
Configuration and Deployment Derivation Strategies for
Distributed Real-time and Embedded Systems

Brian Dougherty
briand@dre.vanderbilt.edu

June 2, 2010



Contents

1 Introduction 1
1.1 Overview of Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 BLITZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 ScatterD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 ASCENT Modeling Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 SEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Proposal Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Automated Deployment Derivation 5
2.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Challenges of Component Deployment Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Deployment Derivation with BLITZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 BLITZ Bin-packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Utilization Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Co-location Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Processor Minimization with Various Scheduling Bounds . . . . . . . . . . . . . . . . . . . . 8

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Legacy Deployment Optimization 10
3.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Modern Embedded Flight Avionics Systems: A Case Study . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Deployment Optimization Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Challenge 1: Satisfying Rate-monotonic Scheduling Constraints Efficiently . . . . . . . . . . 13
3.4.2 Challenge 2: Reducing the Complexity of Memory, Cost, and Other Resource Constraints . . 13
3.4.3 Challenge 3: Satisfying Complex Dynamic Network Resource and Topology Constraints . . . 13

3.5 ScatterD: A Deployment Optimization Tool to Minimize Bandwidth and Processor Resources . . . . 14
3.5.1 Satisfying Real-time Scheduling Constraints with ScatterD . . . . . . . . . . . . . . . . . . . 14
3.5.2 Satisfying Resource Constraints with ScatterD . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



3.5.3 Minimizing Network Bandwidth and Processor Utilization with ScatterD . . . . . . . . . . . 15
3.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Model Driven Configuration Derivation 18
4.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Large-scale DRE System Configuration Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Challenge 1: Resource Interdependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Challenge 2: Component Resource Requirements Differ . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Challenge 3: Selecting Between Differing Levels of Service . . . . . . . . . . . . . . . . . . 20
4.3.4 Challenge 4: Configuration Cannot Exceed Project Budget . . . . . . . . . . . . . . . . . . . 20
4.3.5 Challenge 5: Exponential Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Applying MDA to Derive System Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.1 Devising a Configuration Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Implementing a Modeling Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.3 Constructing a Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.4 Analyzing and Interpreting Model Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 Designing a MDA Configuration Language for DRE Systems . . . . . . . . . . . . . . . . . 27

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Automated Hardware and Software Evolution Analysis 32
5.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Challenges of Evolution Decision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Challenge 1: Evolving Hardware to Meet New Software Resource Demands . . . . . . . . . 35
5.4.2 Challenge 2: Evolving Software to Increase Overall System Value . . . . . . . . . . . . . . . 35
5.4.3 Challenge 3: Unrestricted Upgrades of Software and Hardware in Tandem . . . . . . . . . . . 36

5.5 Evolution Analysis via SEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5.1 Mapping Hardware Evolution Problems to MMKP . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.2 Mapping Software Evolution Problems to MMKP . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.3 Hardware/Software Co-Design with ASCENT . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.2 Hardware Evolution with Predefined Resource Consumption . . . . . . . . . . . . . . . . . . 39
5.6.3 Software Evolution with Predefined Resource Production . . . . . . . . . . . . . . . . . . . . 39
5.6.4 Unrestricted Software Evolution with Additional Hardware . . . . . . . . . . . . . . . . . . . 40
5.6.5 Comparison of Algorithmic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



6 Concluding Remarks 43
6.1 Automated Deployment Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Legacy Deployment Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Model Driven Configuration Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Automated Hardware and Software Evolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



List of Figures

2.1 Deployment Plan Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Scheduling Bound vs Number of Processors Reduced . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Flight Avionics Deployment Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 An Integrated Computing Architecture for Embedded Flight Avionics . . . . . . . . . . . . . . . . . 12
3.3 ScatterD Deployment Optimization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Network Bandwidth and Processor Reduction in Optimized Deployment . . . . . . . . . . . . . . . . 16

4.1 Configuration Options of a Satellite Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Creation Process for a DRE System Configuration Modeling Tool . . . . . . . . . . . . . . . . . . . 23
4.3 GME Model of DRE System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 FCF Optimality with 10,000 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 AMP Workflow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 GME Class View Metamodel of ASCENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Software Evolution Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 MMKP Representation of Hardware Evolution Problem . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 MMKP Representation of Software Evolution Problem . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 MMKP Representation of Unlimited Evolution Problem . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Hardware Evolution Solve Time vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Hardware Evolution Solution Optimality vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Software Evolution Solve Time vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 Software Evolution Solution Optimality vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . 40
5.9 Unrestricted Evolution Solve Time vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.10 Unrestricted Evolution Solution Optimality vs Number of Sets . . . . . . . . . . . . . . . . . . . . . 40
5.11 LCS Solve Times vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.12 M-HEU & ASCENT Solve Times vs Number of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.13 Comparison of Solve Times for All Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.14 Comparison of Optimalities for All Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.15 Taxonomy of Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4



Abstract

In contrast to federated systems in which hardware and software are tightly coupled, distributed real-time and
embedded (DRE) are constructed by allocating software tasks to hardware. This allocation, known as a deployment
plan, must ensure that several design constraints, such as QoS demands and strict resource requirements, are satisfied.
Further, the financial cost and performance of these systems may differ greatly based on software allocation decisions.
As a result, creating a low cost, high performance deployment that satisfies all design constraints is difficult.
Distributed real-time and embedded (DRE) systems can also be constructed by using a new development paradigm

that relies on configuring commercial-off-the-shelf (COTS) components rather than developing source code from
scratch. COTS components are reusable hardware, operating system, and middleware components. Configuring large-
scale DRE systems with COTS components reduces development-cycle time and cost. DRE systems are subject to
strict resource requirements as well as quality of service (QoS) demands, making DRE system configuration difficult.
This proposal describes techniques for addressing the challenges of deriving DRE system configurations and de-

ployments. First, we show how heuristic algorithms can be utilized to rapidly determine system deployments that
meet QoS demands and resource requirements. Second, we examine the use of metaheuristic algorithms to optimize
system-wide deployment properties. Next, we describe a Model-Driven Architecture (MDA) based methodology for
constructing a DRE system configuration modeling tool. Finally, we demonstrate a methodology that allows for DRE
systems to be evolved over time as new COTS components become available.



Chapter 1

Introduction

Distributed real-time and embedded systems are con-
structed by determining an allocation of software tasks to
hardware, known as a deployment plan or by configuring
commercial-off-the-shelf (COTS) components. In both
cases, systems are subject to strict resource requirements,
such as memory and CPU utilization, and stringent QoS
demands, such as real-time deadlines and co-location con-
straints, making DRE system construction difficult. Fur-
ther, intelligently constructing DRE systems can result in
significant performance increases, reductions in financial
cost and other benefits.
For example, minimizing the computing infrastructure

(such as processors) in a distributed real-time embed-
ded (DRE) system deployment helps reduce system size,
weight, power consumption, and cost. To support soft-
ware components and applications on the computing in-
frastructure, the hardware must provide enough proces-
sors to ensure that all applications can be scheduled with-
out missing real-time deadlines. In addition to ensuring
scheduling constraints, sufficient resources (such as mem-
ory) must be available to the software. It is hard to iden-
tify the best way(s) of deploying software components on
hardware processors to minimize computing infrastruc-
ture and meet complex DRE constraints.
Often, it is desirable to optimize system-wide proper-

ties of DRE system deployments. For example, a de-
ployment that minimizes network bandwidth may exhibit
higher performance and reduced power consumption. In-
telligent algorithms, such as metaheuristic techniques, can
be used to refine system deployments to reduce system
cost and resource requirements, such as memory and pro-
cessor utilization. Applying these algorithms to create
computer-assisted deployment optimization tools can re-

sult in substantial reductions of processors and network
bandwidth consumption requirements of legacy DRE sys-
tems.
DRE systems are also being constructed with

commercial-off-the-shelf components to reduce develop-
ment time and effort. The configuration of these compo-
nents must ensure that real-time quality-of-service (QoS)
and resource constraints are satisfied. Due to the numer-
ous QoS constraints that must be met, manual system con-
figuration is hard. Model-Driven Architecture (MDA) is
a design paradigm that incorporates models to provide
visual representations of design entities. MDAs show
promise for addressing many of these challenges by al-
lowing the definition and automated enforcement of de-
sign constraints.
As DRE systems continue to become more widely uti-

lized, system size and complexity is also increasing. As a
corollary, the design and configuration of such systems is
becoming an arduous task. Cost-effective software evolu-
tion is critical to many distributed real-time and embedded
(DRE) systems. Selecting the lowest cost set of software
components that meet DRE system resource constraints,
such as total memory and available CPU cycles, is an
NP-Hard problem. Therefore, intelligent automated tech-
niques must be implemented to determine cost-effective
evolution strategies in a timely manner.

1.1 Overview of Research Chal-
lenges

Several inherent complexities, such as strict resource re-
quirements and rigid QoS demands, make deriving valid

1



DRE system deployments and configurations difficult.
This problem is exacerbated by the fact that many valid
deployments and configurations may exist that differ in
terms of financial cost and performance, making some
deployments and configurations vastly superior to others.
The following challenges must be overcome to discover
superior DRE system deployments and configurations:

1. Strict Resource Requirements. DRE system con-
figurations and deployments must adhere to strict
resource constraints. If the resource requirements,
such as memory and cpu utilization, of software ex-
ceed the resource production of hardware, then the
software may fail to function or execute in an unpre-
dictable manner.

2. QoS Guarantees. It is critical that DRE system
configurations and deployments ensure that rigorous
QoS constraints, such as real-time deadlines, are up-
held. Therefore, for a deployment or configuration
to be valid, a scheduling of software tasks must exist
that allows the software to execute without exceed-
ing predefined real-time deadlines.

3. Co-location Constraints. To ensure faul-tolerance
and other domain specific constraints, DRE sys-
tems are often subject to co-location constraints.
Co-location constraints require that certain software
tasks or components be placed on the same hardware
while prohibiting others to occupying a common al-
location.

4. Exponential Solution Space. Given a set of soft-
ware and hardware, there is an exponential num-
ber of different deployments or configurations exist.
Strict resource requirements and QoS constraints,
however, invalidate the vast majority of these deploy-
ments, making manual derivation techniques obso-
lete. Due to the massive nature of the solution space,
automated exhaustive techniques for determining de-
ployments or configurations of even relatively small
systems may take years to complete.

5. Variable Cost & Performance. Valid deployments
and configurations may differ greatly in terms of fi-
nancial cost and performance. Therefore, techniques
must be capable of discovering solutions that not

only satisfy design constraints, but also yield high
performance while carrying a low financial cost.

1.2 Overview of Research Approach
To overcome the challenges of determining valid DRE
system deployments, configurations and evolution strate-
gies, we apply a combination of several heuristic algo-
rithms, such as bin-packing, metaheuristic algorithms,
such as genetic algorithms and particle swarm optimiza-
tion techniques, and model-driven configuration tech-
niques. These techniques are utilized as described below:

1. Automated Deployment Derivation uses heuristic
bin-packing to allocate software tasks to hardware
processors while ensuring that resource constraints,
such as memory and cpu cycles, real-time deadlines,
and co-location constraints are satisfied. By defining
strict space constraints of bins based on the avail-
able resources of hardware nodes and schedulability
analysis of software tasks, bin-packing can be used
to determine deployments that satisfy all design con-
straints in a timely manner.

2. Legacy Deployment Optimization requires that de-
sign constraints are satisfied while also minimizing
system-wide properties, such as network bandwidth
utilization. This process is difficult since the impact
on network bandwidth utilization cannot be deter-
mined by examining the allocation of a single soft-
ware task. Metaheuristic techniques, such as parti-
cle swarm optimization techniques and genetic al-
gorithms, can be used in conjunction with heuris-
tic bin-packing to discover optimized deployments
that would not be found with heuristic bin-packing
alone. For example, this technique could be applied
to a legacy avionics deployment to determine if soft-
ware tasks could be allocated differently to create a
deployment that consumes less network bandwidth
and carries a reduced financial cost.

3. MDA Driven DRE System Configuration tech-
niques allow designers to model DRE system con-
figuration design constraints, domain specific con-
strains, and facilitate the derivation of low-cost,
valid configurations. For example, designers can

2



use model-driven tools to represent the DRE system
constraints of a smart car, investigate the impact of
adding a new component, such as an electronic con-
trol unit, and automatically determine if a configu-
ration exists that will support the additional compo-
nent.

4. Automated Hardware/Software Evolution tech-
niques allow designers to enhance existing DRE sys-
tem configurations by adding or removing COTS
components rather than constructing costly new
DRE systems from scratch, resulting in increased
system performance and lower financial costs. For
example, a system designer could specify a set of
legacy components that are eligble for replacement
and a set of potential replacement components. Au-
tomated evolution can be used to generate a set of
replacement components and a set of components
to remove that would yield increased performance
and/or reduced financial cost.

1.3 Research Contributions
1.3.1 BLITZ
Research contributions:

1. We present the Bin-packing LocalizatIon Technique
for processor minimiZation (BLITZ), a deployment
technique that minimizes the required number of
processors, while adhering to real-time scheduling,
resource, and co-location constraints.

2. We show how this technique can be augmented with
a harmonic period heuristic to further reduce the
number of required processors.

3. We present empirical data from applying three differ-
ent deployment algorithms for processor minimiza-
tion to a flight avionics DRE system

Conference Publications

1. Brian Dougherty, Jules White, Jaiganesh Balasubra-
manian, Chris Thompson, and Douglas C. Schmidt,
Deployment Automation with BLITZ, 31st Interna-
tional Conference on Software Engineering,May 16-
24, 2009 Vancouver, Canada.

1.3.2 ScatterD
Research contributions:

1. We present a heuristic bin-packing technique for
satisfying deployment resource and real-time con-
straints.

2. We combine heuristic bin-packing with metaheuris-
tic algorithms to create ScatterD, a technique for op-
timizing system wide properties while enforcing de-
ployment constraints.

3. We apply ScatterD to optimize a legacy industry
flight avionics DRE system and present empirical
results of network bandwidth and processor reduc-
tions.

Journal Publications

1. Jules White, Brian Dougherty, Chris Thompson,
Douglas C. Schmidt, ScatterD: Spatial Deployment
Optimization with Hybrid Heuristic / Evolutionary
Algorithms, ACM Transactions on Autonomous and
Adaptive Systems Special Issue on Spatial Comput-
ing

Submitted

1. Brian Dougherty, Jules White, Douglas C. Schmidt,
Jonathan Wellons, Russell Kegley, Deployment Op-
timization for Embedded Flight Avionics Systems,
STSC Crosstalk (2010)

1.3.3 ASCENT Modeling Platform
Research contributions:

1. We present the challenges that make manual DRE
system configuration infeasible.

2. We provide an incremental methodology for con-
structing modeling tools to alleviate these difficul-
ties.

3. We provide a case study describing the construction
of the Ascent Modeling Platform (AMP), which is
a modeling tool capable of producing near-optimal
DRE system configurations.

3



Journal Publications

1. Jules White, Brian Dougherty, Douglas C. Schmidt,
ASCENT: An Algorithmic Technique for Design-
ing Hardware and Software in Tandem, IEEE
Transactions on Software Engineering Special Issue
on Search-based Software Engineering, December,
2009, Volume 35, Number 6

2. Jules White, Brian Dougherty, Douglas C. Schmidt,
Selecting Highly Optimal Architectural Feature Sets
with Filtered Cartesian Flattening, Journal of Sys-
tems and Software, August 2009, Volume 82, Num-
ber 8, Pages 1268-1284

Book Chapters

1. Brian Dougherty, Jules White, Douglas C. Schmidt,
Model-drive Configuration of Distributed, Real-time
and Embedded Systems, Model-driven Analysis and
Software Development: Architectures and Func-
tions, edited by Janis Osis and Erika Asnina, IGI
Global, Hershey, PA, USA 2009

1.3.4 SEAR
Research contributions:

1. We present the Software Evolution Analysis
with Resources (SEAR) technique that transforms
component-based DRE system evolution alterna-
tives into multidimensional multiple-choice knap-
sack problems.

2. We compare several techniques for solving these
knapsack problems to determine valid, low-cost
design configurations for resource constrained
component-based DRE systems.

3. We empirically evaluate the techniques to determine
their applicability in the context of common evolu-
tion scenarios.

4. Based on these findings, we present a taxonomy of
the solving techniques and the evolution scenarios
that best suit each technique.

Journal Publications

1. Jules White, Brian Dougherty, Douglas C. Schmidt,
Selecting Highly Optimal Architectural Feature Sets
with Filtered Cartesian Flattening, Journal of Sys-
tems and Software, August 2009, Volume 82, Num-
ber 8, Pages 1268-1284

2. Jules White, Brian Dougherty, Douglas C. Schmidt,
ASCENT: An Algorithmic Technique for Design-
ing Hardware and Software in Tandem, IEEE
Transactions on Software Engineering Special Issue
on Search-based Software Engineering, December,
2009, Volume 35, Number 6

Conference Publications

1. Brian Dougherty, Jules White, Chris Thompson,
and Douglas C. Schmidt, Automating Hardware and
Software Evolution Analysis, 16th Annual IEEE In-
ternational Conference and Workshop on the Engi-
neering of Computer Based Systems (ECBS), April
13-16, 2009 San Francisco, CA USA.

1.4 Proposal Organization
Each research topic is separated into a chapter describ-
ing the advancements made in each area. The remainder
of this proposal is organized as follows: Chapter 2 show-
cases automated deployment derivation of DRE systems;
Chapter 3 presents deployment optimization techniques;
Chapter 4 describes the creation of a modeling tool for
automated DRE system configuration; Chapter 5 demon-
strates a methodology for automatically evolving DRE
systems configurations; and Chapter 6 presents lessons
learned.

4



Chapter 2

Automated Deployment Derivation

2.1 Challenge Overview
This chapter provides motivation for automated deploy-
ment derivation techniques to determine valid DRE sys-
tem deployments. We introduce a heuristic technique for
processor minimization of a legacy flight avionics system.
We show how the application of this technique can sub-
stantially reduce the hardware requirements and cost of
deployments while satisfying additional DRE system con-
straints.

2.2 Introduction
Software engineers who develop distributed real-time and
embedded (DRE) systems must carefully map software
components to hardware. These software components
must adhere to complex constraints, such as real-time
scheduling deadlines and memory limitations, that are
hard to manage when planning deployments that map the
software components to hardware [1]. How software en-
gineers choose to map software to hardware has a direct
impact on the number of processors required to imple-
ment a system.
Ideally, software components for DRE systems should

be deployed on as few processors as possible. Each addi-
tional processor used by a deployment adds size, weight,
power consumption, and cost to the system [2]. For ex-
ample, it has been estimated that each additional pound of
computing infrastructure on a commercial aircraft results
in a yearly loss of $100 per aircraft in fuel costs. Like-
wise, each pound of processor(s) requires four additional
pounds of cooling, power supply, and other support hard-

ware. Naturally, reducing fuel consumption also reduces
emissions, benefiting the environment [3].
Several types of constraints must be considered when

determining a valid deployment plan, which allocates
software components to processors. First, software com-
ponents deployed on each processor must not require
more resources, such as memory, than the processor pro-
vides. Second, some components may have co-location
constraints, requiring that one component be placed on
the same processor as another component. Moreover, all
components on a processor must be schedulable to assure
they meet critical deadlines [4].
Existing automated deployment techniques [5–7] lever-

aged by software engineers do not handle all these con-
straints simultaneously. For example, Rate Monotonic
First-Fit Scheduling [7] can guarantee real-time schedul-
ing constraints, but does not guarantee memory con-
straints or allow for forced co-location of components.
Co-location of components is a critical requirement in
many DRE systems. Moreover, if deploying a set of com-
ponents on a processor results in CPU over-utilization,
critical tasks performed by a software componentmay not
complete by their deadline, which may be catastrophic.
DRE software engineers must therefore identify deploy-
ments that meet these myriad constraints and minimize
the total number of processors [8].
We provide three contributions to the study of software

component deployment optimizations for DRE systems
that address the challenges outlined above.

1. We present the Bin packing LocatIon Technique for
processor minimiZation (BLITZ), which uses bin
packing to allocate software applications to a min-

5



imal number of processors and ensure that real-time
scheduling, resource, and co-location constraints are
simultaneously met.

2. We describe a case study that motivates the mini-
mization of processors in a productionflight avionics
DRE system.

3. We present empirical comparisons of minimizing
processors for deployments with BLITZ for three
different scheduling heuristics versus the simple bin-
packing of one component per processor used in the
avionics case study.

2.3 Challenges of Component De-
ployment Minimization

This section summarizes the challenges of a determining a
software component deployment that minimizes the num-
ber of processors in a DRE system.
Rate-monotonic scheduling constraints. To create a

valid deployment, the mapping of software components
to processors must guarantee that none of the software
components’ tasks misses its deadline. Even if rate mono-
tonic scheduling is used, a series of components that col-
lectively utilize less than 100% of a processor may not be
schedulable. It has been shown that determining a deploy-
ment of multiple software components to multiple pro-
cessors that will always meet real-time scheduling con-
straints is NP-Hard [5].
Task co-location constraints. In some cases, software

components must be co-located on the same processor.
For example, variable latency of communication between
two components on separate processors may prevent real-
time constraints from being honored. As a result, some
components my require co-location on the same proces-
sor, which precludes the use of bin-packing algorithms
that treat each software component to deploy as a sepa-
rate entity.
Resource constraints. To create a validate deploy-

ment, each processor must provide the resources (such as
memory) necessary for the set of software components it
supports to function. Developers must ensure that com-
ponents deployed to a processor do not consume more re-
sources than are present. If each processor does not pro-

vide a sufficient amount of these resources to support all
tasks on the processor, a task will not be able execute,
resulting in a failure.

2.4 Deployment Derivation with
BLITZ

The Binpacking LocalizatIon Technique for processor
minimiZation (BLITZ) is a first-fit decreasing binpacking
algorithm we developed to (1) assign processor utiliza-
tion values that ensure schedulability if not exceeded and
(2) enhance existing techniques by ensuring that multiple
resource and co-location constraints are simultaneously
honored.

2.4.1 BLITZ Bin-packing
The goal of a bin packer is to place a set of items into a
minimal set of bins. Each item takes up a certain amount
of space and each bin has a limited amount of space avail-
able for packing. An item can be placed in a bin as long as
its placement does not exceed the remaining space in the
bin. Multi-dimensional bin packing extends the algorithm
by adding extra dimensions to bins and items (e.g., length,
width, and height) to account for additional requirements
of items. For example, an item may have height corre-
sponding to its CPU utilization and width corresponding
to consumed memory.
BLITZ uses an enhanced multi-dimensional bin pack-

ing algorithm to generate valid deployments that honor
multiple resource constraints and co-location constraints
as well as the standard real-time scheduling constraints.
In BLITZ, each processor is modeled as a bin and each
independent component or co-located group of compo-
nents is modeled as an item. Each bin has a dimension
corresponding to the available CPU utilization. Each item
has a dimension that represents the CPU utilization it re-
quires, as well as a a dimension corresponding to each re-
source, such as memory, that it consumes. Each bin’s size
dimension corresponding to available CPU utilization is
initialized 100%. The resource dimensions are set to the
amount of each resource that the processor offers.
To pack the items, they are first sorted in decreasing

order of utilization. Next, BLITZ attempts to place the

6



first item in the first bin. If the placement of the item
does not exceed the size of the bin (available resources
and utilization) of the bin (processor), the item is placed
in the bin. The dimensions of the items are then subtracted
from the dimensions of the bin to reflect the addition. If
the item does not fit, BLITZ attempts to insert the item
into the next bin. This step is repeated until all items are
packed into bins or no bin exists that can contain the item.
Burchard et al [9] describe several techniques that use

component partitioning and bin-packing to reduce total
required processors. This work, however, does not ac-
count for additional resource constraints, such as mem-
ory. Furthermore, these techniques do not allow for co-
location constraints that require specific components to
reside on the same processor.

2.4.2 Utilization Bounds
Conventional bin-packing algorithms assume that each
bin has a static series of dimensions corresponding to
available resources. For example, the amount of RAM
provided by the processor is constant. Applying conven-
tional bin-packing algorithms to software component de-
ployment is challenge since it is hard to set a static bin
dimension that guarantees the components are schedula-
ble. Scheduling can only be modeled with a constant bin
dimension of utilization if a worst-case scheduling of the
system is assumed. Liu-Layland [10] have shown that a
fixed bin dimension of 69.4% will guarantee schedulabil-
ity but in many cases, tasks can have a higher utilization
and still be schedulable.
The Liu-Layland equation states that the maximum

processor utilization that guarantees schedulability is
equal to 21/x− 1, where x is the total number of com-
ponents allocated to the processor. With BLITZ, each
bin has a scheduling dimension that is determined by the
Liu-Layland equation and the number of components cur-
rently assigned to the bin. Each itemwill represent at least
one but possibly multiple co-located components. Each
time an item is assigned to a bin, BLITZ uses the Liu-
Layland formula to dynamically resize the bin’s schedul-
ing dimension according to the number of components
held by the items in the bin.
If the the frequency of execution, or periodicity, of

the components’ execution requirements is known, higher
processor utilization above the Liu-Layland bound is also

possible. Components with harmonic periods (e.g., peri-
ods that can be repeatedly doubled or halved to equal each
other) can be allocated to the same processor with schedu-
lability ensured, as long as the total utilization is less than
or equal to 100%.
Unlike other deployment algorithms [9, 11], BLITZ

uses multi-stage packing to exploit harmonic periods. In
the first stage, components with harmonic periods are
grouped together. In each successive stage, the compo-
nents from the group with the largest aggregate processor
utilization are deployed to the processors using a first-fit
packing scheme. If not all periods of the components in
a bin are harmonic, an item is allocated to a bin only if
the utilization of its components fits within the dynamic
scheduling Liu-Layland dimension and all other resource
dimensions. If all component periods within a bin are har-
monic, the utilization dimension is not dynamically calcu-
lated with Liu-Layland and a fixed value of 100% is used.

2.4.3 Co-location Constraints

To allow for component co-location constraints, BLITZ
groups components that require co-location into a single
item. Each item has utilization and resource consumption
equal to that of the component(s) it represents. Each item
remembers the components associated with it. The Liu-
Layland and harmonic calculations are performed on the
individual components associated with the items in a bin
and not each item as a whole.

2.5 Empirical Results

This section presents the results of applying BLITZ
to a flight avionics case study provided by Lockheed
Martin Aeronautics through the SPRUCE portal (www.
sprucecommunity.org), which provides a web-
accessible tool that pairs academic researchers with in-
dustry challenge problems complete with representative
project data. This case study comprised 14 processors,
89 total components, and 14 co-location constraints. We
compared 2 different bin-packing strategies against both
BLITZ and the baseline deployment of this avionics sys-
tem, produced by the original avionics domain experts.

7



2.5.1 Experimental Platform

All algorithms were implemented in Java and all exper-
iments were conducted on an Apple MacbookPro with a
2.4 GHz Intel Core 2 Duo processor, 2 gigabytes of RAM,
running OS X version 10.5.5, and a 1.6 Java Virtual Ma-
chine (JVM) run in client mode. All experiments required
less than 1 second to complete with each algorithm.

2.5.2 Processor Minimization with Various
Scheduling Bounds

This experiment compared the following bin-packing
strategies against BLITZ and the baseline deployment of
the avionics system: (1) a worst-case multi-dimensional
bin-packing algorithm that uses 69.4% as the utilization
bound for each bin, (2) a dynamic multi-dimensional bin-
packing algorithm that uses the Liu-Leyland equation to
recalculate the utilization bound for each bin as compo-
nents are added, and (3) our BLITZ technique that com-
bines dynamic utilization bound recalculation with the
harmonic period multi-stage packing.

We used each technique to generate a deployment plan
for the avionics system described in Section 2.5. Fig-
ure 2.1 shows the original avionics system deployment, as
well as deployment plans generated by the worst-case bin-
packing algorithm, dynamic bin-packing algorithm, and
BLITZ.

The BLITZ technique required 6 less processors than
the original deployment plan, 3 less processors than the
worst-case bin-packing algorithm, and 1 less processor
than the dynamic bin-packing algorithm.

Figure 2.2 shows the total reduction of processors from
the original deployment plan for each algorithm. The de-
ployment plan generated by the worst-case bin-packing
algorithm reduces the required number of processors by 3
or 21.41%. The dynamic bin-packing algorithm yields a
deployment plan that reduces the number of required pro-
cessors by 5, or 35.71%. BLITZ reduces the number of
required processors even further, generating a deployment
plan that requires 6 less processors, a 43.86% reduction.

Figure 2.1: Deployment Plan Comparison

Figure 2.2: Scheduling Bound vs Number of Proces-
sors Reduced

8



2.6 Related Work
Deployment Minmization. Burchard et al [9] de-
scribe several techniques that use component partition-
ing and bin-packing to reduce total required processors.
These techniques use several different heuristics based
on scheduling characteristics to determine more efficient
deployment plans. This work, however, does not ac-
count for additional resource constraints or co-location
requiremets. BLITZ enforces resource consrtaints by set-
ting an additional dimension to the bins for each resoruce.
Co-location constraints are accounted for by combining
components that share a co-location constraint into a sin-
gle item prior to packing.
Task Allocation wtih Simulated Annealing. Tin-

dell et al [12] investigate the use of simulated annealing
to generate deployments that optimize system response
time. Unlike heuristic algorithms, such as heuristic bin-
packing, simulated annealing does not require designers
to specify an intelligent heuristic to determine task allo-
cation.
Instead, simulated annealing only requires that a metric

is determined to score potential solution. After a potential
allocation is examined and scored, simulated annealing
uses an element of randomness to determine the next al-
location to be investigated. This allows multiple execu-
tions of the algorithm to potentially determine different
deployment plans.
The heuristic used by BLITZ to determine deployment

plans, however, is static. Therefore, BLITZ will always
determine the same deployment plan for a set of soft-
ware tasks and hardware processors. This application of
simulate annealing, however, does not take into acount
resource constraints or co-location requirements. There-
fore, this technique must be altered to ensure that all DRE
system constraints are satisfied.

9



Chapter 3

Legacy Deployment Optimization

3.1 Challenge Overview
This chapter presents the motivation for the optimization
of system-wide deployment properties to create new cost
effective, efficient DRE system deployments or to en-
hance existing legacy deployments. To showcase the po-
tential for improvement in this area, we apply our tech-
nique to a legacy flight avionics system. We demonstrate
how combining heuristic algorithms with metaheuristic
techniques can yield considerable reductions in compu-
tational requirements.

3.2 Introduction
Current trends and challenges. Several trends are shap-
ing the development of embedded flight avionics sys-
tems. First, there is a migration away from older federated
computing architectures where each subsystem occupied
a physically separate hardware component to integrated
computing architectureswhere multiple software applica-
tions implementing different capabilities share a common
set of computing platforms. Second, publish/subscribe
(pub/sub)-based messaging systems are increasingly re-
placing the use of hard-coded cyclic executives.
These trends are yielding a number of benefits. For

example, integrated computing architectures create an
opportunity for system-wide optimization of deployment
topologies, which map software components and their as-
sociated tasks to hardware processors as shown in Fig-
ure 3.1.
Optimized deployment topologies can pack more soft-

ware components onto the hardware, thereby optimizing

system processor, memory, and I/O utilization [13–15].
Increasing hardware utilization can decrease the total
hardware processors that are needed, lowering both im-
plementation costs and maintenance complexity. More-
over, reducing the required hardware infrastructure has
other positive side effects, such as reducing weight and
power consumption. Decoupling software from specific
hardware processors also increases flexibility by not cou-
pling embedded software application components with
specific hardware processing platforms. It is estimated
that each pound of processor savings on a plane results in
$200 in decreased fuel costs and a decrease in greenhouse
gas production from less burned fuel [3].

Figure 3.1: Flight Avionics Deployment Topology

Open problems. The explosion in the size of

10



the search space for large-scale embedded deployment
topologies makes it hard to optimize them without
computer-assisted methods and tools to evaluate the
schedulability, network bandwidth consumption, and
other characteristics of a given configuration. Develop-
ing computer-assisted methods and tools to deploy soft-
ware to hardware in embedded systems is hard [1,16] due
to the number and complexity of constraints that must be
addressed.
For example, developers must ensure that each soft-

ware component is provided with sufficient processing
time to meet any real-time scheduling constraints [17].
Likewise, resource constraints (such as total available
memory on each processor) must also be respected
when mapping software components to hardware com-
ponents [17, 18]. Components may also have complex
placement or colocation constraints, such as requiring the
deployment of specific software components to proces-
sors at a minimum distance from the engine of an air-
craft to provide survivability in case of an engine mal-
function [18]. Moreover, assigning real-time tasks in
multiprocessor and/or single-processor machines is NP-
Hard [5], which means that such a large number of poten-
tial deployments exist that it would take years to investi-
gate all possible solutions.
Due to the complexity of finding valid deployment

topologies, it is difficult for developers to evaluate system-
wide design optimization alternatives that may emphasize
different properties, such as fault-tolerance, performance,
or heat dissipation.
Current algorithmic deployment techniques are largely

based on heuristic bin-packing [5–7], which represents
the software tasks as items that take up a set amount of
space and hardware processors as bins that provide lim-
ited space. Bin-packing algorithms try to place all the
items into as few bins as possible without exceeding the
space provided by the bin in which they are placed. These
algorithms use a heuristic, such as sorting the items based
on sized and placing them in the first bin they fit in, to
reduce the number of solutions that are considered and
avoid exhaustive solution space exploration.
Conventional bin-packing deployment techniques take

a one-dimensional view of deployment problems by just
focusing on a single deployment concern at a time. Ex-
ample concerns include resource constraints, scheduling
constraints, or fault-tolerance constraints. In production

flight avionics systems, however, deployments must meet
combinations of these concerns simultaneously.
Solution approach ⇒ Computer-assisted deploy-

ment optimization. This chapter describes and vali-
dates a method and tool called ScatterD that we devel-
oped to perform computer-assisted deployment optimiza-
tion for flight avionics systems. The ScatterD model-
driven engineering [19] deployment tool implements the
Scatter Deployment Algorithm , which combines heuris-
tic bin-packing with optimization algorithms, such as ge-
netic algorithms [20] or particle swarm optimization tech-
niques [21] that use evolutionary or bird flocking behav-
ior to perform blackbox optimization. This chapter shows
how flight avionics system developers have used Scat-
terD to automate the reduction of processors and network
bandwidth in complex embedded system deployments.

3.3 Modern Embedded Flight
Avionics Systems: A Case Study

Over the past 20 years, flight avionics systems have be-
come increasingly sophisticated. Modern aircraft now
depend heavily on software executing atop a complex
embedded network for higher-level capabilities, such as
more sophisticated flight control and advanced mission
computing functions.
The increased weight of the embedded computing plat-

forms required by a modern fighter aircraft incurs a mul-
tiplier effect [3], e.g., roughly four pounds of cooling,
power supply, and other supporting hardware are needed
for each pound of processing hardware, reducing mission
range, increasing fuel consumption, and impacting air-
craft responsiveness.
To accommodate the increased amount of software re-

quired, avionics systems havemoved from older federated
computing architectures to integrated computing architec-
tures that combinemultiple software applications together
on a single computing platform containingmany software
components.
The class of flight avionics system targeted by our work

is a networked parallel message-passing architecture con-
taining many computing nodes, as shown in Figure 3.2.
Each node is built from commercially available compo-

nents packaged in hardened chassis to withstand extremes

11



Figure 3.2: An Integrated Computing Architecture for Embedded Flight Avionics

of temperature, vibration, and acceleration.
At the individual node level, ARINC 653-compliant

time and space partitioning separates the software appli-
cations into sets with compatible safety and security re-
quirements. Inside a given time partition, the applications
run within a hard real-time deadline scheduler that exe-
cutes the applications at a variety of harmonic periods.
The integrated computing architecture shown in Fig-

ure 3.2 has benefits and challenges. Key benefits include
better optimization of hardware resources and increased
flexibility, which result in a smaller hardware footprint,
lower energy use, decreased weight, and enhanced ability
to add new software to the aircraft without updating the
hardware. The key challenge, however, is increased sys-
tem integration complexity. In particular, while the homo-
geneity of processors gives system designers a great deal
of freedom allocating software applications to computing
nodes, optimizing this allocation involves simultaneously
balancing multiple competing resource demands.
For example, even if the processor demands of a pair of

applications would allow them to share a platform, their
respective I/O loads may be such that worst-case arrival
rates would saturate the network bandwidth flowing into

a single node. This problem is complicated for single-core
processors used in current integrated computing architec-
tures. Moreover, this problem is being exacerbated with
the adoption and fielding of multi-core processors, where
competition for shared resources expands to include in-
ternal buses, cache memory contents, and memory access
bandwidth.

3.4 Deployment Optimization Chal-
lenges

While Section 3.3 describes many benefits of deployment
optimization, developers of embedded flight avionics sys-
tems face a daunting series of conflicting constraints and
optimization goals when determining how to deploy soft-
ware to hardware. For example, it is hard to find a valid
solution for a single deployment constraint, such as en-
suring that all of software tasks can be scheduled to meet
real-time deadlines, in isolation using conventional tech-
niques, such as bin-packing. It is even harder, more-
over, to find a valid solution when considering many de-
ployment constraints, such as satisfying resource require-

12



ments of software tasks in addition to ensure schedula-
bility. Optimizing the deployment topology of a system
to minimize consumed network bandwidth or other dy-
namic properties is harder still since communication be-
tween software tasks must be taken into account, instead
of simply considering each software task as an indepen-
dent entity.
This section describes the challenges facing developers

when attempting to create a deployment topology for a
flight avionics system. The discussion below assumes a
networked parallel message-passing architecture (such as
the one described in Section 3.3). The goal is to minimize
the number of required processors and the total network
bandwidth resulting from communication between soft-
ware tasks.

3.4.1 Challenge 1: Satisfying Rate-
monotonic Scheduling Constraints
Efficiently

In real-time systems, such as the embedded flight avionics
case study from Section 3.3, either fixed priority schedul-
ing algorithms, such as rate-monotonic (RM) schedul-
ing, or dynamic priority scheduling algorithms, such as
earliest-deadline-first (EDF), control the execution order-
ing of individual tasks on the processors. The deployment
topology must ensure that the set of software components
allocated to each processor are schedulable and will not
miss real-time deadlines. Finding a deployment topology
for a series of software components that ensures schedu-
lability of all tasks is called “multiprocessor scheduling”
and is NP-Hard [5].
A variety of algorithms, such as bin-packing algorithm

variations, have been created to solve the multiprocessor
scheduling problem. A key limitation of applying these
algorithms to optimize deployments is that bin-packing
does not allow developers to specify which deployment
characteristics to optimize. For example, bin-packing
does not allow developers to specify an objective function
based on the overall network bandwidth consumed by a
deployment. We describe how ScatterD ensures schedu-
lability in Section 3.5.1 and allows for complex objective
functions, such as network bandwidth reduction.

3.4.2 Challenge 2: Reducing the Complex-
ity of Memory, Cost, and Other Re-
source Constraints

Processor execution time is not the only type of resource
that must be managed while searching for a deployment
topology. Hardware nodes often have other limited but
critical resources, such as main memory or core cache,
necessary for the set of software components it supports
to function. Developers must ensure that the components
deployed to a processor do not consume more resources
than are present.
If each processor does not provide a sufficient amount

of resources to support all tasks on the processor, a task
will not execute properly, resulting in a failure. Moreover,
since each processor used by a deployment has a financial
cost associated with it, developers may need to adhere to
a global budget, as well as scheduling constraints. We
describe how ScatterD ensures that resources constraints
are satisfied in Section 3.5.2.

3.4.3 Challenge 3: Satisfying Complex Dy-
namic Network Resource and Topol-
ogy Constraints

Embedded flight avionics systems must often ensure that
not only processor resource limitations are adhered to,
but network resources (such as bandwidth) are not over-
consumed. For example, catastrophic failure could oc-
cur if two critical real-time components communicating
across a high-speed bus, such as a controller area network
(CAN) bus, fail to send a requiredmessage due to network
saturation.
The consumption of network resources is determined

by the number of interconnected components that are not
colocated on the same processor. For example, if two
components are colocated on the same processor, they do
not consume any network bandwidth.
Adding the consideration of network resources to de-

ployment substantially increases the complexity of find-
ing a software-to-hardware deployment topology map-
ping that meets requirements.
With real-time scheduling and resource constraints, the

deployment of a component to a processor has a fixed re-
source consumption cost that can be calculated in isola-

13



tion of the other components.
The impact of the component’s deployment on the net-

work, however, cannot be calculated in isolation of the
other components. The impact is determined by find-
ing all other components that it communicates with, de-
termining if they are colocated, and then calculating the
bandwidth consumed by the interactions with those that
are not colocated. We describe how ScatterD helps min-
imize the bandwidth required by a system deployment in
Section 3.5.3.

3.5 ScatterD: A Deployment Op-
timization Tool to Minimize
Bandwidth and Processor Re-
sources

Heuristic bin-packing algorithms work well for multipro-
cessor scheduling and resource allocation. As discussed
in Section 3.4, however, heuristic bin-packing is not effec-
tive for optimizing designs for certain system-wide prop-
erties, such as network bandwidth consumption, and hard-
ware/software cost. Metaheuristic algorithms [20, 21] are
a promising approach to optimize system-wide proper-
ties that are not easily optimized with conventional bin-
packing algorithms. These types of algorithms evolve
a set of potential designs over a series of iterations us-
ing techniques, such as simulated evolution or bird flock-
ing. At the end of the iterations, the best solution(s) that
evolved out from the group is output as the result.
Although metaheuristic algorithms are powerful, they

have historically been hard to apply to large-scale pro-
duction embedded systems since they typically perform
poorly on problems that are highly constrained and have
few correct solutions. Applying simulated evolution and
bird flocking behaviors for these types of problems tend to
randomly mutate designs in ways that violate constraints.
For example, using an evolutionary process to splice to-
gether two deployment topologies is likely to yield a new
topology that is not real-time schedulable.
To overcome these limitations, this section presents

ScatterD, which is a tool that utilizes a “hybrid” method
that combines the two approaches so the benefits of each
can be obtained with a single tool.

Below we explain how ScatterD integrates the ability of
heuristic bin-packing algorithms to generate correct solu-
tions to scheduling and resource constraints with the abil-
ity of metaheuristic algorithms to flexibly minimize net-
work bandwidth and processor utilization and address the
challenges in Section 3.4.

3.5.1 Satisfying Real-time Scheduling Con-
straints with ScatterD

ScatterD ensures that the numerous deployment con-
straints (such as the real-time schedulability constraints
described in Challenge 1 from Section 3.4.1) are satisfied
by using heuristic bin-packing to allocate software tasks
to processors. Conventional bin-packing algorithms for
multiprocessor scheduling are designed to take as input a
series of items (e.g., tasks or software components), the
set of resources consumed by each item (e.g., processor
and memory), and the set of bins (e.g., processors) and
their capacities. The algorithm outputs an assignment of
items to bins (e.g., a mapping of software components to
processors).
ScatterD ensures schedulability of the flight avionics

system discussed in Section 3.3 by using response-time
analysis. The response time resulting from allocating a
software task of the avionics system to a processor is ana-
lyzed to determine if a software component can be sched-
uled on a given processor before allocating its associated
item to a bin.
Before placing an item in a bin, ScatterD analyzes the

response time that would result from allocating the soft-
ware task to the given proessor. If the response time is
fast enough to meet the real-time deadlines of the software
task, the software task can be allocated to the processor.
If not, then the item must be placed in another bin.

3.5.2 Satisfying Resource Constraints with
ScatterD

To ensure that other resource constraints (such as mem-
ory requirements described in Challenge 2 from Sec-
tion 3.4.2) of each software task are met, we specify a
capacity for each bin that is defined by the amount of
each computational resource provided by the correspond-
ing processor in the avionics hardware platform. Simi-

14



Figure 3.3: ScatterD Deployment Optimization Process

larly, the resource demands of each avionics software task
define the resource consumption of each item. Before an
item can be placed in a bin, ScatterD verifies that the to-
tal consumption of each resource utilized by the corre-
sponding avionics software component and software com-
ponents already placed on the processor does not exceed
the resources provided.

3.5.3 Minimizing Network Bandwidth and
Processor Utilization with ScatterD

To address deployment optimization issues (such as those
raised in Challenge 3 from Section 3.4.3), ScatterD uses
heuristic bin-packing to ensure that schedulability and re-
source constraints are met. If the heuristics are not al-
tered, bin-packing will always yield the same solution for
a given set of software tasks and processors. The number
of processors utilized and the network bandwidth require-
ments will therefore not change from one execution of the
bin-packing algorithm to another. In a vast deployment
solution space associated with a large-scale flight avion-
ics system, however, there may be many other deploy-
ments that substantially reduce the number of processors
and network bandwidth required, while also satisfying all
design constraints.
Metaheuristic algorithms, such as genetic algorithms

and particle swarm optimization techniques, can be used
to explore other areas of the deployment solution space
and discover deployment topologies for avionic systems

that meet user requirements, but which need fewer pro-
cessors and less network bandwidth to operate. The prob-
lem, however, is that that the deployment solution space
is vast and only a small percentage of potential deploy-
ments actually satisfy all avionics system design con-
straints. Since metaheuristic algorithms strive to reduce
bandwidth and the number of required processors with-
out directly accounting for design constraints, using these
algorithms alone would result in the exploration of many
invalid avionics deployment topologies.
To search for avionics deployment topologieswith min-

imal processor and bandwidth requirements—while still
ensuring that other design constraints are met—ScatterD
uses metaheuristic algorithms to seed the bin-packing al-
gorithm. In particular, metaheuristic algorithms are used
to search the deployment space and select a subset of
the avionics software tasks that must be packed prior to
the rest of the software tasks. By forcing an altered bin-
packing order, new deployments with different bandwidth
and processor requirements are generated. Since bin-
packing is still the driving force behind allocating soft-
ware tasks, design constraints have a higher probability
of being satisfied.
As new valid avionics deployments are discovered,

they are scored based on network bandwidth consump-
tion and the number of processors they require in the un-
derlying avionics hardware platform. Metaheuristic algo-
rithms use the scores of these deployments to determine
which new packing order would likely yield a more opti-

15



mized deployment. By using metaheuristic algorithms to
search the design space—and then using bin-packing to
allocate software tasks to processors—ScatterD can gen-
erate deployments that meet all design constraints while
also minimizing network bandwidth consumption and re-
ducing the number of required processors in the avionics
platform, as shown in Figure 3.3.

3.6 Empirical Results

This section presents the results of configuring the Scat-
terD tool to combine two metaheuristic algorithms (par-
ticle swarm optimization and a genetic algorithm) with
bin-packing to optimize the deployment of the embedded
flight avionics system described in Section 3.3. We ap-
plied these techniques to determine if (1) a deployment
exists that increases processor utilization to the extent that
legacy processors could be removed and (2) the overall
network bandwidth requirements of the deployment were
reduced due to colocating communicating software tasks
on a common processor.
The first experiment examined applying ScatterD to

minimize the number of processors in the legacy flight
avionics system deployment, which originally consisted
of software tasks deployed to 14 processors. Applying
ScatterD with particle swarm optimization techniques and
genetic algorithms resulted in increased utilization of the
processors, reducing the number of processors needed to
deploy the software to eight in both cases. The remaining
six processors could then be removed from the deploy-
ment without affecting system performance, resulting in
the 42.8% reduction shown in Figure 3.4.
The ScatterD tool was also applied to minimize the

bandwidth consumed due to communication by software
tasks allocated to different processors in the legacy avion-
ics system described in Section 3.3. Reducing the band-
width requirements of the system leads to more efficient,
faster communication while also reducing power con-
sumption. The legacy deployment consumed 1.83 · 10 08
bytes of bandwidth. Both versions of the ScatterD tool
yielded a deployment that reduced bandwidth by 4.39 ·
1007 or 24%, as shown in Figure 3.4.

Figure 3.4: Network Bandwidth and Processor Re-
duction in Optimized Deployment

3.7 Related Work

A number of prior research efforts are related to the
system-wide deployment optimization problem presented
in this chapter. This section provides a taxonomy of these
related works and compares and contrasts them to Scat-
terD. The related works are categorized based on the type
of algorithm used in the deployment process.
Multi-processor scheduling. Bin-packing algorithms

have been successfully applied to the NP-Hard problem of
multi-processor scheduling [5]. Multi-processor schedul-
ing requires finding an assignment of real-time software
tasks to hardware processors, such that no tasks miss any
deadlines. A number of bin-packing modifications are
used to optimize the assignment of the tasks to use as few
processors as possible [5,8,22–24]. The chief issue of us-
ing these existing bin-packing algorithms for spatial de-
ployment optimization to minimize network bandwidth is
that they focus on minimizing total processors used.
Kirovski et al. [25] have developed heuristic techniques

for assigning tasks to processors in resource constrained
systems to minimize system-wide power consumption.
Their technique optimizes a combination of variations in
processor power consumption and voltage scaling. These
techniques, however, do not account for network commu-
nication in the power optimization process.
Hardware/software co-synthesis. Hardware/Software

co-synthesis research has yielded techniques for deter-

16



mining the number of processing units, task scheduling,
and other parameters to optimize systems for power con-
sumption while meeting hard real-time constraints. Dick
et al. [26, 27], have used a genetic algorithm for the co-
synthesis problem. As with other single-chip work, how-
ever, this research is directed towards systems that are not
spatially separated from one another.
Client/Server Task Partitioning for Power Opti-

mization. Network power consumption and processor
power consumption have both been considered in work
on partitioning client/server tasks for mobile comput-
ing [28–30]. In this research, the goal is to determine
how to partition tasks between a server and mobile de-
vice to minimize power drain on the device. This work,
however, is focused only on how network bandwidth and
power is saved by moving processing responsibilities be-
tween a single client and server.

17



Chapter 4

Model Driven Configuration Derivation

4.1 Challenge Overview
This chapter describes the need for model-driven tools
that capture the myriad of DRE system design constraints
to simplify DRE system configuration derivation. We
motivate the need for tools to facilitate configuration by
providing an example of a satellite imaging system. We
demonstrate how the model-driven tool can be applied to
aid developers in defining DRE system configuration sce-
narios and to automatically derive valid configurations.

4.2 Introduction
Distributed real-time embedded (DRE) systems (such as
avionics systems, satellite imaging systems, smart cars,
and intelligent transportation systems) are subject to strin-
gent requirements and quality of service (QoS) con-
straints. For example, timing constraints require that tasks
be completed by real-time deadlines. Likewise, rigor-
ous QoS demands (such as dependability and security),
may require a system to recover and remain active in the
face of multiple failures [31]. In addition, DRE systems
must satisfy domain-specific constraints, such as the need
for power management in embedded systems. To cope
with these complex issues, applications for DRE systems
have traditionally been built from scratch using special-
ized, project-specific software components that are tightly
coupled with specialized hardware components [32].
New DRE systems are increasingly being devel-

oped by configuring applications from multiple layers
of commercial-off-the-shelf (COTS) hardware, operat-
ing systems, and middleware components resulting in re-

duced development cycle-time and cost [33]. These types
of DRE systems require the integration of 100’s-1,000’s
of software components that provide distinct function-
ality, such as I/O, data manipulation, and data transfer.
This functionality must work in concert with other soft-
ware and hardware components to accomplish mission-
critical tasks, such as self-stabilization, error notification,
and power management. The software configuration of a
DRE system thus directly impacts its performance, cost,
and quality.
Traditionally, DRE systems have been built completely

in-house from scratch. These design techniques are
based on in-house proprietary construction techniques
and are not designed to handle the complexities of con-
figuring systems from existing components [34]. The
new generation of configuration-based approaches con-
struct DRE systems by determining which combination
of hardware/software components provide the requisite
QoS [35–37]. In addition, the combined purchase cost
of the components cannot exceed a predefined amount,
referred to as the project budget.
A DRE system can be split into a software configura-

tion and a hardware configuration. Valid software config-
uration must meet all real-time constraints, such as mini-
mum latency and maximum throughput, provide required
functionality, meet software architecture constraints, such
as interface compatibility, and also satisfy all domain-
specific design constraints, such as minimum power con-
sumptionMoreover, the cost of the software configuration
must not exceed the available budget for purchasing soft-
ware components. Similarly, the hardware configuration
must meet all constraints without exceeding the available

18



hardware component budget. At the same time, the hard-
ware and software configuration must be aligned so that
the hardware configuration provides sufficient resources,
such as RAM, for the chosen software configuration. Ad-
ditional constraints may also be present based on the type
and application of the DRE system being configured.
Often, there are multiple COTS components that can

meet each functional requirement for a DRE system. Each
individual COTS component differs in QoS provided, the
amounts/types of computational resources required, and
the purchase cost. Creating and maintaining error-free
COTS configurations is hard due to the large number of
complex configuration rules and QoS requirements. The
complexity associated with examining the tradeoffs of
choosing between 100’s to 1,000’s of COTS components
makes it hard to determine a configuration that satisfies
all constraints and is not needlessly expensive or resource
intensive.
Solution approach-> Model-driven automated con-

figuration techniques. This chapter presents tech-
niques and tools that leverage the Model Driven Archi-
tecture (MDA) paradigm [38], which is a design ap-
proach for specifying system configuration constraints
with platform-independentmodels (PIMs). Each PIM can
be used as a blueprint for constructing platform-specific
models (PSM)s [39]. In this chapter, MDA is utilized to
construct modeling tools that can be used to create model
instances of potential DRE system configurations. These
tools are then applied in a motivating example to deter-
mine valid DRE system configurations that fit budget lim-
its and ensure consistency between hardware and software
component selections.
To simplify the DRE system configuration process, de-

signers can use MDA to construct modeling tools that
visualize COTS component options, verify configuration
validity, and compare potential DRE system configura-
tions. In particular, PSMs can be used to determine DRE
system configurations that meet budgetary constraints by
representing component selections in modeling environ-
ments. Modeling tools that utilize these environments
provide a domain-centric way to experiment with and ex-
plore potential system configurations. Moreover, by con-
structing PSMs with the aid of modeling tools, many com-
plex constraints associated with DRE system configura-
tion can be enforced automatically, thereby preventing de-
signers from constructing PSMs that violate system con-

figuration rules.
After a PSM instance of a DRE system configuration

is constructed, it can be used as a blueprint to construct
a DRE system that meets all design constraints speci-
fied within the metamodel [40]. As DRE system re-
quirements evolve and additional constraints are intro-
duced, the metamodel can be modified and new PSMs
constructed. Systems that are constructed using these
PSMs can be adapted to handle additional constraints and
requirements more readily than those developedmanually
using third-generation languages, such as C++, Java, or
C#.

4.3 Large-scale DRE System Con-
figuration Challenges

This section describes some key constraints that DRE sys-
tems must adhere to, summarizes the challenges that make
determining configurations hard, and provides a survey
of current techniques and methodologies for DRE system
configuration. A DRE system configuration consists of
a valid hardware configuration and valid software con-
figuration in which the computational resource needs of
the software configuration are provided by the compu-
tational resources produced by the hardware configura-
tion. DRE system software and hardware components of-
ten have complex interdependencies on the consumption
and production of resources (such as processor utilization,
memory usage, and power consumption). If the resource
requirements of the software configuration exceed the re-
source production of the hardware configuration, a DRE
system will not function correctly and will thus be invalid.

4.3.1 Challenge 1: Resource Interdepen-
dencies

Hardware components provide the computational re-
sources that software components require to function. If
the hardware does not provide an adequate amount of
each computational resource, some software components
cannot function. An overabundance of resources indicates
that some hardware components have been purchased un-
necessarily, wasting funds that could have been spent to
buy superior software components or set aside for future

19



projects.
Figure 4.1 shows the configuration options of a satellite

imaging system. This DRE system consists of an image
processing algorithm and software that defines image res-
olution capabilities. There are multiple components that
could be used to meet each functional requirement, each
of which provides a different level of service.
For example, there are three options for the image res-

olution component. The high-resolution option offers the
highest level of service, but also requires dramatically
more RAM and CPU to function than the medium or low-
resolution options. If the resource amounts required by
the high-resolution option are not supplied, then the com-
ponent cannot function, preventing the system from func-
tioning correctly. If RAM or CPU resources are scarce
the medium or low-resolution option should be chosen.

4.3.2 Challenge 2: Component Resource
Requirements Differ

Each software component requires computational re-
sources to function. These resource requirements dif-
fer between components. Often, components offering
higher levels of service require larger amounts of re-
sources and/or cost more to purchase. Designers must
therefore consider the additional resulting resource re-
quirements when determining if a component can be in-
cluded in a system configuration.
For example, the satellite system shown in Figure 4.1

has three options for the image resolution software com-
ponent, each of which provides a different level of perfor-
mance. If resources were abundant, the system with the
best performance would result from selecting the high-
resolution component. In most DRE systems, such as
satellite systems, resources are scarce and cannot be aug-
mented without great cost and effort. While the perfor-
mance of the low-resolution component is less than that
of the high-resolution component, it requires a fraction of
the computational resources. If any resource requirements
are not satisfied, the system configuration is considered
invalid. A valid configuration is thus more likely to exist
by selecting the low-resolution component.

4.3.3 Challenge 3: Selecting Between Dif-
fering Levels of Service

Software components provide differing levels of service.
For example, a designer may have to choose between
three different software components that differ in speed
and throughput. In some cases, a specific level of service
may be required, prohibiting the use of certain compo-
nents.
Continuing with the satellite configuration example

shown in Figure 4.1, an additional functional constraint
may require that a minimum of medium image resolu-
tion. Inclusion of the low-resolution component would
therefore invalidate the overall system configuration. As-
suming sufficient resources for only the medium and low-
resolution components, the only component that satisfies
all constraints is the medium image resolution option.
Moreover, the inclusion of a component in a configura-

tion may prohibit or require the use one or more other
components. Certain software components may have
compatibility problems with other components. For ex-
ample, each of the image resolution components may
be a product of separate vendors. As a result, the high
and medium-resolution components may be compatible
with any image processing component, whereas the low-
resolution componentmay only be compatible with image
processing components made by the same vendor. These
compatibility issues add another level of difficulty to de-
termining valid DRE system configurations.

4.3.4 Challenge 4: Configuration Cannot
Exceed Project Budget

Each component has an associated purchase cost. The
combined purchase cost of the components included in
the configuration must not exceed the project budget. It is
therefore possible for the inclusion of a component to in-
validate the configuration if its additional purchase cost
exceeds the project budget regardless of computational
resources existing to support the component. Moreover,
if two systems have roughly the same resource require-
ments and performance the system that carries a smaller
purchase cost is considered superior.
Another challenge of meeting budgetary constraints is

determining the best way to allocate the budget between
hardware purchases and software purchases. Despite the

20



Figure 4.1: Configuration Options of a Satellite Imaging System

presence of complex resource interdependencies, most
techniques require that the selection of the software con-
figuration and hardware configuration occur separately.
For example, the hardware configuration could be deter-
mined prior to the software configuration so that the re-
source availability of the system is known prior to solving
for a valid software configuration. Conversely, the soft-
ware configuration could be determined initially so that
the resource requirements of the system are known prior
to solving for the hardware configuration.
To solve for a hardware or software configuration indi-

vidually, the total project budget must be divided into a
software budget for purchasing software components and
a hardware budget for purchasing hardware components.
Dividing the budget evenly between the two configuration
problems may not produce a valid configuration. Uneven
budget divisions, however, may result in valid system con-
figurations. Multiple budget divisions must therefore be
examined.

4.3.5 Challenge 5: Exponential Configura-
tion Space

Large-scale DRE systems require hundreds of compo-
nents to function. For each component there may be many
components available for inclusion in the final system

configuration. Due to the complex resource interdepen-
dencies, budgetary constraints, and functional constraints
it is hard to determine if including a single component will
invalidate the system configuration. This problem is exac-
erbated enormously if designers are faced with the tasks
of choosing from 1,000’s of available components. Even
automated techniques require years or more to examine all
possible system configurations for such problems. Large-
scale DRE systems often also consist of many software
and hardware components with multiple options for each
component, resulting in an exponential number of poten-
tial configurations. Due to the multiple functional, real-
time, and resource constraints discussed earlier, arbitrar-
ily selecting components for a configuration is ineffec-
tive. For example, if there are 100 components to choose
from then there are 1.2676506x1030 unique potential sys-
tem configurations, the vast majority of which are invalid
configurations. The huge magnitude of the solution space
prohibits the use of manual techniques. Automated tech-
niques, such as Constraint Logic Programming (CLP),
use Constraint Satisfaction Problems (CSPs) to represent
system configuration problems [41,42]. These techniques
are capable of determining optimal solutions for small-
scale system configurations but require the examination of
all potential system configurations. Techniques utilizing
CSPs are ideal, however, for system configuration prob-

21



lems involving a small number of components as they can
determine an optimal configuration-should one exist-in a
short amount of time.
The exhaustive nature of conventional CSP-based tech-

niques, however, renders them ineffective for large-scale
DRE system configuration. Without tools to aid in large-
scale DRE system configuration, it is hard for design-
ers to determine any valid large-scale system configura-
tion. Even if a valid configuration is determined, other
valid system configurations may exist with vastly superior
performance and dramatically less financial cost. More-
over, with constant development of additional technolo-
gies, legacy technologies becoming unavailable, and de-
sign objectives constantly in flux, valid configurations can
quickly become invalid, requiring that new configurations
be discovered rapidly. It is thus imperative that advanced
design techniques, utilizing MDA, are developed to en-
hance and validate large-scale DRE system configura-
tions.
Subsequent sections of this chapter demonstrate how

MDA can be utilized to mitigate many difficulties of DRE
system configuration that result from the challenges de-
scribed in this section.

4.4 Applying MDA to Derive Sys-
tem Configurations

System configuration involves numerous challenges, as
described in the previous section. Constructing MDA
tools can help to address these challenges. The process
of creating a modeling tool for determining valid DRE
system configurations is shown in Figure 4.2.
Figure 4.2. Creation Process for a DRE System Config-

uration Modeling Tool. This process is divided into four
steps:
1. Devise a configuration language for capturing com-
plex configuration rules,

2. Implement a tool for manipulating instances of con-
figurations,

3. Construct a metamodel to formally define the mod-
eling language used by the tool, and

4. Analyze and interpret model instances to determine
a solution.

By following this methodology, robust modeling tools
can be constructed and utilized to facilitate the configura-
tion of DRE systems. The remainder of this section de-
scribes this process in detail.

4.4.1 Devising a Configuration Language
DRE system configuration requires the satisfaction of
multiple constraints, such as resource and functional con-
straints. The complexity of accounting for such a large
number of configuration rules makes manual DRE system
configuration hard. Configuration languages exist, how-
ever, that can be utilized to represent and enforce such
constraints. By selecting a configuration language that
captures system configuration rules, the complexity of de-
termining valid system configurations can be reduced sig-
nificantly.
Feature models are a modeling technique that have

been used to model Software Product Lines (SPLs) [43],
as well as system configuration problems. SPLs consist of
interchangeable components that can be swapped to alter
system functionality. Czarnecki et al. use feature mod-
els to describe the configuration options of systems [44].
Feature models are represented using tree structures with
lines (representing configuration constraints) connecting
candidate components for inclusion in an SPL, known as
features. The feature model uses configuration constraints
to depict the effects that selecting one or more features
has on the validity of selecting other features. The feature
model serves as a mechanism to determine if the inclusion
of a feature will result in an invalid system configuration.
Czarnecki et al. also present staged-configuration,

an incremental technique for manually determining valid
feature selections. This work, however, cannot be directly
applied to the configuration of large-scale DRE system
configuration because it doesn’t guarantee correctness or
provide a way of handling resource constraints. More-
over, it takes a prohibitive amount of time to determine
valid system configurations since staged-configuration is
not automated.
Benavides et al. introduce the extended feature model,

an augmented feature model with the ability to more ar-
ticulately define features and represent additional con-
straints [41]. Additional descriptive information, called
attributes, can be added to define one or more parameters
of each feature. For example, the resource consumption

22



Figure 4.2: Creation Process for a DRE System Configuration Modeling Tool

and cost of a feature could be defined by adding attributes
to the feature. Each attribute lists the type of resource
and the amount consumed or provided by the feature.
Additional constraints can be defined by adding extra-
functional features. Extra-functional features define rules
that dictate the validity of sets of attributes. For example,
an extra-functional feature may require that the total cost
of a set of features representing components is less than
that of a feature that defines the budget. Any valid feature
selection would thus satisfy the constraint that the collec-
tive cost of the components is less than the total project
budget.

4.4.2 Implementing a Modeling Tool

Designers using manual techniques often unknowingly
construct invalid system configurations. Even if an ex-
isting valid system configuration is known, the introduc-
tion of a single component can violate one or more of
these constraints, thereby invalidating the entire config-
uration. Modeling tools allow designers to manipulate
problem entities and compare potential solutions in an en-
vironment that ensures various design rules are enforced
that are not accounted for in current third-generation pro-
gramming languages, such as Java and C++. Automated

correctness checking allows designers to focus on other
problem dimensions, such as performance optimization
or minimization of computational resource requirements.

One example of a modeling tool is the Generic Model-
ing Environment (GME) composing domain-specific de-
sign environments [45]. GME is modeling platform for
building MDA based tools that can then be used to create
model instances. The two principles components of GME
are GMeta and GModel, which work together to provide
this functionality. GMeta is a graphical tool for construct-
ing metamodels, which are discussed in the following sec-
tion. GModel is a graphical editor for constructing model
instances that adhere to the configuration rules.

For example, a user could construct a system configu-
ration model that consists of hardware and software com-
ponents as shown in Figure 3 4.3. By using the graphi-
cal editor, the user can manually create multiple system
configuration instances. If the user attempts to include
a component that violates a configuration rule, GModel
will disallow the inclusion of the component and explain
the violation. Since GModel is responsible for enforcing
all constraints, the designer can rapidly create and exper-
iment with various models without the overhead of moni-
toring for constraint violations.

23



Figure 4.3: GME Model of DRE System Configuration

4.4.3 Constructing a Metamodel

Metamodels are used to formally define the rules that
are enforced by modeling tools [46]. This collection of
rules governs the entities, relationships and constraints of
model instances constructed. After constructing a meta-
model, users can define modeling tools that are capable of
creating model instances that enforce the rules and con-
straints defined by the metamodel.
Most nontrivial problems require multiple modeling

entities, types of relationships between entities, and com-
plex constraints. As a result, constructingmetamodels can
be a confusing, arduous task. Fortunately, metamodeling
tools exist that provide a clear and simple procedure for
creating metamodels. Tools for generating metamodels
provide several advantages over defining them manually.
For example, metamodeling tools can prevent defining
rules, such as defining nameless entities, that are contra-
dictory or inappropriate. Likewise, by using a metamod-
eling tool, metamodels can easily be augmented or altered
should the domain or other problem parameters change.
Moreover, the same complexities inherent to creating

PSMs are also present in the construction of metamodels,
and often amplified by the additional abstraction required
for their creation. Metamodeling tools use an existing
language that defines the rules for creating metamodels,
thereby enforcing the complex constraints and facilitating
quick, accurate metamodel design.

To create a metamodel for describing system configu-
ration the entities that are involved in DRE system con-
figuration must first be defined. For example, at the most
basic level, DRE system configuration consists of hard-
ware and software components. The manner in which
these entities interact must then be defined. For example,
it is specified that hardware components provide compu-
tational resources and that software components consume
computational resources.
Also, a way is needed to define the constraints that

must be maintained as these entities interact for a system
configuration to be valid. For example, it may be speci-
fied that a software component that interacts with a hard-
ware component must be provided with sufficient compu-
tational resources to function by the hardware component.
After all the necessary entities for the modeling tool

are created the rules that govern the relationships of these
entities must be defined. For example, the relationship be-
tween hardware nodes and software components in which
the software components consume resources of the hard-
ware nodes must be defined. Before we can do this, how-
ever, an attribute must be defined that specifies the re-
source production values of the hardware nodes and the
resource consumption values of the software nodes. Once
attribute has been defined and associated it with a class,
we can include the attribute in the relationship definition.
A relationship between two model entities is defined

by adding a connection to the metamodel. The connec-

24



tion specifies the rules for connecting entities in the re-
sulting PSM. Within the connection, we can define addi-
tional constraints that must be satisfied for two classes to
be connected. For example, for a software component to
be connected to a hardware node the resource consump-
tion attribute of the software component can not exceed
the attribute of the hardware node that defines the amount
of resource production.
GME provides GMeta, a graphical tool for construct-

ing metamodels. GMeta divides metamodel design into
four separate sub-metamodels: the Class Diagram, Visu-
alization, Constraints, and Attributes. The Class Diagram
defines the entities within the model, known as models,
atoms, and first class objects as well as the connections
that can be made between them. The Visualization sub-
metamodel defines different aspects, or filters, for view-
ing only certain entities within a model instance. For
example, if defining a metamodel for a finite state ma-
chine, an aspect could be defined in the Visualization sub-
metamodel that would only display accepting states in a
finite state machine model instance.
The Constraints sub-metamodel allows the application

of Object Constraint Language (OCL) [47] constraints to
metamodel entities. Continuing with the finite state ma-
chine metamodel example, a constraint could be defined
that only a single starting state may exist in the model. To
do this, users would add a constraint in the Constraints
sub-metamodel, add the appropriate OCL code to define
the constraint, and then connect it to the entity to which it
applies. Finally, the Attributes sub-metamodel allows ad-
ditional data, known as attributes, to be defined and asso-
ciated with other metamodel entities defined in the Class
Diagram.
After the metamodel has been constructed using

GMeta, the interpreter must be run to convert the meta-
model into a GME paradigm. This paradigm can then be
loaded with GME and used to created models that adhere
to the rules defined within the metamodel. User may then
create model instances with the assurance that the design
rules and domain specific constraints defined within the
metamodel are satisfied. If at any point the domain or de-
sign constraints of the model change, the metamodel can
be reloaded, altered and interpreted again to change the
GME paradigm appropriately. As a result, designers can
easily examine scenarios in which constraints differ, giv-
ing a broader overview of the design space.

4.4.4 Analyzing and Interpreting Model In-
stances

After a configuration language is determined, a modeling
tool implemented, and a metamodel constructed, design-
ers can rapidly construct model instances of valid DRE
system configurations. There is no guarantee, however,
that the configurations constructedwith these tools are op-
timal. For example, while a configuration instance may be
constructed that does not violate any design constraints,
other configurations may exist that provide higher QoS,
have a lower cost, or consume fewer resources. Many au-
tomated techniques, however, exist for determining sys-
tem configurations that optimize these attributes.
Benavides et al. provide a methodology for mapping

the extended feature models described earlier onto con-
straint satisfaction problems (CSPs) [41]. A CSP is a
set of variables with multiple constraints that define the
values that the variables can take. Attributes and extra-
functional features, such as a project budget feature, are
maintained in the mapping. As a result, solutions that sat-
isfy all extra-functional features and basic functional con-
straints can be found automatically with the use of com-
mercial CSP solvers.
Moreover, these solvers can be configured to optimize

one or more attributes, such as the minimization of cost.
Additionally, these techniques require the examination of
all potential solutions, resulting in a system configuration
that is not only valid, but also optimal. Benavides et al.
present empirical results showing that CSPs made from
feature models of 23 features require less than 1,800 mil-
liseconds to solve.
While extended feature models and their associated

automated techniques for deriving valid configurations
by converting them to CSPs can account for resource
and budget constraints, the process is not appropriate for
large-scale DRE system configuration problems. The ex-
haustive nature of CSP solvers often require that all po-
tential solutions to a problem are examined. Since the
number of potential system configurations is exponential
in regards to the number of potential components, the so-
lution space is far too vast for the use of exhaustive tech-
niques as they would require a prohibitive amount of time
to determine a solution.
To circumvent the unrealistic time requirements of ex-

haustive search algorithms, White et al. have examined

25



approximation techniques for determining valid feature
selections that satisfy multiple resource constraints [48].
Approximation techniques do not require the examination
of all potential configurations, allowing solutions to be
determined with much greater speed. While the solutions
are not guaranteed to be optimal, they are often optimal
or extremely near optimal. White et al. present Filtered
Cartesian Flattening (FCF), an approximation technique
for determining valid feature selections.
FCF converts extended feature models into Multiple-

choice Multi-dimensional Knapsack Problems (MMKP).
MMKP problems, as described by Akbar et al. are an ex-
tension of the Knapsack Problem (KP), Multiple-Choice
Knapsack Problem (MCKP) and Multi-Dimensional
Knapsack Problem (MDKP) [49]. Akbar et al. provide
multiple heuristic algorithms, such as I-HEU andM-HEU
for rapidly determining near optimal solutions to MMKP
Problems.
With FCF, approximation occurs in two separate steps.

First, all potential configurations are not represented in the
MMKP problems. For example, if there is an exclusive-or
relationship between multiple features, then only a subset
of the potentially valid relationships may be included in
the MMKP problem. This pruning technique is instru-
mental in restricting problem size so that solving tech-
niques can complete rapidly.
Second, heuristic algorithms, such as M-HEU can be

used to determine a near-optimal system configuration.
M-HEU is a heuristic algorithm that does not examine
all potential solutions to an MMKP problem, resulting in
faster solve time, thus allowing the examination of con-
siderably larger problems. Due to these two approxima-
tion steps, FCF can be used for problems of considerably
larger size compared to methods utilizing CSPs. This
scalability is shown in Figure 4.4 in which a feature model
with 10,000 features is examined with 90% of the solu-
tions resulting in better than 90% optimality.
While FCF is capable of determining valid large-scale

DRE system configurations, it still makes many assump-
tions that may not be readily known by system design-
ers. For example, FCF requires that the project budget
allocation for purchasing hardware and the project budget
allocation for purchasing software components be known
ahead of time. The best way to split the project budget be-
tween hardware and software purchases, however, is dic-
tated by the configuration problem being solved.

For example, if all of the hardware components is cheap
and provide huge amounts of resources while the software
components are expensive, it would not make sense to de-
vote half of the project budget to hardware and half to
software. A better system configuration may result from
devoting 1% of the budget to hardware and 99% to soft-
ware.
The Allocation baSed ConfigurationExploratioNTech-

nique (ASCENT) presented by White et al. is capa-
ble of determining valid system configurations while also
providing DRE system designers with favorable ways
to divide the project budget [50]. ASCENT takes an
MMKP hardware problem,MMKP software problem and
a project budget amount as input. Due to the speed
and performance provided by the M-HEU algorithm, AS-
CENT can examine many different budget allocations for
the same configuration problem. ASCENT has been used
for configuration problems with 1000’s of features and is
over 98% optimal for problems of this magnitude, making
it an ideal technique for large-scale DRE system configu-
ration.
To take advantage of these techniques, however, model

instances must be converted into a form that these tech-
niques can utilize. Interpreters are capable of parsing
model instances and creating XML, source code, or other
output for use with external programmatic methods. For
example, GME model instances can easily be adapted to
be parsed with Builder Object Network (BON2) inter-
preters. These interpreters are capable of examining all
entities included in a model instance and converting them
into C++ source code, thus allowing the application of
automated analysis techniques, such as the use of CSP
solvers or ASCENT [41, 50].

4.5 Case Study
The background section discussed the challenges of DRE
system configuration. For problems of non-trivial size,
these complexities proved too hard to overcome without
the use of programmatic techniques. Section 4.4.1 de-
scribes how configuration languages can be utilized to
represent many of the constraints associated with DRE
system configuration. That section also described how
modeling tools can enforce complex design rules. Sec-
tion 4.4.3 described the construction of a metamodel to

26



Figure 4.4: FCF Optimality with 10,000 Features

formalize the constraints to be enforced in the modeling
tool. Section 4.4.4 introduced several automated tech-
niques for determining valid DRE system configurations,
such as ASCENT, that provide additional design space
information, such as how to allocate a project budget,
which is extremely valuable to designers. This section
describes the process of creating the Ascent Modeling
Platform (AMP) to allow rapid DRE system configura-
tion, while also addressing the challenges described in
the background section. The target workflow of AMP is
shown in Figure 4.5.

4.5.1 Designing a MDA Configuration Lan-
guage for DRE Systems

ASCENT was originally implemented programmatically
in Java, so constructing an entire configuration problem
(including external resources, constraints, software com-
ponents and hardware components along with their multi-
ple unique resource requirements) required writing sev-
eral hundred lines of complex code. As a result, the
preparation time for a single configuration problem took
a considerable amount of time and effort. Moreover, de-

signers could not easily manipulate many of the problem
parameters to examine "what if" scenarios. To address
these limitations with ASCENT, Ascent Modeling Plat-
form (AMP) tool was constructed that could be used to
construct DRE system configuration problems for analy-
sis with ASCENT.

Implementing a Modeling Tool

GME was selected to model DRE system configuration
and used this paradigm to experiment with AMP. The fol-
lowing benefits were observed as a result of using GME
to construct the AMP modeling tool for DRE system con-
figuration:

• Visualizes complex configuration rules. AMP pro-
vides a visual representation of the hardware and
software components making it significantly easier
to grasp the problem, especially to users with lim-
ited experience in DRE system configuration.

• Allows manipulation of configuration instances. In
addition to visually representing the problem, by
using AMP designers are able to quickly and eas-
ily change configuration details (budget, constraints,

27



Figure 4.5: AMP Workflow Diagram

components, resource requirements etc.) makes the
analysis much more powerful.

• Provides generational analysis. Models produced
with AMP may be fed a previous solution as in-
put, enabling designers to examine possible upgrade
paths for the next budget cycle. These upgrade paths
can be tracked for multiple generations, meaning that
the analysis can determine the best long-term solu-
tions. This capability was not previously available
with ASCENT and would have been considerably
harder to implement without the use of GME.

• Can easily be extended. It is simple to add additional
models and constraints to the existing AMP meta-
model. As DRE system configuration domain spe-
cific constraints are introduced, the AMP metamodel
can be altered to enforce these additional constraints
in subsequent model instances. Since most DRE sys-
tem configuration problems only slightly differ, ex-
isting metamodels can be reused and augmented.

• Simplifies problem creation. AMP provides a drag
and drop interface that allows users to create prob-
lem instances instead of writing 300+ required lines

of complex java code. The advantages of using a
simple graphical user interface are (1) designers do
not have to take the time to type the large amount
of code that would be required and (2) in the pro-
cess of typing this large amount of code designers
will likely make mistakes. While the compiler may
catch many of these mistakes, it is also likely domain
specific constraints that the compiler may overlook
will be inadvertently violated. Since GME enforces
the design rules defined within the metamodel, it is
not possible for the designers using AMP to unknow-
ingly make such a mistake while constructing a prob-
lem instance.

To expand the analytical capabilities of ASCENT,
GME was utilized to provide an easily configurable, vi-
sual representation of the problem via the AMP tool. Us-
ing these new features, it is possible to see a broader,
clearer picture of the total design process as well as the
global effects of even minor design decisions.

28



Constructing a Metamodel

Ametamodel is created for DRE system configuration us-
ing MetaGME. Figure 4.6 shows the Class Diagram por-
tion of the AMP metamodel. The root model is labeled
as AscentRoot and contains two models: AscentProb-
lem and AscentSolution. The configuration problems are
defined within AscentProblem. The configuration deter-
mined by interpreting the AscentProblem model and ap-
plying the ASCENT technique is represented as the As-
centSolution.
Within the AscentProblem, there is MMKPproblem

models and a Resources model. The MMKPproblems are
used to represent the components available for inclusion
in the configuration. Also included in the MMKPprob-
lem is a boolean attribute for setting whether or not an
MMKPproblem is a hardware problem. A constraint is
also defined that requires the definition of two MMKP-
problems, one of which contains the hardware compo-
nents while the other represents the software components.
The components shown in Figure 4.6 contain the re-

source amounts that they consume or produce, based on
whether they are members of a hardware MMKP problem
or a software MMKP problem. The common resources
model contains the Resource atoms, which represents the
external resources of the problem that are common to
both the hardware and software MMKPproblems, such as
available project budget and power. The AscentSolution
model contains a Deployment model, as well as atoms
that represent the total cost and total value of the con-
figuration determined by analyzing the AscentProblem.
The Deployment model contains SoftwareComponents
that represent the software components, HardwareNodes
that represent the hardware components, as well as a De-
ployedOn connection that is used to connect the software
components with the hardware components on which they
are deployed.

Analyzing and Interpreting

A BON2 interpreter was written in C++ to analyze model
instances. This interpreter traverses the AscentRoot
model and creates an XML representation of the mod-
els, atoms and connections contained within. An XML
representation of the model instance is then written to a
file. This XML file matches a previously defined schema

for use with the Castor XML binding libraries, a set of
libraries for demarshalling XML data into Java objects.
The ASCENT technique is defined within a Java jar file
called ASCENTGME.jar. Once the XML data is gener-
ated, the interpreter makes a system call to execute the
ASCENTGME.jar, passing in the XML file as an argu-
ment. Within ASCENTGME.jar, several things happen.
First, the XML file is demarshaled into Java objects. A
Java class then uses these objects to create two complex
MMKPProblem instances. These two problem instances,
along with a total budget value, are passed to ASCENT as
input.
When ASCENT executes it returns the best DRE sys-

tem configuration determined, as well as the cost and
value of the configuration. A First Fit Decreasing (FFD)
Bin-packer then uses these solutions along with their re-
source requirements to determine a valid deployment.
This deployment data, along with the total cost, total
value, hardware solution and software solution, is then
written to a configuration file. The interpreter, having
halted until the system call to execute the jar file termi-
nates, parses this configuration file. Using this data, the
ASCENT solution and deployment are written back into
the model, augmenting the model instance with the sys-
tem configuration.
The system configurations created by ASCENT can

be examined and analyzed by designers. Designers can
change problem parameters, execute the interpreter once
again, and examine the effects of the changes to the prob-
lem on the system configuration generated. This itera-
tive process allows designers to rapidly examine multi-
ple DRE system configuration design scenarios, resulting
in substantially increased knowledge of the DRE system
configuration design space.

Motivating Example

AMP can be applied to determine valid configuration
for the satellite imaging system shown in Figure 4.1.
Not only should the resulting configuration be valid, but
should also maximize system value. For example, a satel-
lite imaging system that produces high-resolution images
has higher inherent value than an imaging system that can
only produce low-resolution images. In addition, the col-
lective cost of the hardware and software components of
the system must not exceed the project budget.

29



Figure 4.6: GME Class View Metamodel of ASCENT

To create an AMP problem instance representing the
satellite imaging system described in Figure 4.1, several
GME models must be created. First, an ASCENT Prob-
lem instance is added to the project. ASCENT Problem
instances contain three models: A hardwareMMKP Prob-
lem representing the hardware component options, a soft-
ware MMKP Problem representing the software compo-
nent options and Resources, representing the external re-
sources, such as power and cost, that are consumed by
both types of components.
A hardware MMKP problem instance is added to rep-

resent the hardware components. Within the hardware
MMKP instance, Set model instances can be added. Each
Set represents a set of hardware components that provide
a common resource. For example, there are two types
of hardware components, Memory and CPU available for
consumption in the satellite system shown in Figure 4.1.
To represent these two quantities, two Set instances are
added with one instance representing CPU options and
the other Memory Options.
Within each Set instance, the available options are rep-

resented as instances of Items. Item instances are added
within the CPU option set to represent each of the avail-
able CPU options. Within each Item, a Resource instance
is added to indicate the production amounts of the Item.
For example, within the Item instance representing CPU
1, a Resource instance would be added that has a value of
1200, to represent the CPU production of the option. The
instances representing the other CPU options and Mem-
ory options are constructed in the same manner, conclud-

ing the construction of the Hardware MMKP problem.
Now that the hardware options are represented, a soft-

ware MMKP Problem instance must be prepared to rep-
resent the software component options. Continuing with
the satellite imaging system shown in Figure 4.1, model
representations of the software options for the Image Res-
olution component and Image Processing Algorithmmust
be constructed. Inside of the software MMKP instance, a
Set instance is added for each set of component options,
in this case a set for the Image Resolution component op-
tions and a set for the Image Processing Algorithm op-
tions. Similarly to the hardware MMKP problem, each
software component option is represented as an Item. So
within the Set instance of Image Resolution options, three
Item models are added to represent the low-resolution,
medium-resolution, and high-resolution options.
Unlike the hardwareMMKP Problem, however, a value

attribute must be assigned to represent the desirability
of including the option. For example, it is more desir-
able to provide high-resolution image processing rather
than medium-resolution or low-resolution image proper-
ties. Therefore, the value attribute high-resolution option
would be set to a higher number than the other resolution
options. Once the value is set, the resource consumption
of each option can be set within each item representation
of the software component options in the same manner
as described for the hardware MMKP Problem. Once
the hardwareMMKP Problem, softwareMMKP Problem,
and Resources are set, the model can be interpreted.
After the interpreter executes, a Deployment Plan

30



model instance is created. Within the Deployment Plan
the selected hardware components and software compo-
nents can be seen. In this case, the deployment plan con-
sists of the CPU 1, RAM 1 hardware components and Al-
gorithm 4, high-resolution software components. Further
examination shows that both of the software components
can be supported by the hardware components selected.

4.6 Related Work
Modeling tools can facilitate the process of DRE system
configuration. The methodology described in this chap-
ter has presented a process for constructing a modeling
tool for system configuration from scratch. The model
instances that are created using these modeling tools re-
quire that a user manually constructs model instances.
For larger model instances, this may take a large amount
of time. Therefore, techniques are needed that facili-
tate model instance construction from existing model in-
stances.
Typically, system designers wish to construct a single

model instance from data spread out over multiple model
types. For example, a system designer may have a UML
diagram for describing system software architecture, ex-
cel spreadsheets listing the cost and specifications of can-
didate components, and a Ptolemy model providing fault
tolerance requirements. To manually extract this informa-
tion form multiple models would be laborious.
Multi-modeling tools are applications that allow the

manipulation of multiple PSMs defined by different meta-
models. Multi-modeling tools could allow the automated
aggregation of data from models of different types. In
future work the use of multi-models to collect reliability,
fault-tolerance, and performance data from multiple dis-
parate models will be investigated and applied to the eval-
uation of model instances of DRE system configurations.
The migration of a model instance defined by a cer-

tain metamodel to a model instance defined by a different
metamodel is known as a model transformation. Since
these metamodels define different rules for constructing
PSMs, the semantic meaning of the model that is migrated
can be partially or entirely lost, resulting in an incomplete
transformation. In future work, procedures to transform
models while minimizing data loss will be researched.
Using these techniques, models that contain additional

system configuration data, such as Ptolemy models, could
be transformed into model instances that can be used in
concert with AMP [51]. The Lockheed Martin Corpo-
ration is currently constructing NAOMI [52], a multi-
modeling environment that can be utilized to aggregate
data from multiple models of different types and perform
complex multi-model transformations.

31



Chapter 5

Automated Hardware and Software
Evolution Analysis

5.1 Challenge Overview
This chapter provides a motivation for the creation of au-
tomated techniques to evolve legacyDRE system configu-
rations. We present a scenario in which a Smart Car must
be evolved as new components become available to pro-
vide new functionality while continuing to satisfy strict
resource requirements and QoS constraints. We demon-
strate how automated hardware and software evolution
can allow DRE systems to maintain usability as new tech-
nology becomes available.

5.2 Introduction
Current trends and challenges. Evolution accounts for
a significant portion of software life-cycle costs [53]. An
important type of software evolution involves enhanc-
ing existing software to meet new customer and market
needs [54]. For example, in the automotive industry, each
year the software and hardware from the previous year’s
model car must be upgraded to provide new capabilities,
such as automated parking or wireless connectivity.
Software evolution analysis is the process of determin-

ing which software components and hardware compo-
nents can be added to a system to implement new func-
tionality while adhering to multiple resource constraints.
This analysis involves several challenges, including (1)
building an economic model to estimate the return on in-
vestment of new software features, (2) estimating the cost

of implementing a software feature [55], and (3) selecting
a new system configuration that maximizes the value of
the features added while respecting resource constraints.
This chapter examines software evolution analysis tech-
niques that automatically determine valid system config-
urations that support required new capabilities without vi-
olating resource constraints.
In many domains, the cost/benefit analysis for soft-

ware evolution is partially simplified by the availability
of commercial-off-the-shelf (COTS) software/hardware
components [56]. For example, automotive manufactur-
ers know how much it costs to buy windshield wiper
hardware/software components, as well as electronic con-
trol units (ECUs) with specific memory and process-
ing capabilities/costs. Similar cost/benefit analysis can
also be conducted for custom-developed (i.e., non-COTS)
software/hardware components [57].
Regardless of whether components are COTS or cus-

tom, however, determining the optimal subset of compo-
nents needed to upgrade existing components is an NP-
Hard problem [58]. In the simplest case—where any com-
bination of the components are compatible—the problem
of selecting which components to use in an upgrade is an
instance of the knapsack problem, where a knapsack of
predefined size is filled with items of various sizes and
values. The goal is to maximize the sum of the value of
items in the sack without exceeding the knapsack size.
In this chapter, the knapsack size is defined by the total
budget available for the component purchase and/or de-
velopment; the goal is to find the optimal subset of the

32



hardware and software components that do not exceed the
budget (i.e., that fit into the knapsack) and maximize the
value of the added capabilities [59].
Moreover, many software evolution problems do not fit

into a relaxed paradigm where any set of components can
be used. For example, purchasing two different infotain-
ment software system implementations does not double
the value of the car since only one system can actually be
installed. In most situations, each new capability that can
be added is a point of design variability, with a number of
potential implementations [60] each having their own cost
and performance. The infotainment system is the point
of design variability and the various implementations of
the infotainment system are the concrete options for that
point of variability since only one concrete option can be
chosen at one point in time.
Distributed, real-time, and embedded (DRE) systems,

such as automotive and avionics systems, have limited
resources and often exhibit tight coupling between hard-
ware and software decisions [61]. A consequence of this
tight-coupling is that the selected hardware components
must provide sufficient resources to support the decisions
made for the points of software variability. For exam-
ple, purchasing an infotainment software system that con-
sumes more memory than is available on its hosting hard-
ware can yield a flawed configuration. When determin-
ing the set of software components to upgrade, therefore,
careful consideration must be paid to the production and
consumption of resources by hardware and software, re-
spectively. Finding the set of replacement components
that adheres to all resource constraints and maximizes to-
tal value for an upgrade is an optimization problem that
focuses on determining solution(s) that maximizes a sin-
gle element of the problem.
This type of hardware/software co-design problem is

NP-Hard [50] since there are an exponential number of
possible evolved configurations, which prohibits the use
of exhaustive state space exploration even for minor DRE
system software evolution. For example, Consider the
evolution of an automobile braking system with 10 dif-
ferent points of software variability and 10 implemen-
tation options for each variability point. Likewise, as-
sume there is a single variable hardware electronic con-
trol units (ECU) with 10 different available configurations
with varying capabilities. This problem formulation has
10100 possible evolution configurations that must be con-

sidered.

Solution Approach→MMKP-based upgrade anal-
ysis. This chapter shows how a number of complex
software evolution optimization problems can be recast
as multidimensional multiple-choice knapsack problems
(MMKP) [62]. MMKPs are a specialized version of the
more general knapsack problem where the items are di-
vided into sets and exactly one item must be chosen from
each set. The goal of the MMKP problem is to maximize
the value of the items placed into the knapsack without
violating the knapsack size or set selection constraints.

By converting the task of determining valid, favorable
software evolution configurations into an instance of an
MMKP, developers can take advantage of powerful ap-
proximation algorithms [63]. While these algorithms do
not guarantee optimal solutions, they frequentlyfind near-
optimal solutions in polynomial-time. Moreover, certain
software evolution analysis problems that involve tightly-
coupled hardware/software decisions can be framed as co-
dependent MMKP problems, in which one problem pro-
duces resources for consumption by the other [50].

Converting software evolution decisions into tractable
instances of MMKP problems is neither obvious nor triv-
ial. This process is exacerbated by DRE systems in which
software architecture decisions may effect the hardware
architecture and vice versa, thereby complicating the evo-
lution analysis. This chapter provides the following four
contributions to the study of techniques that convert vari-
ous software evolution analysis problems into MMKP in-
stances: (1) we describe the Software Evolution Analysis
with Resources (SEAR) technique for mapping software
evolution analysis problems of several common software
evolution scenarios toMMKP problems, (2) we show how
these MMKP formulations of software evolution analysis
problems can be solved usingMMKP heuristic techniques
and mapped back to upgrade solutions, (3) we present em-
pirical comparisons of the optimality and solve times for
three algorithms that can solve these transformed MMKP
problems for problems of various size, and (4) we used
this data to present a taxonomy that describes which al-
gorithm is most effective based on the problem type and
size.

33



5.3 Motivating Example
It is hard to upgrade the software and hardware in a DRE
system to support new software features and adhere to re-
source constraints. For example, auto manufacturers that
want to integrate automated parking software into a car
must find a way to upgrade the hardware on the car to
provide sufficient resources for the new software. Each
automated parking software package may need a distinct
set of controllers for movement (such as brake and throt-
tle) and ECU processing capabilities (such as memory and
processing power) [64].
Figure 5.1 shows a segment of automotive software

and hardware design that we use as a motivating example
throughout the chapter. This legacy configuration con-
tains two software components: a legacy brake controller
and a legacy throttle controller as shown in Figure 5.1(A).
In addition to an associated value and purchase cost, each
component consumes memory and processing power to
function. These resources are provided by the hardware
component (i.e., the ECU). This configuration is valid
since the ECU produces more memory and processing re-
sources than the components collectively require.
Adding an automated parking system to the original de-

sign shown in Figure 5.1(A) may require software com-
ponents that are more recent, more powerful, or provide
more functionality than the original software components.
For example, to provide automated parking, the throttle
controller may need to possess functionality to interface
with laser depth sensors. In this example, the original
controller lacked this functionality and must be upgraded
with a more advanced implementation. The implementa-
tion options for the throttle controller are shown in Fig-
ure 5.1(B).
Figure 5.1(B) shows potential controller evolution op-

tions. Two implementations are available for each con-
troller.Developers installing an automated parking system
must upgrade the throttle controller via one of the two
available implementations and can optionally increase the
functionality of the system by upgrading the brake con-
troller.
Given a fixed software budget (e.g., $500), developers

can purchase any combination of controllers. If develop-
ers want to purchase both a new throttle controller and
a new brake controller, however, they must purchase an
additional ECU to provide the necessary resources. The

other option is to not upgrade the brake controller, thereby
sacrificing additional functionality, but saving money in
the process.
Given a fixed total hardware/software budget of $700,

the developersmust first divide the budget into a hardware
budget and a software budget. For example, they could
divide the budget evenly, allocating $350 to the hardware
budget and $350 to the software budget. With this bud-
get developers can afford to upgrade the throttle controller
software with Implementation B and the brake controller
software with Implementation B. The legacy ECU alone,
however, does not provide enough resources to support
these two devices. Developers must therefore purchase
an additional ECU to provide the necessary additional re-
sources. The new configuration for this segment of the
automobile with upgraded controllers and an additional
ECU (with ECU1 Implementation A) can be seen in Fig-
ure 5.1(C).
Our motivating example above focused on 2 points of

software design variability that could be implemented us-
ing 4 different new components. Moreover, 4 different po-
tential hardware components could be purchased to sup-
port the software components. To derive a configuration
for the entire automobile, an additional 46 software com-
ponents and 20 other hardware components must be ex-
amined. Each configuration of these components could be
a valid configuration, resulting in (5024) unique potential
configurations. In general, as the quantity of software and
hardware options increase, the number of possible config-
urations increases exponentially, thereby rendering man-
ual optimization solutions infeasible in practice.

5.4 Challenges of Evolution Deci-
sion Analysis

Several issues must be addressed when evolving soft-
ware and hardware components. For example, developers
must determine (1) what software and hardware compo-
nents to buy and/or build to implement the new feature,
(2) how much of the total budget to allocate to software
and hardware, respectively, and (3) that the selected hard-
ware components provide sufficient resources for the cho-
sen software components. These issues are related, e.g.,
developers can either choose the software and hardware

34



Figure 5.1: Software Evolution Progression

components to dictate the allocation of budget to software
and hardware or the budget distributions can be fixed and
then the components chosen. Moreover, developers can
either choose the hardware components and then select
software features that fit the resources provided by the
hardware or the software can be chosen to determine what
resource requirements the hardware must provide. This
section describes a number of challenging upgrade sce-
narios that require developers to address the issues out-
lined above.

5.4.1 Challenge 1: Evolving Hardware to
Meet New Software Resource De-
mands

This evolution scenario has no variability in implement-
ing new functionality, i.e., the set of software resource re-
quirements is predefined. For example, if an automotive
manufacturer has developed an in-house implementation
of an automated parking system, the manufacturer will
know the new hardware resources needed to support the
system and must determine which hardware components
to purchase from vendors to satisfy the new hardware re-
quirements. Since the only purchases that must be made
are for hardware, the exact budget available for hardware
is known. The problem is to find the least-cost hardware
design that can provide the resources needed by the soft-
ware.
The difficulty of this scenario can be shown by assum-

ing that there are 10 different hardware components that
can be evolved, resulting in 10 points of hardware vari-
ability. Each replaceable hardware component has 5 im-
plementation options from which the single upgrade can
be chosen, thereby creating 5 options for each variability
point.
To determine which set of hardware components yield

the optimum value (i.e., the highest expected return on in-
vestment) or the minimum cost (i.e., minimum financial
budget required to construct the system), 9,765,265 con-
figurations of component implementations must be exam-
ined. Even after each configuration is constructed, de-
velopers must determine if the hardware components pro-
vides sufficient resources to support the chosen software
configuration. Section 5.5.1 describes how SEAR ad-
dresses this challenge by using predefined software com-
ponents and replaceable hardware components to form a
single MMKP evolution problem.

5.4.2 Challenge 2: Evolving Software to In-
crease Overall System Value

This evolution scenario preselects the set of hardware
components and has no variability in the hardware im-
plementation. Since there is no variability in the hard-
ware, the amount of each resource available for consump-
tion is fixed. The software components, however, must be
evolved. For example, a software component on a com-
mon model of automobile has been found to be defective.

35



To avoid the cost of a recall, the manufacturer can ship
new software components to local dealerships, who can
replace the defective software components. The dealer-
ships lack the capabilities required to add hardware com-
ponents to the automobile.
Since no new hardware is being purchased, the entire

budget can be devoted to software purchases. As long
as the resource consumption of the chosen software com-
ponent configuration does not exceed the resource pro-
duction of existing hardware components, the configura-
tion can be considered valid. The difficulty of this chal-
lenge is similar to the one described in Section 5.4.1,
where 10 different types of software components with 5
different available selections per type required the anal-
ysis of 9,765,265 configurations. Section 5.5.2 describes
how SEAR addresses this challenge by using the predeter-
mined hardware components and evolution software com-
ponents to create a single MMKP evolution problem.

5.4.3 Challenge 3: Unrestricted Upgrades
of Software and Hardware in Tandem

Yet another challenge occurs when both hardware compo-
nents and software components can be added, removed,
or replaced. For example, consider an automobile manu-
facturer designing the newest model of its flagship sedan.
This sedan could either be similar to the previous model
with few new software and hardware components or it
could be completely redesigned, with most or all of the
software and hardware components evolved.
Though the total budget is predefined for this scenario,

it is not partitioned into individual hardware and software
budgets, thereby greatly increasing the magnitude of the
problem. Since neither the total provided resources nor
total consumable resources are predefined, the software
components depend on the hardware decisions and vice
versa, incurring a strong coupling between the two seem-
ingly independent MMKP problems.
The solution space of this problem is even larger than

that of the challenge presented in Section 5.4.2. Assuming
there are 10 different types of hardware options with 5 op-
tions per type, there are 9,765,265 possible hardware con-
figurations. In this case, however, every type of software
is eligible instead of just the types that are to be upgraded.
If there are 15 types of software with 5 options per type,

therefore, 30,516,453,125 software variations can be cho-
sen. Each variation must be associated with a hardware
configuration to test validity, resulting in 30,516,453,125
* 9,765,265 tests for each budget allocation.
In these worst case scenarios, the staggering size of

the configuration space prohibits the use of exhaustive
search algorithms for anything other than trivial design
problems. Section 5.4 describes how SEAR addresses this
challenge by combining all software and hardware com-
ponents into a specialized MMKP evolution problem.

5.5 Evolution Analysis via SEAR
This section describes the procedure for transforming the
evolution scenarios presented in Section 5.4 into evolu-
tion Multidimensional Multiple-choice Knapsack Prob-
lems (MMKP) [49]. MMKP problems are appropriate for
representing evolution scenarios that comprise a series of
points of design variability that are constrained by multi-
ple resource constraints, such as the scenarios described
in Section 5.4. In addition, there are several advantages to
mapping the scenarios to MMKP problems.
MMKP problems have been extensively studied. As a

result, there are several polynomial time algorithms that
can be utilized to provide nearly optimal solutions, such
as those described in [49, 65–67]. This chapter uses the
M-HEU approximation algorithm described in [49] for
evolution problems with variability in either hardware or
software but not both. The multidimensional nature of
MMKP problems is ideal for enforcing multiple resource
constraints. The multiple-choice aspect of MMKP prob-
lems make them appropriate for situations (such as those
described in Section 5.4.2) where only a single software
component implementation can be chosen for each point
of design variability.
MMKP problems can be used to represent situations

where multiple options can be chosen for implementation.
Each implementation option consumes various amounts
of resources and has a distinct value. Each option is
placed into a distinct MMKP set with other competing op-
tions and only a single option can be chosen from each set.
A valid configuration results when the combined resource
consumption of the items chosen from the variousMMKP
sets does not exceed the resource limits. The value of the
solution is computed as the sum of the values of selected

36



items.

5.5.1 Mapping Hardware Evolution Prob-
lems to MMKP

Below we show how we map the hardware evolution
problem described in Section 5.4.1 to an MMKP prob-
lem. In this case, the scenario can be mapped to a sin-
gle MMKP problem representing the points of hardware
variability. The size of the knapsack is defined by the
hardware budget. The only additional constraint on the
MMKP solution is that the quantities of resources pro-
vided by the hardware configuration exceeds the prede-
fined consumption needs of software components.
To create the hardware evolutionMMKP problem, each

hardware component is converted to an MMKP item. For
each point of hardware variability, an MMKP set is cre-
ated. Each set is then populated with the MMKP items
corresponding to the hardware components that are im-
plementation options for the set’s corresponding point of
hardware variability. Figure 5.2 shows a mapping of a
hardware evolution problem for an ECU to an MMKP.

Figure 5.2: MMKP Representation of Hardware Evo-
lution Problem

In Figure 5.2 the software does not have any points of
variability that are eligible for evolution. Since there is
no variability in the software, the exact amount of each
resource that will be consumed by the software is known.
The M-HEU approximation algorithm (or an exhaustive

search algorithm, such as a linear constraint solver) uses
this hardware evolution MMKP problem, the predefined
resource consumption, and the predefined external re-
source (budget) requirements to determine which ECUs
to purchase and install. The solution to the MMKP is the
hardware components that should be chosen to implement
each point of hardware variability.

5.5.2 Mapping Software Evolution Prob-
lems to MMKP

We now show how to map the software evolution prob-
lem described in Section 5.4.2 to an MMKP problem. In
this case, the hardware configuration cannot be altered,
as shown in Figure 5.3. The hardware thus produces a

Figure 5.3: MMKP Representation of Software Evo-
lution Problem

predetermined amount of each resource. Similar to Sec-
tion 5.5.1, the fiscal budget available for software pur-
chases is also predetermined. Only the software evolution
MMKP problemmust therefore be solved to determine an
optimal solution.
As shown in the software problem portion of Figure 5.3,

each point of software variability becomes a set that con-
tains the corresponding controller implementations. For
each set there are multiple implementations that can serve
as the controller. This software evolution problem—along
with the software budget and the resources available for
consumption as defined by the hardware configuration—

37



can be used by an MMKP algorithm to determine a valid
selection of throttle and brake controllers.

5.5.3 Hardware/Software Co-Design with
ASCENT

Several approximation algorithms can be applied to solve
single MMKP problems, as described in Sections 5.5.1
and 5.5.2. These algorithms, however, cannot solve cases
in which there are points of variability in both hardware
and software that have eligible evolution options. In this
situation, the variability in the production of resources
from hardware and the consumption of resources by soft-
ware requires solving two MMKP problems simultane-
ously, rather than one. In prior work we developed the
Allocation-baSed Configuration Exploration Technique
(ASCENT) technique to determine valid, low-cost solu-
tions for these types of dual MMKP problems [50].
ASCENT is a search-based, hardware/software co-

design approximation algorithm that maximizes the soft-
ware value of systems while ensuring that the resources
produced by the hardware MMKP solution are sufficient
to support the software MMKP solution [50]. The al-
gorithm can be applied to system design problems in
which there are multiple producer/consumer resource
constraints. In addition, ASCENT can enforce external
resource constraints, such as adherence to a predefined
budget.
The software and hardware evolution problem de-

scribed in Section 5.4.3 must be mapped to two MMKP
problems so ASCENT can solve them. The hardware
and software evolution MMKP problems are prepared as
shown in Figure 5.4. This evolution differs from the
problems described in Section 5.5.1, since all software
implementations are now eligible for evolution, thereby
dramatically increasing the amount of variability. These
two problems—along with the total budget—are passed
to ASCENT, which then searches the configuration space
at various budget allocations to determine a configuration
that optimizes a linear function computed over the soft-
ware MMKP solution. Since ASCENT utilizes an ap-
proximation algorithm, the total time to determine a valid
solution is usually small. In addition, the solutions it pro-
duces average over 90% of optimal [50].

Figure 5.4: MMKP Representation of Unlimited Evo-
lution Problem

5.6 Empirical Results
This section presents empirical data obtained from using
three different algorithmic techniques to determine valid,
high-value, evolution configurations for the scenarios de-
scribed in Section 5.4. These results demonstrate that
each algorithm is effective for certain types of MMKP
problems. Moreover, if the correct technique is used, a
near-optimal solution can be found. Each set represents
a point of design variability and problems with more sets
have more variability. Moreover, the ASCENT and M-
HEU algorithms can be used to determine solutions for
large-scale problems that cannot be solved in a feasible
amount of time with exhaustive search algorithms.

5.6.1 Experimental Platform
All algorithms were implemented in Java and all exper-
iments were conducted on an Apple MacbookPro with
a 2.4 GHz Intel Core 2 Duo processor, 2 gigabytes of
RAM, running OS X version 10.5.5, and a 1.6 Java Vir-
tual Machine (JVM) run in client mode. For our exhaus-
tive MMKP solving technique—which we call the linear
constraint solver (LCS)—we used a branch and bound
solver built on top of the Java Choco Constraint Solver
(choco.sourceforge.net). The M-HEU heuristic
solver was a custom implementation that we developed
with Java. The ASCENT algorithm was also based on

38



a custom implementation with Java. Simulation MMKP
problems were randomly generated as described in [50].

5.6.2 Hardware Evolution with Predefined
Resource Consumption

Figure 5.5: Hardware Evolution Solve Time vs Num-
ber of Sets

This experiment investigates the use of a linear con-
straint solver and the use of theM-HEU algorithm to solve
the challenge described in Section 5.4.1, where the soft-
ware components are fixed. First, we test for the total time
needed for each algorithm to run to completion. We then
examine the optimality of the solutions generated by each
algorithm. We run these tests for several problems with
increasing set counts, thus showing how each algorithm
performs with increased design variability.
Figure 5.5 shows the time required to generate a hard-

ware configuration if the software configuration is prede-
fined.1
Since only a singleMMKP problemmust be solved, we

use the M-HEU algorithm. As set size increases, the time
required for the linear constraint solver increases rapidly.
If the problem consists of more sets, the time required
for the linear constraint solver becomes prohibitive. The
M-HEU approximation algorithm, however, scaled much
better, finding a solution for a problem with 1,000 sets
in ∼15 seconds. Figure 5.6 shows that both algorithms
generated solutions with 100% optimality for problems
with 5 or less sets.

1Time is plotted on a logarithmic scale for all figures that show solve
time.

Figure 5.6: Hardware Evolution Solution Optimality
vs Number of Sets

Regardless of the number of sets, the M-HEU algo-
rithm completed faster than the linear constraint solver
without sacrificing optimality.

Figure 5.7: Software Evolution Solve Time vs Num-
ber of Sets

5.6.3 Software Evolution with Predefined
Resource Production

This experiment examines the use of a linear constraint
solver and the M-HEU algorithm to solve evolution sce-
narios in which the hardware components are fixed, as
described in Section 5.4.2. We test for the total time each
algorithm needs to run to completion and examine the op-
timality of solutions generated by each algorithm.
Figure 5.7 shows the time required to generate a soft-

ware configuration generated if the hardware configura-
tion is predetermined. As with Challenge 2, the M-HEU
algorithm is used since only a single MMKP problem
must be solved. Once again, LCS’s limited scalability is

39



demonstrated since the required solve time makes its use
prohibitive for problems with more than five sets. The
M-HEU solver scales considerably better and can solve a
problem with 1,000 sets in less than 16 seconds, which is
fastest for all problems.
Figure 5.8 shows the optimality provided by each

solver. In this case, the M-HEU solver is only 80% op-

Figure 5.8: Software Evolution Solution Optimality
vs Number of Sets

timal for problems with 4 sets. Fortunately, the optimality
improves with each increase in set count with a solution
for a problem with 7 sets being 100% optimal.

5.6.4 Unrestricted Software Evolution with
Additional Hardware

This experiment examines the use of a linear constraint
solver and the ASCENT algorithm to solve the challenge
described in Section 5.4.3, in which no hardware or soft-
ware components are fixed. We first test for the total time
needed for each algorithm to run to completion and then
examine the optimality of the solutions generated by each
algorithm. Unrestricted evolution of software and hard-
ware components has similar solve times to the previous
experiments.
Figure 5.9 shows that regardless of the set count for

the MMKP problems, the ASCENT solver derived a so-
lution much faster than LCS. This figure also shows that
the required solve time to determine a solution with LCS
increases rapidly, e.g., problems that have more than five
sets require an extremely long solve time. The ASCENT
algorithm once again scales considerably better and can
even solve problems with 1,000 or more sets. In this case,

Figure 5.9: Unrestricted Evolution Solve Time vs
Number of Sets

Figure 5.10: Unrestricted Evolution Solution Opti-
mality vs Number of Sets

Figure 5.11: LCS Solve Times vs Number of Sets

40



the optimality of the solutions found by ASCENT is low
for problems with 5 sets, as shown in Figure 5.10.
Fortunately, the time required to solve with LCS is not

prohibitive in these cases, so it is still possible to find a
solution with 100% optimality in a reasonable amount of
time.

5.6.5 Comparison of Algorithmic Tech-
niques

This experiment compared the performance of LCS to the
performance of the M-HEU and ASCENT algorithms for
all challenges in Section 5.4. As shown in Figure 5.11, the
characteristics of the problem(s) being solved has a large
impact on solving duration.

Figure 5.12: M-HEU &ASCENT Solve Times vs Num-
ber of Sets

Figure 5.13: Comparison of Solve Times for All Ex-
periments

Each challenge has more points of variability than the
previous challenge. The solving time for LCS thus in-

creases as the number of the points of variability in-
creases. For all cases, the LCS algorithm requires an ex-
orbitant amount of time for problems with more than five
sets. In contrast, the M-HEU and ASCENT algorithms
show no discernable correlation between the amount of
variability and the solve time. In some cases, problems
with more sets require more time to solve than problems
with less sets, as shown in Figure 5.12.

Figure 5.14: Comparison of Optimalities for All Ex-
periments

Figure 5.15: Taxonomy of Techniques

Figure 5.13 compares the scalability of the three algo-
rithms.
This figure shows that LCS requires the most solving

time in all cases. Likewise, the ASCENT and M-HEU al-
gorithms scale at approximately the same rate for all prob-
lems and are far superior to the LCS algorithm. The op-
timality of the ASCENT and M-HEU algorithms is near-
optimal only for problemswith five or more sets, as shown
in Figure 5.14.
The exception to this trend occurs if there are few

points of variability, e.g., when there are few sets and the
software is predetermined. These findings motivate the
taxonomy shown in Figure 5.15 that describes which al-
gorithm is most appropriate, based on problem size and
variability.

41



5.7 Related Work
Search-based software engineering has a large number of
facets ranging from the design of general approximation
algorithms to the construction of search-based software
engineering methods for specific problems. This section
compares and contrasts SEAR to search-based software
engineering techniques related to (1) methods for using
search-based techniques to solve hardware/software parti-
tioning problems and (2) search-based software engineer-
ing techniques for determining project staffing.
Hardware/software partitioning. A number of co-

design techniques [68–70]—that can be viewed as search-
based software engineering techniques—examine the
problem of partitioning system functionality into hard-
ware and software. These approaches use a number of
search techniques ranging from binary constraint search
to dynamic programming. In the partitioning problem,
a system’s required operations are grouped into tasks or
functions, which are then implemented in either hardware
or software. The goal is to correctly partition the tasks
into hardware and software to meet a predefined perfor-
mance goal. Some tasks may operate with higher per-
formance if the functionality is placed on the hardware
rather than on software. The performance of the system is
thus determined by the location and placement of tasks in
hardware versus software.
The MMKP co-design problem, which SEAR focuses

on, is complementary to this research. In particular, these
related approaches do not deal with maximizing a mea-
sure of system value subject to producer/consumer re-
sources and cost. Similarly, SEAR does not examine the
impact of the placement of tasks on the hardware and soft-
ware. Each approach fills an important, although distinct,
role in the search-based software engineering landscape
for hardware and software evolution.
Project management and staff allocation. Accurate

planning of large projects are essential to estimate project
cost, determine the formation of employee project teams,
and to assign these teams to tasks in a manner that gives
the largest probability for successful completion. The
placement of each individual employee can change the
profile of the entire project plan, resulting in an exponen-
tial number of possible configurations [71]. Moreover,
parameters of a project are dynamic and may change sev-
eral times before project completion, requiring that mul-

tiple staffing solutions be calculated. This research is
related to hardware and software evolution problems in
that it deals with two tightly-coupled activites–the order-
ing and staffing of project parts subject to resource con-
straints. Although the work is related, it cannot be used
to solve MMKP hardware and software evolution prob-
lems. In contrast, SEAR is specifically designed for solv-
ing MMKP hardware and software evolution problems.

42



Chapter 6

Concluding Remarks

This chapter presents lessons learned from our work
in DRE system deployment and configuration derivation.
Section 6.1 presents our findings from constructing an au-
tomated technique for deriving deployments with reduced
processor requirements. Section 6.2 showcases conclu-
sions drawn from creating a tool to optimize system-wide
deployment properties. Section 6.3 describes lessons
learned from creating a model-driven tool for DRE sys-
tem configuration. Finally, Section 6.4 presents our dis-
coveries from creating an automated technique for evolv-
ing DRE systems.

6.1 Automated Deployment Deriva-
tion

Determining component deployments that minimize the
number of required processors is hard. This problem
is exacerbated by proving that software applications are
schedulable for a chosen deployment. Using bin packing
algorithms, such as first-fit decreasing, the entire deploy-
ment space need not be searched. By using our BLITZ
algorithm (which combines first-fit decreasing bin pack-
ing with proven utilization bounds based on data char-
acteristics), valid and near minimal deployments can be
determined.
Based on our work with BLITZ thus far, we learned

the following lessons pertaining to deployment for DRE
systems:

• Grouping based on harmonic periods improves
packing tightness. BLITZ combines the Liu-
Layland equation with the increased utilization

bound of components with harmonic execution pe-
riods to maximize the utilization of each processor
during deployment. As a result, tasks can be clus-
tered on fewer processors, reducing the processors
required.

• Processor minimization depends on real-time
benchmarks. BLITZ has been shown to greatly re-
duce the required processors of a DRE system of an
extensively benchmarked real-time system. Without
knowledge of periodicity, resource constraints, and
co-location constraints, BLITZ cannot be fully uti-
lized. It is essential to develop tools that effectively
simulate and thoroughly benchmark DRE systems
before they are deployed so that the full capabilities
of BLITZ can be applied.

The current version of BLITZ with exam-
ple code is available in open-source form at
ascent-design-studio.googlecode.com.
The industry challenge problem that is the basis for this
paper can be found at www.sprucecommunity.org.

6.2 Legacy Deployment Optimiza-
tion

Optimizing deployment topologies on legacy embedded
flight avionics system can yield substantial benefits, such
as reducing hardware costs and power consumption. By
combining the efficiency of metaheuristic optimization
techniques (such as particle swarm optimization) with
other heuristic algorithms (such as bin-packing) legacy

43



deployments can be evolved and optimized in a matter of
seconds.
The following are a summary of the lessons we learned

applying our ScatterD tool for deployment optimization
to a legacy flight avionics system:

• Multiple constraints make deployment planning
hard. Avionics deployments must adhere to a wide
range of strict constraints, such as resource, coloca-
tion, scheduling, and network bandwidth. Deploy-
ment optimization tools must account for all these
constraints when determining a new deployment.

• A Huge deployment space requires intelligent
search techniques. The vast majority of potential
deployments that could be created violate one or
more design constraints. Intelligent and automated
techniques, such as hybrid-heuristic bin-packing,
should therefore be applied to discover valid “near-
optimal” deployments.

• Substantial processor and network bandwidth re-
ductions are possible. Applying hybrid-heuristic
bin-packing to the flight avionics system resulted
in 42.8% processor reduction and 24% bandwidth
reduction. Our future work is applying hybrid-
heuristic bin-packing to other embedded system de-
ployment domains, such as automobiles, multi-core
processors, and tactical smartphone applications.

The ScatterD tool is available in open-
source form in the Ascent Design Stu-
dio( ascent-design-studio.googlecode.
com). A document describing the flight avionics system
case study outlined in Section 3.3, as well as additional
information on ScatterD, can be found at the SPRUCE
web portal (www.sprucecommunity.org), which
pairs open industry challenge problems with cutting-edge
methods and tools from the research community.

6.3 Model Driven Configuration
Derivation

Determining valid configurations for distributed real-time
and embedded (DRE) systems is hard. Designers must

take into account a myriad of constraints including re-
source constraints, real-time constraints, QoS constraints,
and other functional constraints. The difficulty of this
task is exacerbated by the presence of a plethora of poten-
tial COTS components for inclusion in the configuration,
with each providing varying quality of service, function-
ality, resource requirements and financial cost. This high
availability of COTS components results in an exponen-
tial number of potential DRE system configurations.
As a result, manual techniques for determining valid

DRE system configurations are far too cumbersome. Even
exact automated techniques, such as the use of CSPs, re-
quire a prohibitive amount of time to execute. Approx-
imation techniques, such as ASCENT, however, do not
require an exhaustive search of the vast design space al-
lowing a much more rapid execution while often resulting
in solutions with over 95% optimality.
The use of complex programmatic techniques in ap-

proximation techniques like ASCENT often have a steep
learning curve and require large amounts of coding to con-
struct a problem for execution. Due to the complex coding
involved, these techniques carry the added burden of be-
ing error prone when defining problem instances. To ad-
dress these challenges, an MDA-based tool called the As-
cent Modeling Platform (AMP) that utilized GME to con-
struct problem instances and display valid solutions for
DRE system configurations was utilized. The following
are lessons learned during our creation and use of AMP:

• Modeling tools provide rapid problem construc-
tion. Through the use of GME, problems could be
constructed in a fraction of the time of using pro-
grammatic techniques.

• Utilizing MDA reduces human error. AMP uti-
lizes a GMEmetamodel that enforces the many com-
plex design constraints associated with DRE system
configuration. As a result, users of AMP are pre-
vented from constructing a configuration problem
that is invalid.

• Modeling tools facilitate design space exploration.
Solutions are posted directly back into the model for
analysis by system designers. Designers can then
change problem parameters within the model and ex-
ecute the interpreter to explore multiple configura-

44



tion scenarios, resulting in an increased understand-
ing of the design space.

• Multiple execution options still needed. Currently
ASCENT is the only technique that is executed upon
interpreting models in AMP. Other techniques, such
as the use of CSP solvers, should be implemented
to determine solutions to problems with an appropri-
ately reduced number of candidate components.

The current version of AMP with exam-
ple code is available in open-source form at
ascent-design-studio.googlecode.com.

6.4 Automated Hardware and Soft-
ware Evolution Analysis

Determining valid evolution configurations for software/-
hardware configurations that increase system value is
hard. The exponential number of possible configura-
tions that stem from the massive variability in these
problems prohibit the use of exhaustive search algo-
rithms for non-trivial problems. This chapter presented
the Software Evolution Analysis with Resources (SEAR)
technique, which converts common evolution problems
into multi-dimensional multiple-choice knapsack prob-
lems (MMKP). We also empirically evaluated three dif-
ferent algorithms for solving these problems to compare
their effectiveness in providing valid, high-value evolu-
tion configurations.
From these experiments, we learned the following

lessons pertaining to determine valid evolution configu-
rations for hardware/software co-design systems:

• Approximation algorithms scale better than ex-
haustive algorithms. Exhaustive search techniques,
such as the linear constraint solver algorithm, can-
not be applied to non-trivial problems. The deter-
mining factor in the effectiveness of these algorithms
is the number of problem sets. To solve problems
with realistic set counts in feasible time, approxima-
tion algorithms, such as the M-HEU algorithm or the
ASCENT algorithm must be used. These techniques
can solve even large problems in seconds, with min-
imal impact on optimality.

• Extremely small or large problems yield near-
optimal solutions. For non-trivial problems, the AS-
CENT algorithm and M-HEU algorithm can be used
to determine near-optimal evolution configurations.
For tiny problems, the LCS algorithm can be used
to determine optimal solutions. Given that these tiny
problems have few points of variability, this can be
done rapidly.

• Problem size should determine which algorithm
to apply. Based on problem characteristics, it can
be highly advantageous to use one algorithmic tech-
nique versus another, which can result in faster solv-
ing times or higher optimality. Figure 5.15 shows
the problem attributes that should be examined when
deciding which algorithm to apply. It also relates the
algorithm that is best suited for solving these evolu-
tion problems based on the number of sets present.

• No algorithm is universally superior. The analysis
of empirical results indicate that all three algorithms
are superior for different types of evolution prob-
lems. We have not, however, discovered an algo-
rithm that performs well for every problem type. To
determine if other existing algorithms perform better
for one or all types of evolution problems, further ex-
perimentation and analysis is necessary. Our future
work will examine other approximation algorithms,
such as genetic algorithms and particle swarm tech-
niques, to determine if a single superior algorithm
exists.

The current version of ASCENT with example code
that utilizes SEAR is available in open-source form at
ascent-design-studio.googlecode.com.

45



Bibliography

[1] H. Beitollahi and G. Deconinck, “Fault-Tolerant
Partitioning Scheduling Algorithms in Real-Time
Multiprocessor Systems,” Pacific Rim Interna-
tional Symposium onDependableComputing, IEEE,
vol. 0, pp. 296–304, 2006.

[2] M. Mikic-Rakic and N. Medvidovic, “Architecture-
Level Support for Software Component Deploy-
ment in Resource Constrained Environments,”LEC-
TURE NOTES IN COMPUTER SCIENCE, pp. 31–
50, 2002.

[3] N. R. C. Steering Committee for the Decadal Sur-
vey of Civil Aeronautics, Decadal Survey of Civil
Aeronautics: Foundation for the Future. The Na-
tional Academies Press, 2996.

[4] D. Seto, J. Lehoczky, L. Sha, and K. Shin, “On task
schedulability in real-time control systems,” in Real-
Time Systems Symposium, 1996., 17th IEEE, 1996,
pp. 13–21.

[5] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New
Strategies for Assigning Real-time Tasks to Multi-
processor Systems,” IEEE Transactions on Comput-
ers, vol. 44, no. 12, pp. 1429–1442, 1995.

[6] S. Lauzac, R. Melhem, and D. Mosse, “Comparison
of Global and Partitioning Schemes for Scheduling
Rate Monotonic Tasks on a Multiprocessor,” in 10th
Euromicro Workshop on Real Time Systems, 1998,
pp. 188–195.

[7] A. Bertossi, L. Mancini, and F. Rossini, “Fault-
Tolerant Rate-Monotonic First-Fit Scheduling in
Hard-Real-Time Systems,” IEEE Transactions On
Parallel and Distributed Systems, pp. 934–945,
1999.

[8] S. Dhall and C. Liu, “On a Real-time Scheduling
Problem,” Operations Research, vol. 26, no. 1, pp.
127–140, 1978.

[9] J. Liebeherr, A. Burchard, Y. Oh, and S. H.Son,
“New strategies for assigning real-time tasks to mul-
tiprocessor systems,” IEEE Trans. Comput., vol. 44,
no. 12, pp. 1429–1442, 1995.

[10] C. Liu and J. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-time Environ-
ment,” JACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[11] D. De Niz and R. Rajkumar, “Partitioning bin-
packing algorithms for distributed real-time sys-
tems,” International Journal of Embedded Systems,
vol. 2, no. 3, pp. 196–208, 2006.

[12] K. Tindell, A. Burns, and A. Wellings, “Allocat-
ing hard real-time tasks: an NP-hard problem made
easy,” Real-Time Systems, vol. 4, no. 2, pp. 145–165,
1992.

[13] L. Sha and J. Goodenough, “Real-time scheduling
theory and Ada,” Computer, vol. 23, no. 4, pp. 53–
62, 1990.

[14] J. Strosnider and T. Marchok, “Responsive, deter-
ministic IEEE 802.5 token ring scheduling,” Real-
Time Systems, vol. 1, no. 2, pp. 133–158, 1989.

[15] L. Lehoczky, J.P. snf Sha and J. Strosnider, “Enhanc-
ing Aperiodic Responsiveness in a Hard Real-Time
Environment,” in Proc. of the IEEE Real-Time Sys-
tems Symposium, 1987, pp. 416–423.

[16] A. Carzaniga, A. Fuggetta, S. Richard, D. Heim-
bigner, A. van der Hoek, A. Wolf, and COLORADO

46



STATE UNIV FORT COLLINS DEPT OF COM-
PUTER SCIENCE, A Characterization Framework
for Software Deployment Technologies. Defense
Technical Information Center, 1998.

[17] J. Stankovic, “Strategic Directions in Real-time
and Embedded Systems,” ACM Computing Surveys
(CSUR), vol. 28, no. 4, pp. 751–763, 1996.

[18] W. Damm, A. Votintseva, A. Metzner, B. Josko,
T. Peikenkamp, and E. Böde, “Boosting Re-use of
Embedded Automotive Applications Through Rich
Components,” Proceedings of Foundations of Inter-
face Technologies, vol. 2005, 2005.

[19] D. C. Schmidt, “Model-Driven Engineering,” IEEE
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[20] C. Fonseca, P. Fleming, et al., “Genetic algorithms
for multiobjective optimization: Formulation, dis-
cussion and generalization,” in Proceedings of the
fifth international conference on genetic algorithms.
Citeseer, 1993, pp. 416–423.

[21] R. Poli, J. Kennedy, and T. Blackwell, “Particle
swarm optimization,” Swarm Intelligence, vol. 1,
no. 1, pp. 33–57, 2007.

[22] S. Davari and S. Dhall, “An On-line Algorithm for
Real-time Tasks Allocation,” in IEEE Real-time Sys-
tems Symposium, 1986, pp. 194–200.

[23] S. Lauzac, R. Melhem, and D. Mosse, “An effi-
cient RMS Admission Control and its Application to
Multiprocessor Scheduling,” in International Paral-
lel Processing Symposium, 1998, pp. 511–518.

[24] S. Davari and S. Dhall, “On a Periodic Real-Time
Task Allocation Problem,” in 19th Annual Interna-
tional Conference on System Sciences, 1986, pp.
133–141.

[25] D. Kirovski and M. Potkonjak, “System-level syn-
thesis of low-power hard real-time systems,” in Pro-
ceedings of the 34th annual conference on Design
automation. ACM New York, NY, USA, 1997, pp.
697–702.

[26] R. Dick and N. Jha, “MOGAC: A multiobjective
genetic algorithm for the co-synthesis of hardware-
software embedded systems,” in Proceedings of
the 1997 IEEE/ACM international conference on
Computer-aided design. IEEE Computer Society
Washington, DC, USA, 1997, pp. 522–529.

[27] ——, “MOCSYN: Multiobjective core-based
single-chip system synthesis,” in Proceedings of
the conference on Design, automation and test in
Europe. ACM New York, NY, USA, 1999.

[28] C. Wang and Z. Li, “A computation offloading
scheme on handheld devices,” Journal of Parallel
and Distributed Computing, vol. 64, no. 6, pp. 740–
746, 2004.

[29] G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan,
M. Irwin, and R. Chandramouli, “Studying energy
trade offs in offloading computation/compilation in
Java-enabled mobile devices,” IEEE Transactions
on Parallel and Distributed Systems, pp. 795–809,
2004.

[30] Z. Li, C. Wang, and R. Xu, “Task allocation for
distributed multimedia processing on wirelesslynet-
worked handheld devices,” in Parallel and Dis-
tributed Processing Symposium., Proceedings In-
ternational, IPDPS 2002, Abstracts and CD-ROM,
2002, pp. 79–84.

[31] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill,
B. Natarajan, C. Rodrigues, J. P. Loyall, and R. E.
Schantz, “Total Quality of Service Provisioning in
Middleware and Applications,” The Journal of Mi-
croprocessors and Microsystems, vol. 27, no. 2, pp.
45–54, mar 2003.

[32] D. Schmidt, “Middleware for real-time and embed-
ded systems,” Communications of the ACM, vol. 45,
no. 6, p. 48, 2002.

[33] J. Voas, “Certifying off-the-shelf software compo-
nents,” Computer, vol. 31, no. 6, pp. 53–59, 1998.

[34] A. Gokhale, D. C. Schmidt, B. Natarajan, and
N. Wang, “Applying Model-Integrated Computing

47



to Component Middleware and Enterprise Applica-
tions,” The Communications of the ACM Special Is-
sue on Enterprise Components, Service and Busi-
ness Rules, vol. 45, no. 10, Oct. 2002.

[35] C. Alves and J. Castro, “Cre: A systematic method
for cots components selection,” in XV Brazilian
Symposium on Software Engineering (SBES). Rio
de Janeiro, Brazil, 2001.

[36] L. Chung and K. Cooper, “COTS-aware require-
ments engineering and software architecting,” in
Proc. of Software Engineering Research and Prac-
tice Conference (SERP). Citeseer, 2004.

[37] M. Morisio, C. Seaman, V. Basili, A. Parra, S. Kraft,
and S. Condon, “COTS-based software develop-
ment: Processes and open issues,” Journal of Sys-
tems and Software, vol. 61, no. 3, pp. 189–199,
2002.

[38] S. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA
distilled. Addison Wesley Longman Publishing
Co., Inc. Redwood City, CA, USA, 2004.

[39] J. Poole, “Model-driven architecture: Vision, stan-
dards and emerging technologies,” in Workshop
on Metamodeling and Adaptive Object Models,
ECOOP. Citeseer, 2001.

[40] S. Kent, “Model Driven Engineering,” in Proceed-
ings of the 3rd International Conference on Inte-
grated Formal Methods (IFM 02). Turku, Finland:
Springer-Verlag LNCS 2335, May 2002, pp. 286–
298.

[41] D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Au-
tomated Reasoning on Feature Models,” in Pro-
ceedings of the 17th Conference on Advanced In-
formation Systems Engineering. Porto, Portugal:
ACM/IFIP/USENIX, 2005.

[42] D. Sabin and E. Freuder, “Configuration as Compos-
ite Constraint Satisfaction,” in Proceedings of the
Artificial Intelligence and Manufacturing Research
Planning Workshop, 1996, pp. 153–161.

[43] M. Jaring and J. Bosch, “Representing variability
in software product lines: A case study,” Software
Product Lines, pp. 219–245, 2002.

[44] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged
Configuration Using Feature Models,” in Software
Product Lines: Second International Conference,
SPLC2, San Diego, CA, USA, August 19-22, 2002:
Proceedings. Springer, 2002, p. 266.

[45] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Gar-
rett, C. Thomason, G. Nordstrom, J. Sprinkle, and
P. Volgyesi, “The generic modeling environment,”
in Workshop on Intelligent Signal Processing, Bu-
dapest, Hungary, vol. 17. Citeseer, 2001.

[46] A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi,
and M. Maroti, “On metamodel composition,” in
IEEE CCA, 2001.

[47] M. Richters and M. Gogolla, “On formalizing the
UML object constraint language OCL,” Conceptual
Modeling–ERù98, pp. 449–464, 1998.

[48] J. White, B. Dougherty, and D. C. Schmidt, “Se-
lecting Highly Optimal Architecture Feature Sets
with Filtered Caresian Flattening,” Journal of Soft-
ware and Systems - Special Issue on Design Deci-
sions and Design Rationale in Software Architec-
ture, 2008.

[49] M. Akbar, E. Manning, G. Shoja, and S. Khan,
“Heuristic Solutions for the Multiple-Choice Multi-
dimension Knapsack Problem,” Lecture Notes in
Computer Science, pp. 659–668, 2001.

[50] J. White, B. Dougherty, and D. C. Schmidt, “AS-
CENT: An Algorithmic Technique for Designing
Hardware and Software in Tandem,” IEEE Trans-
actions on Software Engineering Special Issue on
Search-based Software Engineering, (to appear).

[51] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming
heterogeneity - the Ptolemy approach,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[52] T. Denton, E. Jones, S. Srinivasan, K. Owens, and
R. Buskens, “NAOMI-An Experimental Platform
for Multi-modeling,” in Proceedings of MODELS,
Toulouse, France, October 2008, pp. 143–157.

48



[53] S. Schach, Classical and Object-Oriented Software
Engineering. McGraw-Hill Professional, 1995.

[54] A. Jost and A. Franke, “Residual Value Analysis,”
2005.

[55] C. Ng and G. Chan, “An ERP maintenance model,”
in System Sciences, 2003. Proceedings of the 36th
Annual Hawaii International Conference on, 2003,
p. 10.

[56] G. Leen and D. Heffernan, “Expanding Automotive
Electronic Systems,” Computer, vol. 35, no. 1, pp.
88–93, 2002.

[57] B. Boehm, B. Clark, E. Horowitz, C. Westland,
R. Madachy, and R. Selby, “Cost models for future
software life cycle processes: COCOMO 2.0,” An-
nals of Software Engineering, vol. 1, no. 1, pp. 57–
94, 1995.

[58] X. Gu, P. Yu, and K. Nahrstedt, “Optimal Compo-
nent Composition for Scalable Stream Processing,”
in Distributed Computing Systems, 2005. ICDCS
2005. Proceedings. 25th IEEE International Confer-
ence on, 2005, pp. 773–782.

[59] S. Martello and P. Toth, “Knapsack problems: al-
gorithms and computer implementations,” Wiley-
Interscience Series In Discrete Mathematics And
Optimization, p. 296, 1990.

[60] N. Ulfat-Bunyadi, E. Kamsties, and K. Pohl, “Con-
sidering Variability in a System FamilyâĂŹs Archi-
tecture During COTS Evaluation,” in Proceedings
ofthe 4th International Conference on COTS-Based
Software Systems (ICCBSS 2005), Bilbao, Spain.
Springer, 2005.

[61] S. Srinivasan and N. Jha, “Hardware-software co-
synthesis of fault-tolerant real-time distributed em-
bedded systems,” in European Design Automation
Conference: Proceedings of the conference on Eu-
ropean design automation, vol. 18, no. 22, 1995, pp.
334–339.

[62] E. Lin, “A Biblographical Survey on Some Well-
knownNon-Standard Knapsack Problems,” INFOR-
OTTAWA-, vol. 36, pp. 280–283, 1998.

[63] M. Hifi, M. Michrafy, and A. Sbihi, “Heuristic al-
gorithms for the multiple-choice multidimensional
knapsack problem,” Journal of the Operational Re-
search Society, vol. 55, no. 12, pp. 1323–1332,
2004.

[64] J. Her, S. Choi, D. Cheun, J. Bae, and S. Kim, “A
Component-Based Process for Developing Automo-
tive ECU Software,” LECTURE NOTES IN COM-
PUTER SCIENCE, vol. 4589, p. 358, 2007.

[65] A. Shahriar, M. Akbar, M. Rahman, and M. New-
ton, “A multiprocessor based heuristic for multi-
dimensional multiple-choice knapsack problem,”
The Journal of Supercomputing, vol. 43, no. 3, pp.
257–280, 2008.

[66] M. Hifi, M. Michrafy, and A. Sbihi, “A Reactive Lo-
cal Search-BasedAlgorithm for theMultiple-Choice
Multi-Dimensional Knapsack Problem,” Computa-
tional Optimization and Applications, vol. 33, no. 2,
pp. 271–285, 2006.

[67] C. Hiremath and R. Hill, “New greedy heuristics
for the Multiple-choice Multi-dimensional Knap-
sack Problem,” International Journal of Operational
Research, vol. 2, no. 4, pp. 495–512, 2007.

[68] E. Barros, C. Universitaria-Recife-PE, W. Rosen-
stiel, and X. Xiong, “A Method for Partition-
ing UNITY Language in Hardware and Software,”
Euro-DAC’94 with Euro-VHDL’94: Proceedings,
September 19-23, 1994, Grenoble, France, 1994.

[69] E. Lagnese and D. Thomas, “Architectural Partition-
ing for System Level Design,” Design Automation,
1989. 26th Conference on, pp. 62–67, 1989.

[70] F. Vahid, D. Gajski, and J. Gong, “A binary-
constraint search algorithm for minimizing hard-
ware during hardware/software partitioning,” Pro-
ceedings of the conference on European design au-
tomation, pp. 214–219, 1994.

[71] G. Antoniol, M. Di Penta, and M. Harman, “A
robust search-based approach to project manage-
ment in the presence of abandonment, rework, error

49



and uncertainty,” Software Metrics, 2004. Proceed-
ings. 10th International Symposium on, pp. 172–
183, 2004.

50


