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Abstract

Product-line architectures (PLA)s are an emerging paradigm for developing software families by customizing
reusable artifacts, rather than hand-crafting the software from scratch. In this paradigm, each product
variant is assembled, configured, and deployed based on specifications of the required features and service-
level agreements. The goal of PLAs is to reduce product development costs via systematic reuse, while
enhancing key product quality factors, such as assured latency/jitter/throughput values, scalability, and
dependability.

To reduce the effort of developing software PLAs and product variants, it is common to leverage general-
purpose — ideally standard — middleware platforms. These middleware platforms provide reusable services
and mechanisms (such as connection management, data transfer protocols, concurrency control, demulti-
plexing, marshaling/demarshaling, and error-handling) that support a broad range of application require-
ments (such as efficiency, predictability, and minimizing end-to-end latency). A key challenge faced by
developers of software PLAs is how to optimize standards-based — and thus largely application-independent
— middleware to support the application-specific quality of service (QoS) needs of different product variants
created atop a PLA.

This thesis proposal provides four contributions to research on optimizing middleware for PLAs. First,
it describes the evolution of optimization techniques for enhancing application-independent middleware to
support the application-specific QoS needs of PLAs. Second, it presents a tazonomy that categorizes the
evolution of this research in terms of (1) applicability, i.e., are the optimizations applicable across variants
or specific to a variant, and (2) binding time, i.e., when are the optimizations applied during the middle-
ware development lifecycle. Third, this tazonomy is applied to identify key challenges that have not been
resolved by current research on PLAs, including reducing the complexity of subsetting, configuring, and spe-
cializing middleware for PLAs to satisfy the QoS requirements of product variants. Finally, the proposal
describes the OPTEML solution approach that synergistically addresses key unresolved research challenges
via optimization strategies that encompass pattern-oriented, model-driven development, and partial special-
ization techniques to enhance the QoS and flexibility of middleware for PLAs. These optimizations will be
prototyped, integrated, and validated in the context of several representative applications using middleware
developed with Real-time Java and C++.



1 Introduction

1.1 Emerging Trends and Technologies

Software development processes are increasingly be-
coming demanding. For example, there is a growing
need for software development organizations to in-
novate rapidly, provide capabilities that meet their
customer needs, and sustain their competitive ad-
vantage. Adding to these demands are increasing
time-to-market pressures and limited software re-
sources, which often force organizations to innovate
by leveraging existing artifacts and resources rather
than hand-crafting software products from scratch.
Product-line architectures (PLAs) [10] and middle-
ware [75] are promising technologies for addressing
these demands.

1.1.1 Product-line Architectures

In contrast to conventional software processes that
produce separate point solutions, in a PLA-based
process, a family of product variants [84] is devel-
oped to share a common set of capabilities, patterns,
and architectural styles. For example, Figure 1 illus-
trates a portion of the Boeing Bold Stroke avionics
mission computing PLA [86], which is designed to
support a family of Boeing aircraft, including many
variants of F/A-18, F-15, A/V-8B, and UCAV. Bold
Stroke is a component-based, publish/subscribe
platform built atop Real-time CORBA [62] and
heavily influenced by the Lightweight CORBA Com-
ponent Model (CCM) [61,70].

PLAs in general — and Bold Stroke in particular
— can be characterized using the Scope, Common-
ality, and Variabilities (SCV) analysis [11]. SCV is
a domain engineering process that identifies com-
mon and variable properties of an application do-
main. Domain/systems engineers and software ar-
chitectures use this information in the SCV process
to guide decisions about where and how to address
possible variability and where the common develop-
ment strategies can be used.

Applying the SCV process to Bold Stroke yields:

e S, e.g., the scope is Boeing’s component archi-

tecture and associated set of components that
address the domain of avionics mission comput-
ing, which includes services such as heads-up
display, navigation, auto-pilot, targeting, and
sensor management.

e C, e.g., the commonalities are the set of
common components and connections between,
such as connection management, data trans-
fer, concurrency, synchronization, demultiplex-
ing, error-handling, etc. that occur in all prod-
uct variants.

e V., e.g., the variabilities include how various
subsets of components are connected together
to support the requirements of different cus-
tomers (such as F/A-18E vs. F-15K), their
different implementations (such as which algo-
rithms are chosen for each product variant), and
components that are specific to a variant (such
as restrictions due to foreign military sales).
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Figure 1: SCV Analysis for Boeing Bold Stroke PLA

After a PLA has been developed and has ma-
tured, the ensuing development of product variants
ideally proceeds in top down manner. Figure 2 il-
lustrates the process of developing a product vari-
ant, which starts with a clear statement of the re-
quired capabilities and QoS. Higher level models and



analysis tools [28, 31] compose, analyze, and vali-
date the product-line to ensure semantic compati-
bility. The next step involves the composition of a
variant from existing components from the repos-
itory. This phase also involves mapping of the
requirements on to PLA artifacts, such as com-
munication protocols, service-level agreements, and
configuration/deployment policies/mechanisms. Fi-
nally, the system is deployed on a platform such as
CORBA [63], J2EE [89] or .NET [57].
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Figure 2: PLA Development Process

Although PLAs can be developed and applied to
many domains, an increasingly important domain
for applying PLAs is distributed, real-time and em-
bedded (DRE) systems [17, 84, 86]. Examples of
DRE systems include applications with hard real-
time requirements, such as avionics mission comput-
ing [82], as well as those with softer real-time re-
quirements, such as telecommunication call process-
ing and streaming video [81]. These types of systems
are characterized by their multiple, simultaneous
constraints across different QoS dimensions (such as
memory footprint, weight, and performance), which
often makes them harder to develop, maintain, and
evolve than mainstream desktop and enterprise soft-

ware. These challenges have hitherto forced devel-
opers of DRE systems to repeatedly reinvent custom
solutions that are tightly coupled to specific hard-
ware and platforms, which is tedious, error-prone,
and costly over product lifecycles.

1.1.2 Middleware

A key enabling technology for developing and cus-
tomizing PLAs is middleware, which is systems soft-
ware that resides between the application and the
underlying operating system that (1) functionally
bridges the gap between application program and
lower-level hardware and (2) simplifies the integra-
tion of components developed by multiple technol-
ogy suppliers [75]. During the past decade, quality
of service (QoS)-enabled middleware has emerged
to help developers of DRE systems (1) factor out
reusable concerns (such as component lifecycle man-
agement, authentication/authorization, and remot-
ing) to enhance reuse and (2) shield from low-level
tedious, error-prone, and non-portable platform de-
tails, such as socket and threading programming.
Figure 3 illustrates a widely applied middleware
architecture [25] that underlies PLAs used for DRE
systems [25, 51, 84-86]. This figure illustrates two
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Figure 3: Layered Middleware Architecture
key characteristics of middleware:
e Design for generality, where each layer is de-

signed to host different applications. For ex-
ample, the Java Virtual Machine (JVM) [50] is



middleware that provides concurrency, synchro-
nization, serialization, and messaging portably
via common set of API across a wide range of
platforms.

e Layered architecture, where different mid-
dleware layers are stacked to address end-to-end
QoS needs. For example, CORBA is a standard
distribution middleware layer that provides net-
work programming capabilities (such as con-
nection management, data transfer protocols,
concurrency control, demultiplexing, marshal-
ing/demarshaling, and error-handling) and lo-
cation transparency to applications.

Standards-based QoS-enabled middleware tech-
nologies, such as Real-time CORBA [62] and Real-
time Java [5], support the provisioning of key
QoS properties, such as (pre)allocating CPU re-
sources, reserving network bandwidth/connections,
and monitoring/enforcing the proper use of DRE
system resources at runtime to meet end-to-end QoS
requirements, such as throughput, latency, and jit-
er. QoS-enabled component middleware technolo-
gies, such as Lightweight CCM [61] and Prism [84],
simplify QoS provisioning via metadata and tools
that help to (1) automate DRE system development
lifecycle phases, such as packaging, assembly, con-
figuration, and deployment, and (2) improve com-
ponent reusability and performance by preventing
premature commitment to specific QoS provisioning
decisions, such as allocating components to thread
pools and selecting the underlying transport proto-
cols. As a result, software for DRE systems is in-
creasingly being assembled from reusable modular
components in PLAs using standards-based middle-
ware platforms, rather than hand-crafted manually
from scratch.

1.2 Challenges with Using Existing Mid-
dleware Platforms for PLAs

Although middleware is a crucial technology for
PLAs, key challenges must be overcome before it
can be applied seamlessly to support the QoS needs
of DRE systems developed using PLAs. In particu-

lar, Figure 4 illustrates the current tension between
(1) application-specific product variants, which re-
quire highly-optimized and customized PLA mid-
dleware implementations and (2) general-purpose,
standards-based, reusable middleware, which is de-
signed to satisfy a broad range of application require-
ments. Resolving this tension is essential to ensure
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that middleware can support the QoS requirements
of DRE systems developed using PLAs. Unfortu-
nately, even today’s leading standards-based QoS-
enabled middleware technologies, such as Real-time
CORBA [62] and Real-time Java [5] outlined in Sec-
tion 1.1.2, are not yet capable of supporting PLAs
for DRE systems due to the following limitations:

1. Monolithic middleware implementa-
tions that include more capabilities than
are needed for particular product variants.
Standards-based middleware for PLAs is often im-
plemented in a monolithic “one-size-fits-all” man-
ner, i.e., it includes code supporting many mecha-
nisms (such as connection and data transfer proto-
cols, concurrency and synchronization management,
request and operation demultiplexing, marshal-
ing/demarshaling, and error-handling), even when



this code is not used/needed. A key research chal-
lenge is therefore making middleware extensible to
enable the selection of necessary middleware mech-
anisms.

2. Overly general middleware implementa-
tions that incur excessive time and space
overhead for particular product variant use
cases. Standards-based middleware is designed for
generality, ¢.e., its capabilities support a range
of applications, e.g., CORBA middleware sup-
ports many different types of applications running
over many different types of transports. However,
standards-based middleware often incurs excessive
generality imposed by the standard. For example,
(de)marshaling for standard CORBA incur byte or-
der test overhead, even if the machines on which
they are hosted conform to the same hardware in-
struction set. A key research challenge is therefore
to use ahead-of-time properties for each product-line
variant to specialize middleware.

3. Ad hoc techniques for validating and
understanding how middleware configua-
tions influence end-to-end QoS. Middleware
for PLAs often provides a range of options that can
be parameterized into various configurations. Many
of these settings (such as concurrency strategies,
buffer sizes and locking) directly affect end-to-end
QoS. It can be hard, however, to tune and vali-
date the QoS properties of such configurable middle-
ware. Product variants often use ad hoc approaches
to identify the right set of middleware configurations
that satisfy the system end-to-end latency and QoS
requirements. Moreover the process they use is not
repeatable (reusable across different variants) and
suffers from accidental complexities stemming from
the need to write low level source code (XML con-
figuration files, interface declaration and QoS and
benchmarking code) for capturing impact of mid-
dleware configurations on QoS. A key research chal-
lenge is therefore devising a systematic approach for
evaluating, validating, and capturing impact of mid-
dleware configurations on end-to-end QoS.

In summary, key challenges that remain to be ad-
dressed center on developing and validating tech-
nologies and tools for (1) capturing application-

specific requirements of particular product vari-
ants and (2) using these requirements to drive the
optimization of PLA middleware implementations
to eliminate the time/space penalties associated
with using general-purpose, standards-based, and
reusable middleware for DRE systems. Resolving
these challenges is essential to support the new gen-
eration of standards-based middleware that will be
easy-to-use, extensible, and flexible, as well as pro-
viding the appropriate QoS to meet the needs of
PLAs for DRE systems.

1.3 Research Approach

To address the challenges described in Section 1.2,
the proposed project will develop Optimization
Techniques for Enhancing Middleware QoS for PLAs
(OPTEML). The different dimensions of this ap-
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Figure 5: Dimensions of OPTEML Research

proach are shown in Figure 5 and will:

1. Componentize PLA middleware at a fine
level of granularity to include only capabili-
ties required for each product variant. This
approach factors out different middleware mecha-
nisms into modular pluggable components that are
not loaded until they are used. Each factored ser-
vice itself can in turn be considered a monolithic



element and factored out into modular components
at a finer level of granularity. The proposed research
will examine the fine-grain componentization of the
CORBA Portable Object Adapter (POA) [69] using
a policy-driven approaches. Section 3.1 describes
the proposed approach for fine-grained componen-
tization of PLA middleware in detail.

2. Specialize PLA middleware to eliminate
unnecessary time and space overhead. This
approach will use a two step process to customize
middleware. In the first step, the middleware source
code will be annotated with customization hooks
that can resolve to nothing when used in the general
case. In the specialized case, an external tool will
read specialization rules (stored in a rules file) and
use the hooks to specialize the middleware source
code. This approach is designed to eliminate mid-
dleware generality, such as redundant checks, that
are not required for particular product variants. Sec-
tion 3.2 describes the proposed approach for special-
ization of PLA middleware in detail.

3. Systematically validate configurations of
PLA middleware that satisfy the QoS require-
ments of product variants. This approach uses
model-driven development (MDD) techniques to
capture the QoS requirements of product-line vari-
ants in higher level models and synthesize valida-
tion code, include (1) the XML configuration set-
tings that are to be evaluated, (2) the XML deploy-
ment data that will be used to deploy the compo-
nent on to target platform, and (3) the QoS evalu-
ation and benchmarking code that will measure the
QoS and identify the right configurations that max-
imize QoS. This MDD approach will be combined
with advanced statistical techniques to evaluate em-
pirically how specialized and general-purpose opti-
mizations of middleware affect end-to-end QoS for
different PLAs and product variants. Section 3.3
describes the proposed approach for validating PLA
middleware configurations in detail.

1.4 Proposal Organization

The remainder of this proposal is organized as fol-
lows: Section 2 presents a taxonomy of existing re-

search efforts that are related to the thesis proposal
and uses this taxonomy to identify key challenges
that have not been addressed adequately in exist-
ing research on PLAs; Section 3 describes how the
research in this proposal will fill the gaps identified
in Section 2; Section 4 provides a time-line for the
thesis proposal and summarizes the contributions of
this work.

2 Research Evolution

This section systematically explores and documents
related research addressing different issues relating
to the research focus on optimization techniques for
enhancing middleware quality of service for PLA. To
structure the discussion, a taxonomy, i.e., classifica-
tion, is presented that categorizes related research
across the following two dimensions shown in Fig-
ure 6:

e Applicability, i.e., research contributions that
are broadly applicable (general) across different
product-lines architectures versus techniques
that are applicable to only a given variant.

e Binding time, i.e., research that deals with
optimizations that are applied at run-time ver-
sus optimizations that are built into the mid-
dleware at design-time or at deployment time.

Design Time

Binding Time

Run Time

General Specific

Applicability

Figure 6: Research Taxonomy

The use of the taxonomy allows research to be cat-
egorized into an evolving continuum of optimizations



(progressing from general-purpose optimizations to
more application specific design-time optimizations)
that are described below:

¢ General-purpose optimizations, that clas-
sify research on algorithmic and data structural
optimizations that have been applied at dif-
ferent layers of middleware to improve perfor-
mance,

e Configuration-driven optimizations, that
classify research on analysis techniques that
evaluate and quantify impact of different soft-
ware configuration settings on product-line level
QoS, and

¢ Partial specialization optimizations, that
classify research on program optimization and
specialization techniques that modify software
implementation based on ahead of time (AOT)
binding software configuration parameters.

The remainder of this section is organized as follows:
For each class of optimization, a succinct description
of related research is presented. Each section then
describes the research areas that requires resolution.

2.1 General-purpose Optimizations

Research on customizing middleware for different
PLAs originated with research in the early 1990’s
on how to optimize middleware to improve perfor-
mance. As illustrated in Figure 7, this research
greatly focused on examining different data struc-
tures and algorithmic optimizations that can be ap-
plied at different layers, such as operating systems,
network protocols and middleware layers to improve
application QoS. These optimizations are not ap-
plied ad hoc, but ultimately lie along the critical
request /response path of request processing within
QoS enabled middleware implementations. These
address application concerns such as end-to-end pre-
dictability, scalability and latency/throughput.
This section categorizes this body of knowledge
as general-purpose optimizations as these techniques
are very generic, i.e., these optimizations can be
leveraged universally across different product-line
variants. In addition, these optimizations are ap-
plied at run-time and fall into our taxonomy as
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Figure 7: General-purpose Optimizations

general-purpose run-time optimization tech-
niques.

2.1.1 Dimensions of General-purpose Opti-
mizations

Research on general-purpose optimizations can be
categorized based on two principal activities that are
essential for improving performance, and scalability
of applications. These include, (1) efficient and opti-
mized layer-to-layer demultiplexing techniques that
find the target servicing each request and (2) optimal
concurrency strategies, that determine the number
of such request that can be processed simultaneously
and efficiently. Research on these two dimensions are
explained below:

Request Demultiplexing approaches. Re-
search on improving demultiplexing performance has
focused on eliminating layered demultiplexing ap-
proaches in both the protocol stack and within mid-
dleware. For instance, [16,20,90] study demultiplex-
ing issues in communication systems and show how
layered demultiplexing is not suitable for applica-
tions requiring real-time quality of service guaran-
tees. Packet filters are a mechanism for efficiently
demultiplexing incoming packets to application end-
points [58]. A number of schemes to implement fast
and efficient packet filters are available. These in-



General-purpose Optimization Alternatives

Lookup-based

Alternatives

fixed perfect-hashing
dynamic linear-search, dynamic hashing, active demultiplexing
Concurrency Alternatives

request-processing models
threading models

asynchrony (client/server side), synchrony
thread-per request, thread-per connection, thread-pool

Domains

Implementations

protocol
application/web servers

ADAPTIVE
JAWS, POSA patterns

Table 1: Dimensions of General-purpose Optimizations

clude the BSD Packet Filter (BPF) [55], the Mach
Packet Filter (MPF) [97], PathFinder [3], demulti-
plexing based on automatic parsing [36], and the
Dynamic Packet Filter (DPF) [19].

In the CORBA middleware, research efforts have
focused on ensuring O(1) demultiplexing time bound
for different layers within CORBA middleware. Per-
fect hashing [79] is a technique that generates colli-
sion free hash functions when the keys to be hashed
are known a priori. In many hard real-time sys-
tems (such as avionic control systems [30]), the ob-
jects and operations can be configured statically. Re-
search effort in [27] has used perfect hashing to gen-
erate hash functions for operation names defined in
IDL. In other efforts [68], de-layered active demul-
tiplexing strategy is used to flatten hierarchy and
locate the target object in one table lookup.

Concurrency approaches. Concurrency strate-
gies describe how multiple tasks will be executed si-
multaneously. For web servers or CORBA servers,
a task is a set of server request handling steps. Sev-
eral concurrency strategies, such as iterative, single-
threaded, thread-per connection and thread-pool
strategies have been applied in web and CORBA
servers.

Research in [54] measured the impact of synchro-
nization on Thread-per-Request implementations of
TCP and UDP transport protocols built within a
multi-processor version of the z-kernel; [59] exam-
ined performance issues in parallelizing TCP-based
and UDP-based protocol stacks using a Thread-per-
Request strategy in a different multi-processor ver-
sion of the z-kernel; and [74] measured the perfor-
mance of the TCP /IP protocol stack using a thread-

per-connection strategy in a multi-processor ver-
sion of System V STREAMS. The ADAPTIVE [6]
framework examines research on parallelizing trans-
port architectures. The JAWS [32] framework pro-
vides different concurrency strategies for building
high performance web-servers. Research work on
concurrency ties closely with issues of synchronous
versus asynchronous request processing. Research
in [18] has looked into implementation of continua-
tions in the MACH kernel, which decouples the re-
quest demultiplexing from the processing. In ORBs,
Asynchronous Method Handling (AMH) [15] pro-
vide similar mechanisms like continuations. On
the client side, the Asynchronous Method Invoca-
tion (AMI) [7] ameliorates clients blocking overheads
when waiting for reply for a long running request.

Summary. The research efforts discussed earlier
and related efforts documented in [76-78] to bet-
ter implement high performance architectures have
distilled into systematic body of knowledge in the
form of design patterns [22]. The Pattern Ori-
ented Software Architecture (POSA) 2 [83] book
describes a pattern language for building concur-
rent high performance servers by discussing patterns
for service access and configuration, event handling,
synchronization and concurrency. Table 1 catego-
rizes different general-purpose optimizations across
three dimensions. The first dimension categorizes re-
search on request demultiplexing strategies into fixed
(constant time and space) versus variable (variable
time/space) strategies. The second dimension cat-
egorizes research on concurrency, i.e., request pro-
cessing models synchronous and asynchronous pro-
cessing and threading models. Finally, the table il-



lustrates the different domains on which these opti-
mizations have been applied.

2.1.2 What Remains to be Done

Traditional general-purpose optimizations have
looked at performance related issues of middleware.
These have attained maturity and also have resulted
in demonstrating middleware as a mature solution
for DRE product-line systems. However, an orthog-
onal issue to performance is the concern of compo-
nentizing the ORB services at a fine-grain level to
allow product-line variants to select the set of mid-
dleware features. This concern is accentuated by
DRE product-line architecture size requirements. As
embedded systems, DRE systems have weight, cost,
and power constraints that limit their computing
and memory resources. For example, embedded sys-
tems often cannot use conventional virtual memory,
since software must fit on low-capacity storage me-
dia, such as EEPROM or NVRAM.

The evolution of middleware has resulted in ar-
chitectures that are inherently monolithic, in which
all middleware features reside in a single executable.
Static mechanisms/tools, such as conditional com-
pilation and smart static linkers, allow a variety of
different configuration options. This approach is
harder to code and maintain due to accidental com-
plexities involved with conditional compilation [47].
Further achieving a small footprint is possible only
if the architecture is initially designed to achieve it.
It is much harder to reduce footprint in later stages
of design. Section 3.1 describes in detail how this
limitation is resolved using the OPTEML approach.

In addition to the fine-grain componentization
concerns, general-purpose optimizations are exposed
as configurable and tunable knobs. For mature mid-
dleware implementations, such as ACE+TAO [33]
open-source middleware, this has resulted in an ex-
ponential increase in the number of configuration
settings!. This trend requires product-line variants

'"Examples of highly configurable middleware in other do-
mains include (1) SQL Server 7.0, which has ~50 configuration
options, (2) Oracle 9, which has over 200 initialization param-
eters, and (3) Apache HTTP Server Version 1.3, which has

to understand how the interplay between middle-
ware configurations affect and influence end-to-end
QoS. Section 2.2 describes how configuration-driven
optimization techniques are addressing some of these
issues.

2.2 Configuration-driven
Techniques

Optimization

In middleware implementations, general-purpose op-
timization techniques are exposed as middleware
configuration settings that can be enabled/disabled
at build/run time. These options therefore require
product-line architects to understand the tradeoff, in
terms of application QoS, in terms of performance
by enabling/disabling these configuration settings.
This dependency is akin to the optimization settings
that can be used with an optimizing compiler. For
example gec [21], which provides a compiler suite,
allows setting and un-setting different configuration
knobs that optimize for speed (-03, -02 options), size
(-Os) or different processor architectures (all options
that have -m perpended).?
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Figure 8: Configuration-driven Optimizations

Similar to how one needs to understand the conse-
quences of enabling different compiler options, Fig-
ure 8 illustrates the need for product-line variants
to understand the consequences of middleware set-

~85 core configuration options.
2A comprehensive list of compiler options for gcc are avail-
able from: http://gcc.gnu.org/onlinedocs/.



tings. This problem is exacerbated by the fact that
(1) not all combinations of middleware options form
a semantically compatible set, and (2) match the ap-
plication QoS requirements onto middleware config-
uration settings to maximize QoS. Configuration-
driven optimizations are techniques to tune mid-
dleware configuration knobs to maximize application
QoS. These techniques are bound either at run-time
via online techniques or are evaluated by Quality
Assurance (QA) engineers at test/evaluation time.
These optimization techniques are applied on a per-
application basis but themselves are generalizable
across different product-line variants.

2.2.1 Dimensions of Configuration-driven
Optimizations

This section builds a taxonomy, i.e., categorizes
configuration-driven optimization approaches into
feedback-driven techniques (online, offline and hy-
brid techniques), techniques for QoS evaluation
(generative programming approaches and perfor-
mance patterns) and techniques for functional cor-
rectness of software configurations (testing ap-
proaches and test coverage).

Feedback-driven techniques. Feedback driven
approaches can be categorized into the following
three broad analysis techniques:

Offtine analysis, which has been applied to pro-
gram analysis to improve compiler-generated code.
For example, the ATLAS [38] numerical algebra li-
brary uses an empirical optimization engine to de-
cide the values of optimization parameters by gen-
erating different program versions that are run on
various hardware/OS platforms. The output from
these runs are used to select parameter values that
provide the best performance. Mathematical mod-
els are also used to estimate optimization parameters
based on the underlying architecture, though empir-
ical data is not fed into the models to refine it.

Online analysis, where feedback control is used to
dynamically adapt QoS measures. An example of
online analysis is the ControlWare middleware [98],
which uses feedback control theory by analyzing the
architecture and modeling it as a feedback control

loop. Actuators and sensors then monitor the sys-
tem and affect server resource allocation. Real-time
scheduling based on feedback loops has also been ap-
plied to Real-time CORBA middleware [52] to auto-
matically adjust the rate of remote operation invo-
cation transparent to an application.

Hybrid analysis, combines aspects of offline and
online analysis. For example, the continuous compi-
lation strategy [9] constantly monitors and improves
application code using code optimization techniques.
These optimizations are applied in four phases in-
cluding (1) static analysis, in which information
from training runs is used to estimate and predict
optimization plans, (2) dynamic optimization, in
which monitors apply code transformations at run-
time to adapt program behavior, (3) offline adap-
tation, in which optimization plans are actually im-
proved using actual execution, and (4) recompila-
tion, where the optimization plans are regenerated.

Functional correctness based techniques.
The following are different approaches for evaluating
the correctness of software across different configu-
rations:

The MODEST [72] tool provides a generative ap-
proach for producing (1) test cases, i.e., test-code
that is used to test the system and (2) test-harness,
i.e., the scaffolding code required for test setup and
tear down. In MODEST, test cases are generated
in parallel with the actual system. The motivation
being to provide the users with not only the system
but also the test-code to reduce maintenance costs.

SoftArch/MTE [29] provides a framework for sys-
tem architects to define higher level abstractions
of their system by specifying characteristics such
as middleware, database technology, and client re-
quests. SoftArch/MTE then generates an imple-
mentation of the system along with the perfor-
mance tests that measure these system character-
istics. These results are then displayed (i.e., anno-
tated in the high level diagrams) using tools such as
Microsoft Excel, thereby allowing architects to refine
the design for system deployment.

Skoll [56] is a distributed continuous quality as-
surance (DCQA) tool for developing and validating
novel software QA processes and tools. Skoll lever-
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Configuration-Driven Specialization Alternatives

Time-based Alternatives

online Controlware middleware

offline ATLAS, MODEST, Soft/ARCH
hybrid continuous compilation, Skoll
guidance performance patterns, ANOVA

Alternatives

Type of Exploration

manual performance-patterns and regression tests
automated Skoll, continuous compilation, ATLAS
hybrid generative-approaches mapped onto automated frameworks

| Cost-based | Alternatives |
none continuous compilation, ANOVA, performance-patterns, Skoll
amortized ATLAS
non-trivial controlware

Table 2: Dimensions of Configuration-driven Specialization Mechanisms

ages the extensive computing resources of world-
wide user communities in a distributed, continuous
manner to significantly and rapidly improve software
quality. In particular, Skoll provides an integrated
set of technologies and tools that run coordinated
QA activities around-the-world, around-the-clock on
a virtual computing grid provided by user machines
during off-peak hours.

Techniques for configuration tuning. The fol-
lowing are different approaches for quantifying im-
pact of software configuration on QoS:

Performance Patterns [60] and Performance Pat-
tern Languages (PPL) provide an automatable,
script-based framework within which extensive
ORB endsystem performance benchmarks can be
described efficiently and executed automatically.
These patterns are embodied in the NetSpec tool
developed at the Kansas University. The patterns
themselves are written using PPL. Examples of such
patterns include Cubit Tests (measuring (de) mar-
shaling overhead), Client-Server benchmarks (sim-
ple client server two node approach for benchmark-
ing) and Proxy benchmarks (introducing a proxy
that acts as an intermediary between the client and
server).

Performance tuning approaches in [87] are exam-
ining the importance of webservice parameters for
different workloads and request types using statisti-
cal techniques. Their approach analyzes how end-
to-end performance varies for different commonly
used web service requests, e.g., buy request, product
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query and search requests. For each kind of request,
they use different workloads published in the web-
service benchmarks, e.g., varying the user think time
and number of users. An initial configuration space
is chosen and different possibilities of each configura-
tion setting are exercised to measure their influence
on end-to-end quality of service. This data is used
as input in the ANOVA [49] analysis to determine
the statistical significance of different web-server op-
tions.

Summary. Table 2 categorizes configuration
driven approaches along two dimensions. The first
dimension describes the approaches based on time.
An offline approach is run a priori while an on-
line approach is turned on while the software is
run. In a guidance approach, data collected either
from online/offline approach is used to build body of
knowledge, which in turn is used to guide configura-
tion selection. The second dimension compares the
technique used for configuration exploration. For
example, a manual approach may exhaustively or
minimally try to explore the different configuration
knobs. Automated/hybrid approaches may use tech-
niques to build a configuration model or generate
the right configuration space required for evaluation.
The final dimension explores the cost of the config-
uration space exploration. An offline technique does
not incur any run-time cost, whereas the online tech-
nique incurs a non trivial overhead for monitoring
performance.



2.2.2 What Remains to be Done

The configuration-driven optimization techniques
present online, offline empirical and statistical tools
for mapping higher level application concerns on to
software configurations. These techniques however
suffer from:

o Repeatability limitations, which stymie
each product-line variant to execute the same
process [65] to identify the pertinent configura-
tion settings,

Cost limitations, which increase the acciden-
tal complexities involved in actually handcraft-
ing the scaffolding code for different product-
line variants to map QoS requirements onto
middleware configurations, and

Validation limitations, which prevent the
validation of these approaches across different
platforms, hardware, compiler and OS options.

Earlier efforts on benchmarking distribution mid-
dleware implementations [44, 46] identified how te-
dious and error-prone the process of evaluating these
configurations really were. Section 3.2 describes
in detail how this limitation is resolved using the
OPTEML approach.

Another significant limitation of these techniques
is that middleware or software cannot be tailored
or customized once the required configuration knobs
are determined. For example, if the right concur-
rency strategy to be used within middleware is de-
termined to be single-threaded, this approach can-
not remove the no-implementation locking code from
within the implementation. Section 2.3 discusses re-
search approaches that address this issue.

2.3 Partial Specialization Optimizations

Jones et al. [37], define Partial Specialization (par-
tial specialization) as a technique that creates a spe-
cialized version of a general program, which is more
optimized for speed and size than the original pro-
gram. This technique draws from and has charac-
teristics of language mechanisms such as program
optimization techniques [35], compilers [1], program
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generation [91] and generative programming tech-
niques [13]. Partial specialization tailor implemen-
tations using Ahead of Time (AOT) known system
properties or invariants. These techniques are ap-
plied very early in the development process i.e., at
design time rather than at run-time. In addition,
these techniques are very application specific. Fig-
ure 9 illustrates how AOT properties can be used to
specialize middleware.
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Figure 9: Partial Specialization Optimizations

2.3.1 Dimensions of Partial Specialization
Mechanisms

This section analyzes different dimensions of partial
specialization by first building a taxonomy based on
different mechanisms and then describing how these
have been applied to different areas including oper-
ating systems, databases and neural networks.

Time-based mechanisms. Partial specialization
can be carried out both offline and online. An of-
fline technique occurs in two steps: In the first step,
a binding-time analysis annotates the program code
with static and dynamic information. This step is
referred to as binding time analysis. In the second
step, a code generator actually produces the opti-
mized code. An online partial specialization uses the
actual values directly rather than the two step pro-
cess of annotation and program optimization. The



online technique is more powerful than offline tech-
niques as it deals with the actual value. However,
offline specialization enables runtime adaptation as
the information is already propagated within the
code. Different tradeoffs are listed in [71].

Language mechanisms. Common partial spe-
cialization mechanisms at the language level include
approaches that are two level in nature as described
in [93]. Common examples include, macros (C and
C++ language) for code expansion and templates in
C++. In these examples, the code expansions are
explicitly programmed. In the templates approach,
each optimization, i.e., a specialization can be ex-
plicitly programmed providing a fine grained control.
This serves as its bane because optimizations have to
be explicit. C++ templates are offline mechanism,
the reason being, during the, first pass the compiler
does not generate code but checks the syntax of the
template code. The specializations are instantiated
only when used. Macros are online specializations
as they directly substitute code with no code anno-
tation.

Specification-level mechanisms. Specification
level specialization approaches include, code gener-
ators such as CORBA IDL compilers [94] and rpc-
gen [88] (IDL compiler for Sun RPC). These code
generators generate glue-code for (de) marshaling
data, connection management and error handling. A
common example is specialization based on object
location where the IDL compiler generates special
glue code of the objects that are within the same ad-
dress space. Specification level partial specialization
leverages language level partial specialization. For
example, the generated code from a IDL to C++
compiler uses a specific marshaling routine imple-
mented as generic templates.

Pattern matching mechanisms. Similar to
specification level mechanisms, pattern matching ap-
proaches take regular expression as input and per-
form the specified action when there is a match. The
matching serves as a mechanism of enabling partial
specialization. For example, the code woven in via
pattern matching can be partially specialized code
rather than un-optimized code. The key difference
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here between pattern and language partial special-
ization approaches is that pattern matching can be
global while language mechanisms are local. A com-
mon example in this category is AspectJ.
Application of partial specialization tech-
niques. Partial specialization mechanisms have
been applied to different domains including scien-
tific applications, functional programming, operat-
ing systems and database systems. This section pro-
vides examples of partial specialization techniques
that have been applied to optimize different algo-
rithms. In computer graphics for example, ray trac-
ing algorithms compute information on how light
rays traverse a scene based on different origination.
Specialization of these algorithms [2] for a given
scene have yielded better performance rather than
general purpose approaches.

Similarly in databases [73], general purpose
queries have been transformed into specific programs
optimized for a given input. Similarly, training neu-
ral networks [48] for a given scenario has improved
its performance.

In addition to the aforementioned domains, par-
tial specialization techniques have also gained im-
portance within the operating systems domain. The
earliest of the efforts in Synthesis Kernel [67] pio-
neered the idea of generating custom system calls
for specific situations. The motivation was to col-
lapse layers and to eliminate unnecessary procedure
calls. Others have extended this approach to use in-
cremental specialization techniques. For example in
their work [66], Pu et al., have identified several in-
variants for a operating system read call for HP_UX
platform. Based on these invariants, code is synthe-
sized to adapt to different situations. Once the in-
variants fail, either re-plugging code is used to adapt
to a different invariant or default unoptimized code
is used.

Summary. Table 3 categorizes partial specializa-
tion initiatives across three different dimensions.
The first dimension shows the different partial spe-
cialization mechanisms. These approaches are then
applicable to different domain as shown in the second
dimension. Finally, the table shows several partial
specialization tools that have been developed to spe-



Partial Evaluation & Specialization Alternatives

Tazonomy | Alternatives

Time based Online & Offline

Language based Macros, templates, template meta-programming

Specification based | IDL compiler, rpcgen

Pattern based Aspect]

Effort manual (Language-based), automatic (pattern/specification based)
[ Domains | Applications |

0S Synthesis Kernel, HP_UX incremental specialization

Databases dedicated read queries

Physics Ray Tracing specialization

Al Neural network specialization
| Languages | partial specialization tools

Lambda Calculus Lamdamix

Prolog Logimix

Scheme Similix

C C-mix

Table 3: Dimensions of different partial specialization mechanisms

cialize programs written in the corresponding lan-
guages. We do not discuss each of the tools in detail,
more information about each tool is available in [37].

2.3.2 What Remains to be Done

Traditional partial specialization techniques have
been used to optimize applications in function/logic
programming. There does not exist any partial spe-
cialization tool for object oriented programming lan-
guages such as C++ or Java. partial specialization
variants, such as program specialization techniques
are commonly used in optimizing compilers. Mid-
dleware displays several characteristics amenable to
specialization such as (1) ability to run on differ-
ent platforms, (2) multitude of configuration options
and (3) design for flexibility and generality. Us-
ing a similar approach as an optimizing compiler,
specialization may be used to produce leaner and
meaner middleware implementations more tailored
to the operating context

Middleware implementations traditionally are de-
signed for generality 4.e., design facilitates use in dif-
ferent operating contexts. Middleware architectures
are layered to support pluggable context-specific im-
plementations. To improve performance and foot-
print, middleware implementations incorporate sev-
eral horizontal (general purpose) optimizations such
as predictable and scalable (1) request demultiplex-
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ing techniques, that ensure O(1) look up time [42]
and collocation optimization, which bypasses the
network when client and server reside in the same
address space. However, these optimizations are still
generic, for example redundant checks for remoting
are performed to accomodate for generality, ¢.e., ca-
pability to communicate over the wire as well.

The configuration driven optimizations, help in
choosing the right set of middleware configurations,
however, do not eliminate the generality in middle-
ware. Therefore, the research challenge is to explore
the use of program specialization techniques to re-
move middleware generality. Section 3.2 how this
limitation is resolved using the OPTEML approach.

2.4 Summary

The research evolution and taxonomy presented
in this section clearly show a trend from general-
purpose run-time optimizations to highly applicable
design time optimizations for enhancing middleware
for PLA based application development. This sec-
tion also described the missing pieces that have not
been addressed by research approaches thus far. Ad-
dressing these principal challenges will herald the
next generation of configurable and customizable
middleware in the following manner.

e Resolution of feature subsetting chal-
lenges, will enable each product-line variant



to select the middleware pieces that match the
product line’s feature requirements.

e Resolution of specialization challenges,
will use the chosen configuration as drivers for
removing middleware generality.

e Resolution of configuration & validation
challenges, will enable the selection of right
middleware configurations using a tool-driven
repeatable process, and

The remaining portion of this proposal describes
how the aforementioned research challenges will be
addressed systematically.

3 Thesis Proposal

This section describes a proposal for resolving re-
search challenges identified in Section 2.3.2 that re-
main unresolved by the related work described in
Section 2

3.1 Challenge 1: Fine-grain Middleware
Componentization complexities

The taxonomy on general-purpose optimizations
(described in Section 2.1.2) identified limitations
with existing middleware architectures for enabling
fine-grain customizability of middleware features.
This section describes how this shortcoming is ad-
dressed in OPTEML.

Context. A standards compliant CORBA ORB
provides several services including support for mul-
tiple protocols, marshaling and demarshaling, mul-
tiple formats for exporting references and multiple
object adapters that map client requests to imple-
mentation defined servants. Product-line variants
then choose the set of middleware services that are
required for satisfying their feature requirements.

Research Challenges. Implementing a full-
service, flexible, specification-compliant ORB can
yield a monolithic ORB implementation with a large
memory footprint as shown in Figure 10. Moreover,
the footprint grows with each extension (adding sup-
port for a new protocol), and extensibility is hard.
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Figure 10: Monolithic ORB Architecture

A monolithic ORB, however, does not suffer from
any indirection overheads example indirection cost
from virtual functions. Therefore the research chal-
lenges of developing a feature rich extensible middle-
ware implementation can be broken down into the
following sub-problems: (1) Enabling middleware to
provide a rich and configurable set of functionality,
yet be configurable to incur footprint (main mem-
ory) only for components that are actually used; (2)
Making the ORB easily extensible in order to facil-
itate the development of different alternatives; and
(3) Allowing both static and dynamic configuration,
to allow the application developer to choose a trade
off between maximal efficiency and flexibility and
(4) Ensuring end-to-end deadline and performance
requirements.

Hypotheses. This proposal explores and vali-
dates the following hypotheses: The solution ap-
proach (1) enables different levels of middleware
componentization, e.g., coarse-grain (decomposing
a monolithic component into sub components) and
fine-grain (further decomposition of the already fac-
tored out pieces), (2) is transparent to the applica-
tion (no changes to the PLA application code), (3)
significantly reduces middleware footprint and (4)
allows easy addition of new features without sacri-
ficing performance.

Solution Approach — Micro-ORB Architec-
tures. To enhance the customizability and flexibil-
ity of middleware implementations, an ORB should
allow an application to select the minimal set of
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components required. To address the limitations
with monolithic ORB architectures, this research ap-
plies the following design process systematically: (1)
Identifies the ORB services whose behaviors may
vary. This variation stems from which standard
CORBA features are actually used and user’s op-
tional choice for certain behavior. For example,
CORBA provides an Any datatype that can store
any other data-type. This feature is optional until
used. (2) Apply the Virtual Component pattern [25]
to make each ORB service pluggable, i.e., factor it
out of the core ORB implementation. (3) Write con-
crete implementations for the different alternatives.
For example, an implementation of the TCP /IP pro-
tocol or Secure Socket Layer (SSL) protocol. Provide
a factory [22], for example, a protocol factory that
creates different protocols depending on configura-

tion settings.
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Figure 11 illustrates how the application of the
aforementioned approach results in the factoring of
ORB services from the core to the periphery. Us-
ing this approach, principal core ORB services (ob-
ject adapters, message buffer allocators, GIOP mes-
sage handling, CDR Stream readers/writers, proto-
col transports, object resolvers, IOR parsers, and
Any handlers) are moved out of the ORB to re-
duce its memory footprint and increase its flexibility.
Each ORB service itself is decomposed into smaller
pluggable components that can be loaded into the
ORB only when needed.

This approach provides a coarse-grain solution
where the component as a whole is either plugged in
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or removed wholesale. For example, ”pure clients”
do not need the Portable Object Adapter (POA) [69]
component. A coarse-grain POA architecture is use-
ful for pure clients, which need no object adapter
and can reduce their footprint by completely remov-
ing all POA methods. This approach however does
not enable further componentization of the POA for
servers which do need this component.

In a fine-grain approach, the POA component is
considered as a monolithic piece and further decom-
posed to enhance customizability. The POA pro-
vides several policies to customize its behavior. For
example, the Life time POA policy dictates whether
a POA is persistent or transient. Each policy defines
different behaviors out of which only one can be as-
sociated during the lifetime of a POA. It is therefore
possible to decompose the POA along policy alter-
natives. In this aggressive approach, rather than an
all or nothing solution, individual policy alternative
components can be plugged in or out as needed. For
example, Figure 12 shows the fine-grain architecture
of the ZEN? POA, where each POA policy is factored
out into a separate class hierarchy by applying the
Strategy pattern [22].
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Figure 12: Fine-grain Architecture applied to the
ZEN POA

Each hierarchy has an abstract base strategy and
concrete strategies corresponding to the policy values

3ZEN [8] is an open-source implementation of Real-time
CORBA using the Real-Time Specification for Java (RTSJ).



associated with that policy. Further, many of these
concrete strategies do not maintain any state and
have been implemented using Flyweight pattern [22].
This pattern uses sharing to support large numbers
of fine-grain objects efficiently, which means there
is only one instance of the strategy. The results of
application of our approach show that a fine-grained
design can be half [39] the size of a monolithic imple-
mentation and yet be simultaneously predictable [40]
and high-performance [42].

At the base of OPTEML is the aforementioned
flexible middleware architecture that allows feature
subsetting and minimizes the middleware implemen-
tation footprint. This architecture is based on the
Virtual Component Pattern [12], that allows an ap-
plication transparent way of loading and unloading
components. This flexible architecture, has been
implemented and validated using the ZEN ORB.
Mature Real-time CORBA implementations, such
as the ACE+TAO [33, 34], are embracing the fine-
grain componentization approach to building ORB
implementations. Overt this flexible architecture are
novel optimization strategies, patterns, and idioms
that help enhance QoS of DRE systems and facilitate
the application of promising new technologies (such
as the RTSJ) to DRE systems. Technology tran-
sitions and successes of TAO and ZEN have been
documented in [41].

Validating the hypotheses. The fine-grain com-
ponentization approach validates the hypotheses de-
tailed earlier by providing an application trans-
parent approach for minimizing middleware foot-
print.  Further, this approach neither requires
any changes to existing PLA application code nor
modifies the signature of the CORBA interfaces.
The middleware implicitly figures out which com-
ponents are needed based on policies defined or
until components are resolved for use (via the
resolve_ initial reference() operation). The
coarse-grain and fine-grain approaches provide a
tradeoff between different levels of middleware cus-
tomization.. This approach leads to substantial im-
provement in footprint, where a fine-grain architec-
ture can be half the size of its monolithic couter-
part. Finally, this approach facilitates component

extensibility based on PLA requirements by localiz-
ing change within the particular component hierar-
chy. For example, to support a new protocol, mid-
dleware developers need to provide a new implemen-
tation conforming to the interface exposed by the
base protocol strategy component. The base strat-
egy then is the only component that needs to be
modified to load/unload this new protocol.

3.2 Challenge 2: Middleware Specializa-
tion Complexities

The taxonomy on partial specialization optimiza-
tions identified limitations (described in Sec-
tion 2.3.2) with existing partial specialization ap-
proaches. This section describes how this shortcom-
ing is addressed in OPTEML.

Context. DRE system infrastructure continues to
expand in scope and capabilities as new protocols
and mechanisms are defined at the network, OS, and
middleware layers. For example, middleware pro-
vides various protocol implementations [64] tailored
towards changing operation contexts, e.g., the Inter-
net Inter-ORB Protocol (ITOP) can be used for web-
based communication, whereas the Stream Control
Transmission Protocol (SCTP) [24] can be used for
fault-tolerant DRE applications.

The resolution of Challenge 1 enables middle-
ware to implement the different protocol implemen-
tations, i.e., IIOP and SCTP as pluggable alterna-
tives to a generic protocol component. This ensures
that a variant not requiring SCTP support does not
incur the footprint overhead for supporting this pro-
tocol. This approach, however, cannot eliminate
middleware generality for example, the generality in
the middleware for providing plug and play of mul-
tiple protocol implementations.

Research challenges. The broader research chal-
lenge is to identify specialization points in the mid-
dleware to apply specialization techniques. If the
specializations are applied at points that do not pro-
duce improvements in end-to-end performance and
QoS then such approaches are counter-productive.
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A second related challenge is that manually cus-
tomizing middleware implementations, i.e., by man-
ually rewriting source code, is ad hoc and involves
significant and error-prone changes to implemen-
tation code. Research challenges thus involve de-
veloping software environments that evaluate sys-
tem properties (such as concurrency mechanisms
and type of protocol implementation that are fixed
at design time) and use this information to cus-
tomize middleware implementations and eliminate
additional layers of indirection.

Hypotheses. This proposal explores and vali-
dates the following hypotheses: The solution ap-
proach (1) identifies the specialization points in the
middleware that lead to increased performance ap-
plicable to different PLA variants. (2) does not
cause additional run-time performance overhead for
the specialized version over and above the general-
purpose version. (3) provides a framework for the
addition of new specializations and (4) improves per-
formance considerably for different product-line vari-
ants.

Solution Approach — Middleware Special-
ization Techniques. Partial specialization is an
inter-procedural constant propagation technique
that can improve performance and footprint by (1)
tailoring services to the specific needs of software
systems and (2) bypassing layers of abstraction to
call directly to underlying platform protocols and
mechanisms [53].

To customize middleware for different operat-
ing contexts, this research explores techniques for
customizing middleware based on Ahead of Time
(AOT) known system properties to improve mid-
dleware performance and footprint. In particular,
this research proposes: refactoring middleware and
services so they are amenable to automatic and dy-
namic customization and optimization by using mid-
dleware specialization patterns [14]. These patterns
are then mapped to middleware implementations via
specialization tools. The specialization process can
be divided into two steps: (1) identification of the
specialization points and transformations and (2)
automating the delivery of the specializations.

The following are some of the possible road blocks
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in the specialization process that this research has
identified:

e Maturity and availability of tools that can help
in automatic specialization of middleware. For
example, AspectJ is a mature implementation
in Java where as Aspect C++ is yet to mature,
Overheads imposed by tools might impede the
target performance improvements. For exam-
ple, the overhead of AspectJ runtime infras-
tructure, both in terms of linking to the li-
brary and run-time overhead might cause per-
formance degradation as detailed in [23],

Need for the specialized code and general-
purpose code to exist simultaneously, and
Compatibility issues such as compliance with
the CORBA specification.
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Figure 13: FOCUS Approach

To address the aforementioned limitation, this re-
search is developing the FOCUS (Feature-oriented
Customizer) tool. Figure 13 illustrates the actors,
tools and workflow in FOCUS. The different phases
in the FOCUS approach can be broken down as fol-
lows:

e Identification of specializations. The most
important step in the specialization process is the
identification of specialization points to eliminate
generality. Rather than selecting ad-hoc points, this



Object
(Servant)

in args
oBJ operation()
REF outargs +

return

(4] DL

\ 12 skeL | | DS
ORB

INTERFACE

Object Adapter

5
GIOP/IIOP/ESIOPS

Pre-create Request

a Specialization on Location o

e Extrapolate than Send e

o Eliminate un-necessary
checks

Optimize for Target
Location

Figure 14: FOCUS: Specialization Identification

research will examine the critical request/response
processing path within middleware to systemati-
cally identify sources for specialization. Identifica-
tion of these points have the greatest potential for
increasing performance improvement. Figure 14 il-
lustrates the specialization points along the critical
request/response that have been chosen for special-
ization including:

e Specialization for target location, which
removes redundant code and checks along the
request processing path when both client and
server are collocated, i.e., present in the same
address space,

e Specialization for request type, which pre-
creates an entire request when the same opera-
tion is invoked repeatedly by the client,

e Once per state resolution of dispatch,
which bypasses middleware processing layers at
the server side when the same operation is in-
voked along a given connection,

e Extrapolate rather than send, which first
tries to obtain the result locally at the client
before making a remote call, and

e Eliminate demarshaling checks, which
eliminates redundant byte-order checks along
the request processing path at the server.

In addition to the path specializations, component
specializations eliminate indirection overheads (gen-
erality) in middleware component along the criti-

cal/request response processing path including the
pluggable protocol and reactor [80] frameworks.

e Capturing specializations as rules. Fig-
ure 15 illustrates how specializations are expressed
as rules. In this phase, a middleware developer lays
down the specialization rule required to transform
general-purpose middleware into optimized middle-
ware stack. These directly stem from the specializa-
tion points identified in the previous step.

1IOP_Connection_Handler:
in process,_request ():
add: TAQ_SeryerRequest &request =
incoming.get_request ();
replace: next_laver->process_request ();
final_layer->process_request
(request);

Object
(servant)

5
GIOP/IIOP/ESIOPS

@ speciaiization on Location @) Pre-create Request
Request Header Optimize for Target
Q g (] Locaton
@ Emnat sy
checks

Figure 15: FOCUS: Capturing Specialization Rules

Middleware
developers:
Specify
transformations as
rules; multiple rules
in a database

in process_request ():
add: TAQ_ServerRequest &request =

aet_request ();
replace: next_layer->process_request ()
final_layer->process_request

Middleware
developers:
Annotate source
with hooks

(request);

Ilhook

Figure 16: FOCUS: Middleware Annotation

¢ Middleware Annotation. Figure 16 shows
how the rules are used to annotate the middle-
ware. In conjunction with capturing the special-
ization rules, the middleware developer annotates
the middleware source with specialization hooks.
These hooks are inserted as comments in the source
code that do not interfere with the normal re-
quest /response processing. However, in the special-
ized mode, these hooks are used to weave in special-
ized code using a customizer engine.

¢ FOCUS Transformations. Figure 17 illus-
trates the different steps in this phase. (1) A
product-line application developer choses the spe-
cializations that are suitable for the variant. This
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process is manual or a GUI wizard is provided to
infer specialization rules to be applied. (2) A trans-
formation engine, then uses the rules specified in the
rules file and (3) performs the transformations speci-
fied in the file using the hooks left in the middleware
code. (4) Optimizing compiler then uses the modi-
fied source file to generate executable platform code.
The advantage of this approach is that the trans-
formations are applied to the source directly en-
abling an optimizing compiler to generate optimized
code. However, a disadvantage is that Aspects pro-
vide a superior mechanism of weaving code. How-
ever, irrespective of the actual approach, our special-
ization rules are applicable across different mecha-
nisms. The need for generalized and special pur-
pose code to coexist, introduces additional replug-
ging cost when a specialized version needs to also
support general-purpose behavior. Replugging costs
can introduce considerable jitter for real-time sys-
tems. For this approach therefore avoids replugging
costs by raising exceptions when the special pur-
pose code also needs the general purpose behavior.
The specialization in addition will not change the
CORBA interfaces CORBA interfaces, for example,
no addition of operation parameters to interface op-
erations, which will avoid breaking CORBA compat-
ibility.
Validating the hypotheses. The middleware
specialization approach addresses hypotheses out-
lined earlier by (1) systematically identifying spe-
cializations along critical request/response path to

ensure improvement in performance. (2) Providing
a source to source transformation requiring no run-
time overhand such as linking/calling into an exter-
nal library. (3) Enabling the addition of new special-
izations as rules that can be added to the existing
set of rules in the data base. If external tools like
Aspects mature, the rules that capture the transfor-
mations can be re-written as aspects. Finally, the
benefits to the application depends on how many
of the specializations are enabled along the critical
request /response path. Turning on all the special-
izations would enable ~40% improvement in perfor-
mance, while turning on just a couple of optimiza-
tions would improve performance by only ~15%.

3.3 Challenge 3: Middleware Configura-
tion Validation and Tuning Complex-
ities

The taxonomy on configuration-driven optimiza-

tions (described in Section 2.2.2) identified limi-

tations with ad hoc approaches to right middle-

ware configuration selection & validation for differ-

ent PLAs. This section describes how this shortcom-
ing is addressed in OPTEML.

Context. An inherent characteristic of high per-
formance flexible and customizable middleware is (1)
it runs on many hardware/OS platforms and interop-
erate with many versions of related software frame-
works/tools and (2) provides support for end-to-end
QoS properties, such as low latency and bounded
jitter. These implementations have 10’s - 100’s of
configuration options and customization parameters
that PLA application developers can adjust to tailor
the middleware to meet various functional and QoS
needs. Specialized middleware (as described earlier)
also influence end-to-end QoS of PLA applications.

Research challenges. Mapping product-line QoS
requirements onto highly flexible middleware can be
problematic, however, due in large part to the com-
plexity associated with configuring and customizing
QoS-enabled middleware. Time and resource con-
straints often limit developers to assessing the QoS
of their DRE systems on very few configurations
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and extrapolating these to the much larger config-
uration space. In this context, the research chal-
lenges include (1) developing software processes to
systematically and efficiently evaluate system QoS
and (2) designing tools to synthesize necessary arti-
facts, such as benchmarking code to evaluate system
QoS for various configuration options and (3) vali-
dating the general-purpose or specialized versions of
middleware across different platforms.

Hypotheses. This proposal explores and vali-
dates the following hypotheses: The solution ap-
proach (1) eliminates accidental complexities in gen-
eration of scaffolding code. (2) enables validation of
middleware configurations across diverse platforms
OS and compiler settings, and (3) can be applied to
identify middleware configurations influencing end-
to-end performance/latency/jitter the most (”main
effects”) of a given PLA variant.

Solution Approach — Model Driven Dis-
tributed Continuous Quality Assurance Pro-
cesses. To specifically address the repeatability,
cost and automation limitations of middleware
configuration tuning approaches discussed in Sec-
tion 2.2.2, this research synergistically combines
Model-Driven Development (MDD) techniques with
Quality Assurance (QA) approaches. An MDD ap-
proach (for example the CoSMIC [26] project) re-
solves the accidental complexities involved in hand-
crafting scaffolding code such as XML-meta data,
configuration files and benchmarking code for eval-
uating the QoS of middleware configurations across
a range of product-line variants. Combining MDD
approaches with Distributed Continuous Quality As-
surance (DCQA) techniques [56] enables the valida-
tion of the different middleware configurations for
functional correctness and performance across di-
verse platforms by executing QA tasks continuously
and intelligently.

This research proposes the validation of the so-
lution approach using the development of a Do-
main Specific Modeling Language (DSML)s using
GME to capture QoS evaluation concerns of dif-
ferent product-line variants. This tool will be inte-
grated with the CoSMIC toolsuite to work with the
(1) the Options Configuration Modeling language
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(OCML) [92] that allows developers to model mid-
dleware configuration options as high-level models
and (2) the Platform Independent Component Mod-
eling Language (PICML) [4] that captures compo-
nent interactions in higher level models and synthe-
sizes XML-metadata to deploy the component sys-
tem. The generated code from the tool will be inte-
grated with the Skoll framework (http://www.cs.
umd . edu/projects/skoll/), which is a prototype
DCQA environment to validate and document how
middleware configurations affect product-line QoS
across a range of platforms OS and compiler set-
tings.

The research contribution for this dimen-
sion of OPTEML has been the development of
the Benchmarking Generation Modeling Language
(BGML) [43], a DSML to evaluate the QoS of differ-
ent middleware configurations. BGML provides the
capability of modeling different types of operations
(one way, two way), QoS metrics (latency, through-
put) and background load (continuous, rate based
or interactive) information and generating scaffold-
ing to evaluate middleware QoS. BGML has been
integrated with the CoSMIC tool-suite and works
in concert with OCML and PICML DSMLs. Fig-
ure 18 visually illustrates how BGML and OCML
work in concert to automate the generation of scaf-
folding code required evaluating product-line QoS.

The second contribution is the development of a
Model-Driven DCQA processes for middleware con-
figuration validation. Figure 19 visually depicts the
high level steps involved in this process and de-
scribed below:

e Step 1: Define product-line scenario. An
application developer uses CoSMIC to define
the scenario, choose a middleware configuration
space and model the QoS requirements such as
end-to-end latencies.

e Step 2: Generate scaffolding code. In this
step, the model interpreters are used to gen-
erate all the scaffolding code required to enact
the process. This step also generates the mid-
dleware configuration files, which is then fed to
Skoll’s configuration navigation agent.

e Step 3: Register and download clients.
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Remote users register with the Skoll infrastruc-
ture and obtain the Skoll client software and
code artifacts to run.

e Step 4: Execute. Skoll software runs the
benchmarks on different configurations to eval-
uate QoS and documents the variation of QoS.
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Figure 19: Model Driven DCQA Approach
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This tool integration process has been applied to a
real-life product-line scenario to determine the right
set of configurations satisfying end-to-end QoS [44].

Finally, the Model-driven DCQA process has been
applied to estimate configuration ”main effects” i.e.,

subset of options that account for the greatest por-
tion of performance variations across the system’s
configuration space. In this approach rather than
exhaustively testing the configuration space, which
is expensive and time consuming, a screening de-
sign [95] technique is used. This approach is highly
economical and can reveal important low order ef-
fects (such as individual option settings and op-
tion pairs/triples) that strongly affect performance.
These configurations are “main effects.” The mar-
riage of MDD and DCQA techniques enables au-
tomation, repeatability and validation of configura-
tion main-effects for different PLA variants across a
range of platforms, OS and compiler settings as dis-
cussed in [96]. This process has also been general-
ized [45] to be applicable to preserve Persistent Soft-
ware Attributes (PSA)s such as portability, func-
tional correctness and reliability.

Validating the hypotheses. The Model-Driven
DCQA processes address the hypotheses outlined
earlier in the following manner: (1) The tool-
integration process eliminates accidental complex-
ities in generation of all the scaffolding code re-
quired to enact a PLA scenario. (2) The integration
of Skoll, BGML and OCML enables validation of
middleware configurations of different PLAs across
diverse platforms OS and compiler settings. (3)
The main-effects screening DCQA process provides
a reusable and automatable solution that can be ap-
plied to identify principal configuration settings af-
fecting end-to-end QoS such as performance/latency
and jitter measurements.

4 Proposal Timeline & Summary
of Research Contributions

Figure 20 shows research progress and a plan for
the completion of OPTEML. The first phase of
OPTEML completed as of May 2003, involved the
development of patterns for the fine-grain compo-
nentization of CORBA ORB middleware. The
fine-grain componentization efforts have been imple-
mented and validated in both ZEN and TAO. The
second phase of OPTEML (May 2003 — Nov 2004)
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OPTEML: Research Publications

Fine-grain Componentization

Publications & acceptance rate

POA architecture
ORB-core architecture

Distributed Objects and Applications (DOA) 2003 (25%)
DOA 2003 (30%)

Real-time Real-time Application Symposium (RTAS) 2004 (25%)

performance International Conference on Distributed Systems (ICDCS) 2004 (17%)
Process Publications € acceptance rate

BGML design International Conference on Software Reuse (ICSR) 2004 (22%)

QoS RTAS 2005 (30%)

evaluation International Conference on Software Engineering (ICSE) 2005
CoSMIC tool suite International Journal of Embedded systems (invited)

Skoll IEEE Software

integration Studia Infomatica Universalis Journal

Performance Evaluation

Publications & acceptance rate

Benchmark suite
for evaluating

RTAS 2004 (25%)
Elsevier Real-time Systems Journal

CCM

Table 4: Publication Summary: (First and Second author contributions)

Palicy-driven MDD Techniques,
approaches for BGML
middleware CCMPerf, Skoll
i Tools for Application
Middleware 0 ;8 :
customizability C°nﬁ_9u’=j“°n T S_P?CIﬁF
Validation optimizations

|

May 2003

i !

Nov 2004 Nov 2005

Figure 20: Research Time-line

OPTEML: Research Contributions

Area Contribution

General Patterns for fine-grain

purpose componentization

optimization of middleware architectures.
techniques Policy-driven middleware approaches
Configuration | DSMLs for capturing

driven QoS evaluation

optimization concerns for component

techniques middleware & PLA

Partial FOCUS: A tool-driven approach
specialization | for middleware

optimization specialization.

techniques

Preserving & Model-driven DCQA process for
validating preserving & validating

middleware middleware configuration properties.
configuration Main-effects screening a DCQA
properties process for identifying

configuration main-effects

Table 5: Summary of Research Contributions
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resulted in several contributions to the development
of CoSMIC and Skoll including: (1) Development
of BGML [43] DSML, (2) Integration of BGML
with CoSMIC and tool-driven approach for QoS
evaluation [44] and (3) Development of Skoll main-
effects screening process [96] and how a model-driven
approach validates middleware configurations [45].
The final phase of OPTEML (proposed completion
as of Nov 2005) will devise techniques for a tool
driven process for middleware customization. Ta-
ble 4 tabulates the conferences and their acceptance
rates while Table 5 provides an overview of research
contributions.
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