based problems can be simplified significantly. @3ireg the best variable
ordering, however, is an NP-Hard problem and must be peddran a per-problem
basis. Similar techniques can be applied to CSP-based ooatiign derivation, but
must also be performed on a per problem basis.

10 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

Since the goal of Refresh is to simplify the implementatioogess of applications
capable of self-adaptive healing, it would not be reasa#blexpect these heuristic
techniquesto be learned and applied by normal developengder, the application of
these techniques requires significant skill. Just as goplicagtion design is an art form,
knowing which of these heuristics to apply and how to appénthis also an art. We do
not think is reasonable to expect developers are willing@amable to become experts
in these techniques. We have therefore not considered tbeseiques for Refresh.

4.3 Filtered Cartesian Flattening

To overcome the scalability issues associated with findingvaand valid feature con-
figuration, we incorporated the Filtered Cartesian Flatigfeature selection algorithm
into Refresh. Filtered Cartesian Flattening is an polyradttime algorithmic technique
that approximates a feature configuration problem withues®constraints as a mul-
tidimensional multiple-choice knapsack problem (MMKP2]J2A standard knapsack
problem attempts to find a subset of a series of items thabfitsai knapsack of limited
size and maximizes the value of the items inside the knapgatkMMKP problem is
a variant of a knapsack problem where the items are subdivide disjoint sets and
exactly one item must be chosen from each set to put into thpdack. Both variants
of the problem are NP-Hard [19].

The reason that Filtered Cartesian Flattening approxisithtefeature configuration
problem as a MMKP problem is that there are a number of extdgtlelynomial-time
heuristic algorithms that have been developed for MMKPs.dxample, the M-HEU
and C-HEU heuristic MMKP algorithms can solve large MMKPsniilliseconds with
an average of over 95% optimality [19]. Once a feature condition problem is repre-
sented as a MMKP, these heuristic algorithms can be useditedefeature selection.
When a failure occurs, the speed of Filtered Cartesiandglatt, which uses MMKP
heuristic algorithms, is far more important than its min@deoff in healing solution
optimality.

Filtered Cartesian Flattening approximates a feature irexlan MMKP problem
by finding a series of independent subtrees in the featureshtlodt can be configured
independently. Each of these subtrees is represented aMiiPMet. The items within
the MMKP sets represent the valid configurations of theipeetive subtrees. Because
each MMKP set represents a subtree of the feature model,dnsoiy a configuration
from each MMKP set and composing them, a complete featureehmmhfiguration
will always be reached.

Since there may be an exponential number of possible coafigus of each sub-
tree, Filtered Cartesian Flattening employs an approxanaechnique. As Filtered
Cartesian Flattening enumerates the possible configasatibeach feature model sub-
tree, it bounds the MMKP set size and selectively filters Witonfigurations are prop-
agated into the sets. Typically, a heuristic that seleatdigorations with the best ratio
of value/resource consumption is used as the selecti@rierit

To derive a configuration that omits the failed feature whiikkadhering to resource
constraints, refresh utilizes Filtered Cartesian FlatignDuring the enumeration pro-
cess, Filtered Cartesian Flattening disallows the inolusi the failed feature to any of
the MMKP sets. Due to this exclusion, the feature can notrizeto any configuration
that can be derived from the resulting MMKP problem, thualitisving the failed fea-
ture to be present in the new feature set. After deriving #e feature configuration,

Title Suppressed Due to Excessive Length 11

the application container is used to shutdown the old cordigan and boot the new
configuration.

5 Refresh and Filtered Cartesian Flattening Performance

This section presents results from experiments we perfotmeempirically evaluate

the performance of Refresh’s feature reconfiguration amdatoer-based healing. We
used a reference implementation of an enterprise requeségsing application, im-
plemented on top of the Java Spring Framework [13], thatctfail over between a

number of different remote and local data sources. The imtgation was comprised
of roughly 15,000 lines of code using a combination of Jamea Berver Pages, XML,
and SQL.

Our prior work [24] conducted experiments to measure thactaon in implemen-
tation complexity provided by Refresh. This paper extendgoior work by evaluating
the performance of feature model and container-basedngedfloreover, we analyze
how automated feature selection techniques can be madestalable to handle re-
source constraints and optimization goals.

5.1 Hardware and Software Testbed Configuration

The experiments with the application were performed on di@®rCore DUO 2.4ghz
processor, with 3 gigabytes of RAM, running Windows XP. Aalairtual Machine,
version 1.6, was run in client mode for all tests. We used Apalomcat 6 as the web
container for the application.

To test the performance of Refresh, we implemented a selptae: healing version
of the application and compared its performance to the autiweal (non-adaptive)
implementation. The first set of experiments compared thi@peance of the Refresh-
based application to the conventional unmodified appbcetid measure the overhead
of using a container-based healing approach. The secord sgperiments extended
the Refresh application to adhere to a bandwidth constilatmeasured the configu-
ration derivation times of both the Filtered Cartesiantelsing configuration derivation
technique and the CSP-based technique to compare sdalabili

5.2 Refresh Performance

To create an initial performance baseline to compare agairsused Apache JMeter
to simulate the concurrent access of 30 different customoettse application and the
time required to complete 1,000 requests. Figure 6 shows\theage time required
to complete various parts of the request process througheutxperiment. We also
used Apache JMeter to simulate the concurrent access offeé@edit customers to the
Refresh-enabled application and the time required to cetafdl,000 requests. To mea-
sure Refresh’s worst case performance overhead, we us@Stdased configuration
derivation technique for this experiment since it was slotlvan the Filtered Cartesian
Flattening technique. The performance results were idantd the conventional ap-
plication implementation. This result was expected simgetime-consuming healing
process is only invoked during component failures. Moreower Refresh application
implementation used very lightweight Spring interceptorsnonitor components for

12 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

180 ,_».-//'Tj]j-_—_ ;—-—w-—r e .
140 T T
0 l NI Tttt ‘
E 1920]] o Information
£ TR T T e A | S Retrieved Locally
oo —— "l ® Information
I e S J Retrieved from
2 =80 T —t—t—] ‘ Vendor 1
2 T T o Information
% 80 —— o —-i Retrieved from
= = === | Vendor 2
- 40 , - | = o lnformallon
z T Retrieved from
20 Vendor 3
0 =
D~ =
&
&",D Q()l é}’ &D ¥ © 5T :
F58LEL8E £ &
§ oo © 9 & s & K
CEELL ST SEL
Chy

Fig. 6: Average Response Time for the Application

exceptions. We saw no measurable performance penaltydargé of these intercep-
tors.

To determine how quickly the Refresh application could-belél, we ran a further
trial of Apache JMeter tests to simulate an additional 1@@@ests. During the experi-
ment, we used fault injection to randomly simulate the fa&ilof different services. The
faults were injected by adding code to the local servicebitovt Java runtime excep-
tions that would force Refresh to heal the application bypgirsg remote services for
the failed local services. After the local services weregveal to remote services, we
randomly shutdown the remote services used by the applicaiiforce the failover to
alternate remote services or back to a local service thabeedme available.

Over the tests, shutting down a failed subsystem and reiptie container into
a new configuration averaged roughly 140ms. The CSP tecamapuired an average
of an additional 10ms to find the new configuration to rebotd.ilVhen this result is
compared to Figures 6, it can be seen that the healing timiéggglg more than the
average time to complete an order.

Figure 7 overlays the application’s worst case response tising a local informa-
tion provider, a remote information provider, and a remaferimation provider that is
swapped back to a local provider because of a failure. Theréaof the remote ser-
vice is easily discernible on request 7. Before the failureuos, the application has
the same average performance as the conventional apptiazting a remote service.
Once the failed service is healed, the application againtemsame average perfor-
mance as the conventional application with the local setvitis result indicates that
container-based healing incurs little or no pre- or posaéling performance penalties.

Title Suppressed Due to Excessive Length 13

110

— Remote
Service
—— Remote
Service
Fail-over
to Local

AN N pa Al , — Loaal
VU ATV UV~

(ms)
70

10 \‘,Vf\ AN PN
i 5 10 15 20 25 30 35 40 45 50
Requests

Fig. 7: Application Performance Before and After Healing

5.3 Filtered Cartesian Flattening vs. CSP-based Configur&n Derivation

The next set of experiments compared the scalability anddspéFiltered Cartesian
Flattening versus a CSP-based configuration derivatidmigqoe. We extended the Re-
fresh application’s healing configuration to attempt tgpees a bandwidth constraint
while healing. Moreover, we directed the healing mecharsmiso attempt to mini-
mize the total cost consumed by the new configuration’s sesviOur CSP-based con-
figuration solver was based on the Java Choco open sourcgaonhsolver [1].

First, we compared the time for Filtered Cartesian Flattigrand the CSP-based
techniques to derive a new configuration for the standardtgaif variability in the
application. We then iteratively added 32 additional infation providers to consider
in the configuration derivation process. Both techniquesifbsolutions for each size
configuration problem. The results from this experimentsli@wvn in Figure 8.

Initially, the CSP technique requires 234ms to configurectira/entional applica-
tion implementation with the additional resource constisand bandwidth minimiza-
tion goal. In the experiments presented in Section 5.2, 8e-Based technique required
an average of 10ms to find a new and valid configuration witheadurces constraints.
The new constraints and optimization goal cause a signtficemnease in the solv-
ing time to 234ms. Furthermore, by the time the 32 additiami@rmation providers
were added into the configuration, the CSP-based technéguered over 30 minutes
(1,835,406ms) to derive a new configuration.

The time for Filtered Cartesian Flattening to derive a newfiguration across the
different configuration sizes is shown by the red line in thedr part of Figure 8. Ini-
tially, Filtered Cartesian Flattening requires 15ms toivdea configuration, which is
substantially less than the CSP-based technique’s 234mr®dVer, when the 32 addi-
tional providers are added, Filtered Cartesian Flatteisiafple to derive a configuration
in 31ms. Filtered Cartesian Flattening’s 31ms is many ardémagnitude less than the
~30mins for the CSP-based technique. This result shows thetdd Cartesian Flat-

14 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

1,835,406ms

1000000

100000

10000

CspP

1000

234ms

-
°
)

31ms

15ms FCF /

Configuration Derivation Time (ms)

10

0 (Base) 4 8 16 32
Additional Information Providers

Fig. 8: Filtered Cartesian Flattening vs. CSP-based Corigun Derivation Time for the Appli-
cation

tening is significantly more scalable than the CSP-basdthique for our case study
application.

6 Related Work

This section compares our work on Refresh and Filtered Siarid-lattening with other
research work. First, we compare Refresh to the origindiriggie of microrebooting.
Next, we compare and contrast Refresh with other featuse¢baelf-adaptive healing
techniques. Finally, we compare Refresh to other non-fedtased self-adaptive heal-
ing techniques.

Microrebooting related work Refresh is based on the idea of Microrebooting [8]. Mi-
crorebooting restarts individual components or collewiof components to fix an error.
The number of components that are rebooted continues toifjsowcessive reboots do
not eliminate the error. Microrebooting can help to elimiéhaome types of problems
but may not fix all issues.

For example, if one of the information provider servicetsfaiestarting the applica-
tion will not fix the error since it is in a remote componenstead, the local application
must be rebooted in an alternate configuration to elimirfaestror. As we showed in
Section 3.1 determining how to eliminate failed compon&ngschallenging problem.
Refresh uses the Filtered Cartesian Flattening algoritheliminate this problem by
dynamically deriving a new application configuration to @ebthe failed subsystem
into. This type of reconfiguration and rebooting can elinenboth local errors and
references to failed remote services, which microrebgatlone cannot fix.

Feature-based healing related worther approaches to application healing have been
developed that leverage a combination of goal modeling eatlife models [16]. In the

Title Suppressed Due to Excessive Length 15

approach by Lapouchnian et al. feature models are used tedimds of variation in
the application. The application adaptation is driven bgt&tharts. As we showed in
Section 3.1, specifying the logic to solve the NP-Hard peablof reconfiguring the
application subject to resource constraints is hard toémint in either Java, C++, or
Statecharts.

The approach of using Statecharts to drive the adaptivéngeaf the application
burdens enterprise application developers with a extrem@nplex problem. More-
over, there can be an exponential number of states that m&y teebe modeled to
properly adapt in all resource availability scenarios. dmtcast, Refresh does not re-
quire an explicit adaptation plan but instead a model of hiogvapplication can be
reconfigured. Refresh then automates the complex probletardfing a new applica-
tion configuration that fits the current available resources

Self-adaptive healing related worlOther approaches also use the idea of identifying
error conditions and then planning adaptation actionssthaald be triggered [7, 14, 11,
6, 2,16, 12]. These approaches also require developersitiehtne complex problem
of determining how to best adapt the application’s confijanawhile adhering to a
resource constraint. Determining how to reconfigure in #toe of a resource constraint
is an NP-Hard problem. In contrast, Refresh automates étgvery logic by using
the Filtered Cartesian Flattening approximation algonitio derive a new application
feature set that can be used to continue functioning.

7 Concluding Remarks

A common approach to simplifying the development of seliyattve healing applica-
tions is to use a model of an application’s adaptation logigenerate self-adaptive
healing code or guide self-adaptive healing at runtime4711, 6, 2,16, 12]. This ap-
proach to simplifying the development of self-adaptivelimggapplications does not,
however, eliminate the key complexity, which is the logieded to deduce how to heal
the application. Moreover, when resource constraints imeisbnsidered in the adapta-
tion process, determining how to adapt the applicationavittexceeding the resource
limitations is an NP-Hard problem.

This paper showed how our Refresh technigue—based on a natidyi of microre-
booting and dynamic reconfiguration using feature modeka-simplify the develop-
ment of self-adaptive healing applications. Rather thampki rebooting in the same
configuration (which could cause errors involving remoteises to persist), Refresh
dynamically derives a new application configuration to i@hioto using the applica-
tion’s feature model. Moreover, we showed that by using {BE Blgorithm to perform
the derivation of the new feature selection, Refresh coedpect resource constraints
and still find alternate feature configurations fast.

The following list presents the lessons we have learned tronexperiences build-
ing self-adaptive healing enterprise applications usieffésh:

— CSP-based reconfiguration techniques are sufficient if noasource constraints
are present.If resource constraints are not considered in the recoratgur pro-
cess, CSP and other exact techniques, such as SAT solvevgl@sufficient per-
formance to derive new configurations. Only when resourcstraints are added
is FCF needed.

16 J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

— Container lifefcycle methods can managing accidental hdiag complexities.
Containers must be able to release resources, roll backaittons, and perform
other cleanup whenever an application container is shutdBy reusing this life-
cycle mechanism to perform healing, significant acciderdgaiplexity is managed
by the container on the developer’s behalf.

— Optimization goals may not be easy to formalizeln many domains, resource
constraints and optimization goals can be hard to formalizee it is not clear how
choosing one service over another affects cost and resoansaimption. Interac-
tions between organizations, however, often do have a kmegsource consumption
and cost associated with them.

— Service-oriented architectures fit well into the Refresh kaling model. Many
standard enterprise applications that do not use remotessrdo not have vari-
ability built into the components that can be used to procegeests. Enterprise
applications that use service-oriented architectureisayly do have the potential
to be swapped to fail over to alternate services at runtime.

Refresh is available in open-source form as part of&eVS Model Intelligence
project atww. sf. net/ proj ect s/ gens.

References

. Choco constraint programming system. http://chocecssarge.net/.

. F. Barbier. MDE-based Design and Implementation of Aatoic Software Components.
Cognitive Informatics, 2006. ICCI 2006. 5th IEEE Interratal Conference ari, 2006.

. H. Barki, S. Rivard, and J. Talbot. Toward an assessmestftfiare development risk.
Journal of Management Information Systerh3(2):203-225, 1993.

. D. Batory. Feature Models, Grammars, and PrepositiooahElas.Software Product
Lines: 9th International Conference, SPLC 2005, Rennean¢e, September 26-29, 2005:
Proceedings2005.

5. D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Autom&edsoning on Feature Models.

17th Conference on Advanced Information Systems EngimegBAISES05, Proceedings),
LNCS 3520:491-503, 2005.

6. V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamyg 8. Abdelwahed. Enabling
Self-Managing Applications using Model-based Online CalrtrategiesProceedings of
the 3rd IEEE International Conference on Autonomic ComqytDublin, Ireland June

2006.
7. R. Calinescu. Model-Driven Autonomic Architectuferoceedings of the 4th IEEE

International Conference on Autonomic Computing, JackidlenFlorida, USA, Jung2007.
8. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Rdicroreboot-a technique for
cheap recoveryProceedings of the 6th Symposium on Operating SystemsrDasily
Implementationpages 31-44, 2004.
9. K. Czarnecki, M. Antkiewicz, C. Kim, S. Lau, and K. Pietre&. FMP and FMP2RSM:
Eclipse Plug-ins for Modeling Features Using Model TenmggaConference on Object
Oriented Programming Systems Languages and Applicatmages 200-201, October

2005.
10. D. P. D. Oppenheimer, A. Ganapathi. Why do Internet $esvrail, and What can be

Done about It?Proceedings of the USENIX Symposium on Internet Techgiesland
SystemsMarch 2003.

11. Denaro, Giovanni and Pezze, Mauro and Tosi, Davide.gbagl Self-Adaptive
Service-Oriented Applications. 2007.

12. X. Elkorobarrutia, A. I1zagirre, and G. Sagardui. A Sd#aling Mechanism for State
Machine Based ComponentBroceedings of the 1st International Conference on
Ubiquitous Computing: Applications, Technology and Sldsisues, Alcala de Henares,
Madrid, Spain, Jung2006.

13. R.Johnson and J. Hoell&xpert one-on-one J2EE development without . BABox, 2004.

A W NP

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

Title Suppressed Due to Excessive Length 17

K. Joshi, W. Sanders, M. Hiltunen, and R. Schlichtingtoluatic Model-Driven Recovery
in Distributed SystemsAt the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05) pages 25-38, 2005.

K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: dafure-; oriented reuse
method with domain-; specific reference architectufemals of Software Engineering
5:143-168, 1998.

A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. &od¢ Requirements-driven

Autonomic Systems Desigieroceedings of the 2005 workshop on Design and evolution of

autonomic application softwar@ages 1-7, 2005.

K. Linberg. Software developer perceptions about sovproject failure: a case study.
The Journal of Systems & Softwas9(2-3):177-192, 1999.

M. Mannion. Using First-order Logic for Product Line Mad/alidation. Proceedings of
the Second International Conference on Software Produwtd 2379:176-187, 2002.
M. Mostofa Akbar, M. Sohel Rahman, M. Kaykobad, E. Magniand G. Shoja. Solving
the Multidimensional Multiple-choice Knapsack Problemdonstructing convex hulls.
Computers and Operations Resear8B(5):1259-1273, 2006.

P. Trinidad, D. Benavides, A. Duran, A. Ruiz-Cortés, Bhdloro. Automated error
analysis for the agilization of feature modelintpurnal of Systems and Software, in press
2007.

J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wiersaritl Wuchner, and L. Fiege.
Automated Model-based Configuration of Enterprise Javdiégions. INnEDOC 2007

October 2007.)) .
J. White, B. Dougherty, and D. Schmidt. Filtered CaaestlatteningWorkshop on

Analysis of Software Product-Lines at the Internationah@oence on Software
Product-lines October 2008.

J. White, A. Nechypurenko, E. Wuchner, and D. C. Schn@titimizing and Automating
Product-Line Variant Selection for Mobile Devices. 1fith International Software Product
Line ConferenceSeptember 2007.

J. White, H. Strowd, and D. C. Schmidt. Creating SelfihgeéService Compositions with
Feature Modeling and Microrebootinghe International Journal of Business Process
Integration and Management (IJBPIM), Special issue on Nk@teven Service-Oriented
Architectures2008.

B. Whittaker. What went wrong? Unsuccessful infornmatechnology projects.
INFORMATION MANAGEMENT AND COMPUTER SECURIT?®23-29, 1999.

