
Model Integrated Test and Benchmarking suite for
Component Middleware Implementations

Arvind S. Krishna
arvindk@dre.vanderbilt.edu

ISIS
Vanderbilt University, TN 37203,USA

Abstract
This documents presents the high level interpreter design of a model-integrated benchmarking
suite, CCMPerf, that can be used to benchmark component middleware implementations. The
interpreter has been designed to consists of code generation engines, each of which generates a
given file-format, for example, IDL files. The structure of the various files that will be generated
as a part of CCMPerf will be explained. Sample generated code snippets will be provided to
illustrate structure of code snippets. The generated code will run on standard operating systems
such as Widows, Linux, and Unixes. The generated, code, however, is targeted towards CIAO,
an open-source implementation of CCM.

1 Introduction
Distributed real-time and embedded (DRE) systems are increasingly becoming widespread and
important. Common DRE systems include telecommunication networks (e.g., wireless phone
services), tele-medicine (e.g., robotic surgery), and defense applications (e.g., total ship comput-
ing environments). DRE systems are increasingly used for a wide range of applications where
multiple systems are interconnected using wireless and wireline networks to form system of
systems. Such systems possess stringent quality of service (QoS) constraints, such as band-
width, latency, jitter and dependability requirements. A challenge requirement for these new
and planned DRE systems therefore involves supporting a diverse set of QoS properties, such
as predictable latency/jitter, throughput guarantees, scalability, 24x7 availability, dependabil-
ity, and security, that must be satisfied simultaneously in real-time. Conventional distributed
object computing (DOC) middleware frameworks, such as DCOM and Java RMI, do not pro-
vide capabilities for developers and end-users to specify and enforce these QoS requirements
simultaneously in complex DRE systems.

Component middleware [1] is a class of middleware that enables reusable services to be
composed, configured, and installed to create applications rapidly and robustly. The CORBA
Component Model (CCM) [2] is a standard component middleware technology that addresses
limitations with earlier versions of CORBA middleware based on the DOC model. The CCM
specification extends the CORBA object model to support the concept of components and es-
tablishes standards for implementing, packaging, assembling, and deploying component imple-
mentations.

Component middleware in general – and CCM in particular – are a maturing technology base
that represents a paradigm shift in the way DRE systems are developed. Several implementations
of CCM are now available, including (1) CIAO (Component Integrated ACE ORB) [3], (2)
MICO-CCM [4] (MICO’s CCM implementation), and (3) Qedo [5].



2 Design of CCMPerf – Meta Model Synopsis

2.1 Motivation
In this section we describe the design of sf CCMPerf [6], an open-source benchmarking suite
integrated with CoSMIC that enables the component developer to model component assemblies
and synthesize benchmarking experiments. The use of CCMPerf enables creation of experi-
ments that measure black box, e.g., latency, throughput metrics that can be used to know the
consequences of mixing and matching component assemblies on a target environment. CCM-
Perf, can also be used to synthesize experiments on a per component basis, the motivation being
to generate unit and regression tests.

A model based approach to benchmarking allows the modeler to generate tests at the push
of button. Without modeling techniques, these tedious and error-prone code would have to be
written by hand. In a hand crafted approach, changing the configuration would entail re-writing
the benchmarking code. In a model based solution, however, the only change will be in the
model and the necessary experimentation code will be automatically generated. A model based
solution also provides the right abstraction to visualize and analyze the EXperiment rather than
looking at the source code. In the ensuing paragraphs we describe the design of CCMPerf.

2.2 Experimentation Categories:
The experiments in CCMPerf can be divided into the following three experimentation cate-
gories:

� Distribution middleware tests that quantify the performance of CCM-based applications
using black box techniques

� Domain-specific middleware tests that quantify the suitability of CCM implementations to
meet the QoS requirements of a particular DRE application domain, such as static linking
and deployment of components in the Boeing Bold Stroke avionics mission computing
architecture [7].

2.3 CCMPerf Meta Model
The modeling paradigm of CCMPerf is defined in a manner that will allow its integration with
other paradigms, e.g., COMPASS and Component Assembly and Deployment Modeling Lan-
guage (CADML) []. To achieve the aforementioned goal, CCMPerf defines Aspects, i.e., vi-
sualization of the meta model that allows the modeler to model component interconnection
and metrics captured through the above interaction. The following three aspects are defined in
CCMPerf

� Configuration Aspect, that defines the interface that are provided and required by the
individual component,

� Metric Aspect, that defines the metric captured in the benchmark, and

� Inter-connection Aspect, that defines how the components will interact in the particular
benchmarking experiment.

3 Design of CCMPerf Interpreter
From the meta-model, an interpreter generates the necessary files to configure the component
assemblies and run the experiment. This section describes each of the files and their sample
formats.

2



3.1 Code-generation an overview
In particular the interpreter should generate the following files:

� Component-executor code, header and source file for the executor logic that will be run
as a part of the experiment,

� IDL code, this will be the IDL interface code that will illustrate the contract, i.e., interface,
exchanged between the client and the server, and

� script files, these will be perl scripts that will allow the experiment to be run on various
platforms.

Additionally, the experiment, will require descriptor files that provide meta-data to configue
component servers and daemons including:

� CORBA assembly descriptor (.cad), which is a meta-information file with details of an
assembly archive,

� CORBA component descriptor (.ccd), which is a meta-information file that describes the
features of a single component, and

� CORBA software descriptor (.csd), which is a compressed file that contains one or more
implementations of a component or an interface.

CCMPerf’s interpreter would only need to decorate the aforementioned files, i.e., add configu-
ration specific information. An example of such an information is collocation information that
indicates if components are in the same host or are remote. This meta-data is also required by
other stages in the CosMIC tool chain, for example, the Packaging phase and will be generated
by COMPASS1. This CCMPerf will not generate the meta-information. Additionally, the con-
figuration files will not be available until the project will be completed. To balance the above two
forces, CCMPerf will use CADML’s descriptor generator to produce the required meta-data in-
formation. This scheme is compatible with CIAO, as CIAO’s current implementaion is based on
XML descriptors generated by CADML. The difference in CADML and COMPASS generated
descriptor is that the former is based on XML DTDs while the latter is based on schemas.

In the following sections, we describe the design of the various code generation engines in
CCMPerf.

3.2 CCMPerf code generation engines
CCMPerf consists of three genration engines that traverse the model. All three concrete en-
gines have the same interface as Codegenerator. Each of the engines are associated with a
corresponding aspect in the meta-model. Below we describe each of the engines in details

Benchmark code engine This code generator generates the necessary component code i.e.,
executor code, both client and server, that will be run as part of the experiment. The excutor
code will include a header file and a source file (.cpp file). This engine will be associated with
the the Metrics aspect, i.e., place where the end-user specifies what metric will be associated
with the experiment. Given below is a sample .ccp file that will be generated by this engine. The
code snippet illustrates, the code structure for round-trip latency measured at the client side.

IDL Engine This engine will generate the required IDL files that represent the contract be-
tween the client and the server and component. This engine is associated with the Configuration
Aspect in the meta model. The IDL code generated will be compiled by the Component IDL
compile bundeled within the CIAO ORB implementaion to futher generate the ”glue-code” or
plumbing code that will provide the infrastructure to excute the components. The format of these

1COMPASS is being developed by Krishnakumar Balasubramanian ¡kitty@dre.vanderbilt.edu¿ as part of the MIC
course.

3



files is beyond the scope of this document. The IDL files illustrate the client and server IDLs.
These include the required and provide interface for the components. The IDL files generated
can be categorized into:

� CORBA 2.0 IDL, that describe the interface, the operations associated with the compo-
nents

� Component IDL, that describes the structure of the components

Script engine This engine generates the script files that will be used to run the experiment.
Generation of this file plays an important role as running component based implementation
also necessitates manging several entities, e.g., CIAO Daemon that starts Component Servers,
Component Servers that host the homes of components and homes that manage the life cycles of
components. These entities have to be started and stopped in a orderly manner to ensure proper
functioning of the system as a whole. This engine will be associated with the inter-connection
aspect in the metamodel.

References
[1] C. Szyperski, Component Software—Beyond Object-Oriented Programming. Santa Fe, NM: Addison-Wesley,

1998.

[2] Object Management Group, CORBA Components, OMG Document formal/2002-06-65 ed., June 2002.

[3] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill, B. Natarajan, C. Rodrigues, J. P. Loyall, and R. E. Schantz,
“Total Quality of Service Provisioning in Middleware and Applications,” The Journal of Microprocessors and
Microsystems, vol. 27, pp. 45–54, mar 2003.

[4] M. is CORBA, “The mico corba component project.” http://www.fpx.de/MicoCCM/, 2000.

[5] Qedo, “Qos enabled distributed objects.” http://qedo.berlios.de, 2002.

[6] A. S. Krishna, J. Balasubramanian, A. Gokhale, D. C. Schmidt, D. Sevilla, and G. Thaker, “Epirically Evaluating
CORBA Component Model Implementations,” in Proceedings of the OOPSLA 2003 Workshop on Middleware
Benchmarking, (Anaheim, CA), ACM, Oct. 2003.

[7] D. C. Sharp, “Reducing Avionics Software Cost Through Component Based Product Line Development,” in
Proceedings of the 10th Annual Software Technology Conference, Apr. 1998.

4


