
Friday, November 08,
2002

Pattern-Oriented Software Architecture
CORBA Design Patterns

PatternPattern--Oriented Software ArchitectureOriented Software Architecture
CORBA Design Patterns

Arvind S Krishna
Jaiganesh Balasubramanian
http://www.doc.ece.edu/

Electrical & Computing Engineering Department
The Henry Samueli School of Engineering

University of California, Irvine

Motivation for Patterns and FrameworksMotivation for Patterns and Frameworks

• Developing software is hard
• Developing reusable software is even harder
• Proven solutions include Patterns and frameworks

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Overview of Patterns and FrameworksOverview of Patterns and Frameworks
• Patterns support reuse of software architecture and design

– Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise
when building applications in a particular domain

• Frameworks support reuse of detailed design and code
– A framework is an integrated set of components that

collaborate to provide a reusable architecture for a family of
related applications.

• Together, design patterns and frameworks help to improve
software quality and reduce development time
– e.g., reuse, extensibility, modularity, performance

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Pattern DefinitionPattern Definition

• Present solutions to common software problems arising within a
certain context

• Help resolve key design forces

• Capture recurring structures and dynamics among software
participants to facilitate reuse of successful designs.

• Generally codify expert knowledge of design constraints and
“best practices”

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

ACE IntroductionACE Introduction

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

• Motivation for ACE (Adaptive Communication Environment)

• ACE was first started in 1991 at UCI where Dr Schmidt was a grad
student in the ICS department.

• It was necessary to revert to using C function APIs and procedural
design when we needed to access system resources like Threads,
Sockets that were available in common OS platforms

•It was needed to keep rewriting the code to handle common network
programming tasks such as connection establishment, event
demultiplexing and distribution

• ACE was created to resolve these two frustrations

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Overview of the ACE Framework

•Open-source
•200,000+
lines of C++
•30+ person-
years of effort
•Ported to
Win32, UNIX,
& RTOSs

•e.g.,
VxWorks,
pSoS,
LynxOS,
Chorus, QNX

•Large open-source user community
•www.cs.wustl.edu/~schmidt/ACE-users.html

ACE benefitsACE benefits
CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

•ACE contains a higher-level network programming framework that integrates and
enhances the lower-level C++ wrapper facades. This framework supports the dynamic
configuration of concurrent distributed services into applications.

•Event demultiplexing components -- The ACE Reactor and Proactor are extensible,
object-oriented demultiplexers that dispatch application-specific handlers in response to
various types of I/O-based, timer-based, signal-based, and synchronization-based
events.

•Service initialization components -- The ACE Acceptor and Connector components
decouple the active and passive initialization roles, respectively, from application-specific
tasks that communication services perform once initialization is complete.

•Service configuration components -- The ACE Service Configurator supports the
configuration of applications whose services may be assembled dynamically at
installation-time and/or run-time.

•Hierarchically-layered stream components -- The ACE Streams components simplify
the development of communication software applications, such as user-level protocol
stacks, that are composed of hierarchically-layered services.

•ORB adapter components -- ACE can be integrated seamlessly with single-threaded
and multi-threaded CORBA implementations via its ORB adapters.

TAO (The ACE ORB)TAO (The ACE ORB)
• Motivation for TAO

• Provide a high quality, freely
available, open source, standards
compliant CORBA middleware
platform that could be used
effectively by both researchers and
developers.

• Help to mature middleware standards
• Combine optimizations for OS level

networking sub systems with
optimizations for ORBs (Object
Request Broker) to provide ORB end
systems that can support end to end
throughput latency jitter and reliability
QoS guarantees.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Strategic and Tactical PatternsStrategic and Tactical Patterns

• Strategic Patterns have an extensive impact on the software
architecture.
- Typically oriented to solutions in a particular do main
e.g., Reactor and Acceptor pattern in the domain of event-
driven, connection-oriented communication software

• Tactical design patterns have a relatively localized impact on a
software architecture
- Typically domain-independent
e.g., Wrapper, Adapter, Bridge, Factory Method, and Strategy

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Wrapper Façade PatternWrapper Façade Pattern

• Context

– A Web server must manage a variety of OS services, including
processes, threads, Socket connections, virtual memory, & files. Most
operating systems provide low-level APIs written in C to access these
services

.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Application
calls methods

calls
API FunctionA()

calls
API FunctionB()

calls
API FunctionC()

void methodN(){
functionA();

}

void method1(){
functionA();

}
functionB();

Wrapper Facade

data

method1()
…
methodN()

Wrapper FacadeWrapper Facade

• Problem
– Implementing advanced services

requires utilizing lower-level
functionality.

– Many low-level APIs differ in syntax,
even if they share semantics.

– Nonetheless,
• Applications should be portable to

different platforms
• Direct dependencies from APIs should

be avoided.
• Applications should use these APIs

correctly and consistently.

.

// Handle UNIX/Win32 portability.
#if defined (_WIN32)
static CRITICAL_SECTION lock;
#else
static mutex_t lock;
#endif /* _WIN32 */
...
#if defined (_WIN32)
SOCKET h;
DWORD t_id;
#else
int h;
thread_t t_id;
#endif /* _WIN32 */
...
#if defined (_WIN32)
ThreadCreate(...);
#else
thr_create(...);
#endif /* _WIN32 */

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

• Solution
– Use the Wrapper Façade

Pattern to avoid accessing low
level operating system APIs
directly.

• Definition
– The Wrapper Facade design

pattern encapsulates the functions
and data provided by existing non-
object-oriented APIs within more
concise, robust, portable,
maintainable, and cohesive object-
oriented class interfaces.

• Solution Dynamics
– A Client invokes a method on

the wrapper façade.
– The wrapper delegates the

execution of this method to a
function that represents a low
level API

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Client Wrapper Facade Function

method()

function()

function()

return()

Wrapper Façade: FinaleWrapper Façade: Finale• Solution Structure
– Encapsulate functions and low-level

data structures within classes
– Functions are existing low-level

functions and data structures.
– Wrapper Facades shield Clients from

dependencies to the functions by
providing methods that forward client
invocations to the functions.

– A Client accesses the low level
functions via Wrapper facades

• Benefits
– Robustness
– Portability
– Modularity

• Liability
– Additional indirection

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

ACE defines several wrapper facades to
ensure its framework components can run
on many operating systems, including
Windows, UNIX, & many real-time operating

systems

Thread_Mutex

mutex

acquire()
tryacquire()
release()

void acquire(){

calls
methods

calls
mutex_lock()

calls
mutex_trylock()

calls
mutex_unlock()

void release(){
mutex_unlock(mutex);

}
mutex_lock(mutex);

}

JAWS

Reactor Architectural PatternReactor Architectural Pattern
• Context

– Web servers can be
accessed
simultaneously by
multiple clients

– They must demux &
process multiple
types of indication
events arriving from
clients concurrently

– A common way to
demux events in a
server is to use
select()

Client

Client

Client

HTTP GET
request

Connect
request

HTTP GET
request

Web Server

Event Dispatcher

Sockets

select()

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Reactor PatternReactor Pattern
• Problem

– In distributed systems, servers must
handle client request effectively.

– They must be able to handle request
even if they are waiting for other
requests to arrive.

– Developers often couple event-
demuxing & connection code with
protocol-handling code.

– This code cannot then be reused
directly by other protocols or by other
middleware & applications

– Thus, changes to event-demuxing &
connection code affects the server
protocol code directly & may yield subtle
bugs

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Reactor Architectural PatternReactor Architectural Pattern
• Solution

- The Reactor architectural pattern allows event-driven applications
to demultiplex & dispatch service requests that are delivered to an
application from one or more clients.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Handle
owns

dispatches
*

notifies*
*

handle set

Reactor
handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

Reactor Architectural Pattern: DynamicsReactor Architectural Pattern: Dynamics
• Solution Dynamics

• The reactor requests each event handler to pass back its handle
• The event handling is started. The Reactor calls the synchronous event demultiplexer to

wait for events to occur on the handles.
• The synchronous even demultiplexer notifies the Reactor when the handle becomes

ready. The reactor triggers the event handler represented by the handle to process the
event

• The event handler processes the event.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Reactor Architectural Pattern: FinaleReactor Architectural Pattern: Finale
• Benefits

• Separation of concerns
• Configurability and Extensibility with new services
• Portability

• Liabilities
• Restricted applicability since it requires the underlying operating system to

support handles.
• Event handlers are not preempted while they are executing

• Hard to debug.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

The HalfThe Half--Sync/HalfSync/Half--Async Pattern: IntroAsync Pattern: Intro
Context
• HTTP runs over TCP, which uses flow control to ensure that

senders do not produce data more rapidly than slow receivers or
congested networks can buffer and process

• Since achieving efficient end-to-end quality of service (QoS) is
important to handle heavy Web traffic loads, a Web server must
scale up efficiently as its number of clients increases

Problem
• Processing all HTTP GET requests reactively within a single-

threaded process does not scale up, because each server CPU
time-slice spends much of its time blocked waiting for I/O
operations to complete

• Similarly, to improve QoS for all its connected clients, an entire
Web server process must not block while waiting for connection
flow control to abate so it can finish sending a file to a client

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

The HalfThe Half--Sync/HalfSync/Half--Async PatternAsync Pattern
Solution

- Apply the Half-Sync/Half-Async architectural pattern to scale up
server performance by processing different HTTP requests
concurrently in multiple threads.
-The Half-Sync/Half-Async architectural pattern decouples async
& sync service processing in concurrent systems, to simplify
programming without unduly reducing performance

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

The HalfThe Half--Sync/HalfSync/Half--Async PatternAsync Pattern

Solution Dynamics
- Events arriving at Event
sources asynchronously are
read by asynchronous event
receivers that insert them into
the Message queue.
- A pool of synchronous
application services retrieve
these Events and process
them, each in its own thread of
control.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

The HalfThe Half--Sync/HalfSync/Half--Async PatternAsync Pattern
Solution Dynamics

-Events arriving at event sources
asynchronously (1) are dispatched to
appropriate event receivers by the Reactor
(2).
-The Event Receivers read the events (3)
and insert them into a Message Queue (4).
-Steps 1 to 4 happen independently of any
service processing.
-Application services run in their own thread
of control and block on the message queue
until an event they can process arrives (5).
-The application services process the events
and generate output that is either returned to
the sender of the original event or to a
designated receiver. (6 to 8).

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

The HalfThe Half--Sync/HalfSync/Half--Async PatternAsync Pattern
Benefits

- Thread Management Overhead is minimized and resources are not
wasted.
-Application services can run independently.
-Threads coordinate via Message Queues.
-Fast event reception (async) and simplified service implementation
(sync).
-Implementation is easy.

Liabilities
-Processing an event by multiple services in cooperation may incur
context switching overhead.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

Observation
•Failure rarely results from
unknown scientific principles, but
from failing to apply proven
engineering practices & patterns

Benefits of POSA2 Patterns
•Preserve crucial design
information used by
applications & underlying
frameworks/components
•Facilitate design reuse
•Guide design choices for
application developers

URL for POSA Books
www.posa.uci.edu
URL for POSA Books
www.posa.uci.edu

Summary and ConclusionsSummary and Conclusions
• Mature engineering disciplines have handbooks that

describe successful solutions to known
problems

• e.g., automobile designers don’t design cars using the
laws of physics, they adapt adequate solutions from the
handbook known to work well enough.

• The extra few percent of performance available by
starting from scratch typically isn't worth the cost

• Patterns can form the basis for the handbook of software
engineering.

• If software is to become an engineering discipline,
successful practices must be systematically documented
and widely disseminated.

CORBA Design Patterns ECE 255 Distributed Software Architecture Design

Arvind Krishna Jaiganesh Balasubramanian DOC Group University of California, Irvine

