
COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 49

While Web services have evolved as a
means to integrate processes and applications at
an inter-enterprise level, traditional transaction
semantics and protocols have proven to be inap-
propriate. Web services-based transactions
(business transactions) differ from traditional
transactions in that they execute over long peri-
ods, require commitments to the transaction to
be “negotiated” at runtime, and isolation levels
must be relaxed. Business transactions require an
extended transaction model that builds on exist-
ing Web service standards and defines an inter-
operable transaction protocol and message flows
that help negotiate transactions guarantees at
the inter-enterprise level. The Organisation for
Advance Structured Information Systems
(OASIS) Business Transaction Protocol (BTP) is
a protocol that meets the requirement for long-
running collaborative business applications,
allowing the relaxation of traditional ACID
properties in a controlled manner specific to the
Web services environment.

By Mark Little

TRANSACTIONS
AND WEB SERVICES

Helping to realize the full potential
of e-commerce.

50 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

The concept of atomic transactions has played a
fundamental role in creating today’s enterprise
application environments by providing guaranteed
consistent outcome in complex multiparty business
operations and a useful separation of concerns in
applications. Rapid developments in Internet infra-
structure and protocols have yielded a new type of
application interoperation concept, making con-
cepts that could only previ-
ously be considered in an
abstract form an implemen-
tation reality [4]. The effects
of such changes have been
felt most strongly in business
environments, fueling the
mindset for extended trans-
action models better suited
for Internet interoperation.

A business relationship is
any distributed state maintained by two or more
parties, which is subject to some contractual con-
straints agreed by those parties. A business transac-
tion can therefore be considered as a consistent
change in the state of a business relationship
between parties. Each party in a business transaction
holds its own application state corresponding to the
business relationship with other parties in that trans-
action. During the course of a business transaction,
this state may change. Since business relationships
imply a level of value to
the parties associated by
those relationships,
achieving some level of
consensus among these
parties is important.

In addition to under-
standing the outcomes,
a participant within a
business transaction
may need to support
provisional or tentative
state changes during the
course of the transaction. Such parties must also sup-
port the completion of a business transaction either
through confirmation (final effect) or cancellation
(counter effect). What it means to confirm or cancel
work done within a business transaction will be for
the participant to determine.

Why ACID Transactions Are Too Strong.
Atomic transactions are a well-known technique for
guaranteeing consistency in the presence of failures
[2]. Their ACID properties—Atomicity, Consis-
tency, Isolation, Durability—ensure consistency of
state is preserved, despite concurrent accesses and

failures. Transactions are most suitably viewed as
“short-lived” entities executing in a closely coupled
environment, performing stable state changes to the
system; they are less well suited for structuring
“long-lived” application functions.

Traditional transaction systems use a two-phase
protocol to achieve atomicity between participants,
as illustrated in Figure 1. During the first (prepara-

tion) phase, an individual
participant must make
durable any state changes
that occurred during the
scope of the transaction, such
that these changes can either
be rolled back or committed
later once the transaction
outcome has been deter-
mined. Assuming no failures
occurred during the first
phase, in the second (com-
mitment) phase participants
may “overwrite” the original

state with the state made durable during the first
phase.

In order to guarantee consensus, two-phase com-
mit is necessarily a blocking protocol: after returning
the first phase response, each participant that
returned a commit response must remain blocked
until it has received the coordinator’s phase 2 mes-

sage. Until they receive
this message, any
resources used by the par-
ticipant are unavailable
for use by other transac-
tions, since to do so may
result in non-ACID
behavior. If the coordina-
tor fails before delivery of
the second phase message

these resources remain blocked until it recovers.
Therefore, structuring certain activities from

long-running transactions can reduce the amount of
concurrency within an application or (in the event
of failures) require work to be performed again. For
example, there are certain classes of application
where it is known that resources acquired within a
transaction can be released “early,” rather than hav-
ing to wait until the transaction terminates. In the
event of the transaction rolling back, however, cer-
tain compensation activities may be necessary to
restore the system to a consistent state.

Long-running activities can be structured as
many independent, short-duration transactions, to
form a “logical” long-running transaction [1]. This

t2

t3

t4 t5'tc1 t6't1

Application
activity failure

time

Figure 2. An example of a logical
long-running “transaction,” with

failure.

CommitCommit?

Commit?

Yes

Yes

Phase 2Phase 1

Commit

AA

BB

CC

Figure 1. Two-phase
commit protocol.

structuring allows an activity to acquire and use
resources for only the required duration of this long-
running activity. This is illustrated in Figure 2,
where an application activity (shown by the dotted
ellipse) has been split into different, coordinated
short-duration transactions. Assume the application
activity is concerned with booking a taxi (t1), reserv-
ing a table at a restaurant (t2), reserving a seat at the
theater (t3), and then booking a room at a hotel (t4),
and so on. If all of these operations were performed
as a single transaction then resources acquired dur-
ing t1 would not be released until the transaction has
terminated. If subsequent activities t2, t3… do not
require those resources, then they will be needlessly
unavailable to other clients.

However, if failures and concurrent access occur
during the lifetime of these individual transactional
activities then the behavior of the entire “logical long-
running transaction” may not possess ACID proper-
ties. Therefore, some form of compensation may be
required to attempt to return the state of the system
to consistency [3]. For example, let us assume that t4
aborts. Further assume that the application can con-
tinue to make forward progress, but in order to do so
must now undo some state changes made prior to the
start of t4 (by t1, t2 or t3). Therefore, new activities
are started; tc1, which is a compensation activity that
will attempt to undo state changes performed, by say
t2, and t3, which will continue the application once
tc1 has completed. tc5’ and tc6’ are new activities
that continue after compensation, for example, since
it was not possible to reserve the theatre, restaurant,
and hotel, it is decided to book tickets at the cinema.

The Business Transaction Protocol
The OASIS Business Transaction Protocol is for the
coordination of autonomous parties involved in a
business transaction.1 With reference to Figure 3, the
fundamental aspects of BTP are introduced here,
followed by a description of how they can be applied
within a Web services environment.

Consensus of Opinion. To ensure atomicity
between multiple participants, BTP uses a two-phase
completion protocol, with prepare, confirm, and can-
cel phases. Although this is similar to the two-phase
commit protocol described earlier, BTP does not
imply ACID transactions. How implementations of
the prepare, confirm, and cancel phases are provided
is a back-end implementation decision. Issues to do
with consistency and isolation of data are also back-
end choices and not imposed or assumed by BTP.

Open-Top Coordination. In a traditional transac-

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 51

LONG-RUNNING

ACTIVITIES CAN BE

STRUCTURED AS MANY

INDEPENDENT, SHORT-
DURATION TRANSACTIONS,
TO FORM A “LOGICAL”
LONG-RUNNING

TRANSACTION.

▲

1
See www.oasis-opn.org/committees/business-transactions/.

tion system, the application or user has very few
verbs with which to control transactions. Typically
these are “begin,” “commit,” and “rollback.” When
an application asks for a transaction to commit, the
coordinator will execute the entire two-phase proto-
col before returning an outcome (what BTP terms a
closed-top commit protocol). The elapsed time
between the execution of the first phase and the sec-
ond phase is typically milliseconds to seconds.

However, the two-phase algorithm does not
impose any restrictions on the time between exe-
cuting the first and second phases. Therefore, BTP
took the approach of allowing the time between the
two phases to be set by the application by expand-
ing the range of verbs available to include explicit
control over both phases, that is, “prepare,” “con-
firm,” and “cancel”; what BTP terms an open-top
commit protocol. The application has complete
control over when transactions prepare and, using
whatever business logic is required, later determine
which transactions to confirm or cancel. This abil-
ity to explicitly control the termination protocol via
business logic is a powerful tool since it supports a
greater variety of strategies for implementing a
transactional application.

Atoms and Cohesions. BTP introduced two
types of extended transactions, both using the
open-top completion protocol:

• Atom: the typical way in which transactional
work performed on Web services is scoped. The
outcome of an atom is guaranteed to be consis-
tent, such that all enlisted participants will see
the same outcome (cancel of confirm).

• Cohesion: this type of transaction was intro-
duced in order to relax atomicity and allow for
the selection of work to be confirmed or can-
celed based on higher-level business rules. A
cohesion may give different outcomes to its par-
ticipants such that some of them may confirm
while the remainder cancel. The two-phase pro-
tocol for a cohesion is parameterized to allow a
user to specify precisely which participants to
prepare and which to cancel. The strategy
underpinning cohesions is that they better
model long-running business activities, where
services enroll in atoms that represent specific
units of work and as the business activity pro-
gresses, it may encounter conditions that allow
it to cancel or prepare these units, with the
caveat it may be many hours or days before the
cohesion arrives at its confirm-set: the set of
participants it requires to confirm in order for it
to successfully terminate the business activity.

52 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

SINCE A WELL-KNOWN

SCHEMA IS USED TO

DESCRIBE THE FORMAT OF

BTP MESSAGES, THE

MESSAGES PRODUCED BY

DIFFERENT IMPLEMENTERS

CAN BE ASSURED OF BEING

EQUIVALENT.

▲

Once the confirm-set has been determined, the
cohesion collapses down to being an atom: all
members of the confirm-set see the same
outcome.

XML Underpinnings of BTP. In BTP, an XML
vocabulary is used for encoding messages conveyed
between the participants in a transaction and the
coordination infrastructure, as well as the format for
describing transactional contexts. Since a well-
known schema is used to describe the format of BTP
messages, the messages produced by different imple-
menters can be assured of being equivalent.

BTP Integration with the Web Services Stack.
Though BTP does not
define a complete network
stack, its development was
not undertaken in isola-
tion from other work in
distributed computing. As
Web services are becoming
widespread, the BTP com-
mittee was influenced in
its decision making to a
great extent by the emerg-
ing Web services architec-
ture and protocols. To that
end, the committee has
defined a binding of the
BTP message set to SOAP
1.1 over HTTP 1.1.

The BTP specification
splits the messages into
two types: those for the
BTP infrastructure and
those meant for the application. In situations where
BTP messages are exchanged without the encum-
brance of application messages, the strategy is
straightforward: a message is simply propagated
within the body of the SOAP envelope. For example,
a typical begin message is represented as follows:

<?xml version=”1.0” encoding=”UTF-8” ?>

<SOAP:Envelope

SOAP:encodingStyle=”http://schemas.xmlsoap.

org/soap/encoding/

”xmlns:SOAP=”http://schemas.xmlsoap.

org/soap/envelope/”>

<SOAP:Body>

<btp:begin transaction-type=”atom”

xmlns:btp=”urn:oasis:names:tc:

BTP:1.0:core”/>

</SOAP:Body>

</SOAP:Envelope>

Optimizations. Since BTP is intended for long-
running transactions, it may be assumed perfor-
mance has not been a prime factor in its
development. However, this is not the case and in
fact BTP contains a number of optimizations; we
shall briefly describe two.

Resignation by Participants. In a two-phase commit
protocol, in addition to indicating success or failure
during the preparation phase, a participant can also
return a “read-only” response; this indicates it does not
control any work that has been modified during the
course of the transaction and therefore does not need
to be informed of the transaction outcome. This can
allow the two-phase protocol to complete quickly since

a second round of messages
is not required. The equiv-
alent of this in BTP is for a
participant to resign from
the transaction it was
enrolled in. Resignation
can occur at any time up to
the point where the partic-
ipant has prepared and is
used by the participant to
indicate it no longer has an
interest in the outcome of
the transaction.

Autonomous Decision by
Participant. In a tradi-
tional two-phase protocol
a participant enrolls with
a transaction and waits for
the termination protocol

before it either confirms or cancels. To achieve con-
sensus, it is necessarily a blocking protocol, which
means that if a coordinator fails before delivering the
final phase messages, prepared participants must
remain blocked, holding onto (possibly valuable)
resources. Modern transaction-processing systems
have augmented two-phase commit with heuristics,
which allow such participants to make unilateral
decisions about whether they will commit or roll-
back. Obviously, if a participant makes a choice that
turns out to be different from that taken by other
participants, non-atomic behavior occurs.

BTP has its equivalent of heuristics, allowing par-
ticipants to make unilateral decisions as well. How-
ever, unlike in other transaction implementations,
the protocol allows a participant to give the coordi-
nator prior knowledge of what that decision will be
and when it will be taken. A participant may prepare
and present the coordinator with some caveats as to
how long it will remain in this state and into what
state it will then migrate (for example, “will remain

COMMUNICATIONS OF THE ACM October 2003/Vol. 46, No. 10 53

SOAP

API

SOAP SOAP

XML Messages

Service
Requestor

Service
Provider

ParticipantCoordinator

UDDI/WSDLWebServices

Quality of Service

BTP

Request

Response

Transaction Messages
[context]

[application context]API

SOAP
Application

Service
Application

Service

Figure 3. Web services,
transactions, and contexts.

prepared for 10 days and then will cancel the seat
reservation”). This information may then be used by
the coordinator to optimize message exchange.

So How Would You Use BTP?
Consider the situation where a user is booking a
vacation, has provisionally reserved a flight ticket
and taxi to the airport, and is now looking for travel
insurance. The first group of work holds Flights and
Taxi, since neither of these can occur independently.
The user may then decide to visit multiple insurance
sites (called A and B, in this example), and as he goes
may reserve the quotes he likes. So, for example, A
may quote $50, which is just within budget, but the
user may want to try B just in case he can find a
cheaper price and without losing the initial quote. If
the quote from B is less than that from A, the user
may cancel A, while confirming both the flights and
the insurance from B.

How could we use BTP in order to coordinate
this application in a reliable manner? The problem
is that we wish to obtain the least-expensive insur-
ance quote as we go along and without losing prior
quotes until we know they are no longer the cheap-
est; at that point we will be able to release those
quotes while maintaining the others. In a traditional
transaction system, all of the work performed within
a transaction must either be accepted or declined.

In BTP, however, we can use atoms and cohe-
sions. A cohesion is first created to manage the over-
all business interactions. The application creates an
atom (ReserveAtom, say) and enrolls it with the
cohesion before invoking the airline and taxi reser-
vation services within its scope. When a suitable
flight and taxi can be obtained, prepare is called on
ReserveAtom to reserve the bookings.

Then the insurance quotes are obtained by invok-
ing their respective services within the scope of sep-
arate atoms (AtomQuote1 and AtomQuote2, for
example), which are also enrolled within the con-
trolling cohesion. When the quote from the first
insurance site is obtained it is obviously not known
whether it is the best quote, so the business logic can
prepare AtomQuote1 to maintain the quote while it
then communicates with the second insurance site.
If that site does not offer a better quote, the applica-
tion can cancel AtomQuote2 and it now has its final
confirmation set of atoms (ReserveAtom and Atom-
Quote1), which it can confirm.

Relationship to Other Work
The Web services coordination (WS-C) specifica-
tion aims to define a generic framework for coordi-
nating abstract entities [5]. WS-C defines an

abstract notion of coordination that is extended to
specific coordination protocols by the addition of
third-party agents. There is no equivalent of WS-C
in BTP. While this means that WS-C is potentially
more flexible that BTP because it can support a vari-
ety of coordination protocols, only one such proto-
col has been proposed: WS-Transaction [6]. WS-T
has two transaction models:

• Atomic Transactions require ACID semantics and
therefore assume that resources are locked for the
transaction’s duration; and

• Business activities are designed for use in long-
running transactions. They ensure that any
updates to state in a system are made immedi-
ately, significantly reducing the period during
which locks must be held. WS-T has no notion
of a two-phase commit for a business activity
because commits are made immediately on
receipt of the associated messages. If a failure
occurs, a business activity runs compensating
actions to restore data to a consistent form.

Conclusion
ACID transactions have proven invaluable over the
years in the construction of enterprise applications.
However, they are only really suited to short-dura-
tion activities executing on closely coupled applica-
tions and environments. When used in a loosely
coupled environment like the Web, they prove too
inflexible and restricting for many applications. The
OASIS BTP has been developed to solve this prob-
lem while at the same time maintaining those
aspects of the atomic transaction model that have
proven useful.

References
1. Garcia-Molina, H. and Salem, K. Sagas. In Proceedings of the ACM SIG-

MOD International Conference on the Management of Data (1987).
2. Gray, J.N. The transaction concept: virtues and limitations. In Proceed-

ings of the 7th VLDB Conference, (Sept. 1981), 144–154.
3. Halliday, J.J., Shrivastava, S.K., and Wheater, S.M. Implementing sup-

port for work activity coordination within a distributed workflow sys-
tem. In Proceedings of the Third International Conference on Enterprise
Distributed Object Computing (EDOC ’99), (Sept. 1999), 116–123.

4. Little, M.C. et al. Constructing reliable Web applications using atomic
actions. In Proceedings of the Sixth Web Conference, (Apr. 1997).

5. Web Services Coordination (WS-C). Joint specification by IBM,
Microsoft, and BEA, August 2002; www.ibm.com/developerworks/
library/ws-coor/.

6. Web Services Transactions (WS-T). Joint specification by IBM,
Microsoft, and BEA, August 2002; www.ibm.com/developerworks/
library/ws-transpec/.

Mark Little (m.c.little@ncl.ac.uk) is a research fellow at The
University of Newcastle upon Tyne, U.K.

© 2003 ACM 0002-0782/03/1000 $5.00

c

54 October 2003/Vol. 46, No. 10 COMMUNICATIONS OF THE ACM

