
POSAML: A Visual Modeling Framework for Middleware Provisioning

Dimple Kaul, Arundhati Kogekar
and Aniruddha Gokhale

ISIS, Dept of EECS
Vanderbilt University
Nashville, TN 37235

{dkaul,akogekar,gokhale}
@dre.vanderbilt.edu

Jeff Gray

Dept of CIS
Univ of Alabama at Birmingham

Birmingham, AL
gray@cis.uab.edu

Swapna Gokhale

Dept of CSE
Univ of Connecticult

Storrs, CT
ssg@engr.uconn.edu

Abstract

Effective provisioning of next generation distributed ap-
plications hosted on diverse middleware platforms incurs
significant challenges due to the applications’ growing
complexity and quality of service (QoS) requirements. An
effective provisioning of the middleware platform includes
a composition and configuration of the middleware services
that meets the application QoS requirements under expected
workloads. Traditional techniques for middleware provi-
sioning tend to use non-intuitive, low-level and technology-
specific approaches, which are tedious, error prone, non-
reusable and not amenable to ease of QoS validation. Ad-
ditionally, most often the configuration activities of the mid-
dleware platform tend to be decoupled from the QoS vali-
dation stages resulting in an iterative trial-and-error pro-
cess between the two phases. This paper describes the de-
sign of a visual modeling language called POSAML (Pat-
terns Oriented Software Architecture Modeling Language)
and associated tools that provide an intuitive, higher level
and unified framework for provisioning middleware plat-
forms. POSAML provides visual modeling capabilities for
middleware-independent provisioning while allowing auto-
mated middleware-specific QoS validation.

1 Introduction

Rapid advances in hardware and networking technolo-
gies are fostering an unprecedented growth in complex
applications and services with different quality of service
(QoS) requirements. Standardized middleware technolo-
gies (e.g., J2EE [22], .NET [13] and CORBA Compo-
nent Model (CCM) [14]) coupled with advances in inte-
gration technologies (e.g., web services described by XML-
basedstandards) enable the construction of application func-

tionality by connecting individual services spread across
distributed resources.

Several functional and non-functional concerns must be
addressed simultaneously when provisioning complex dis-
tributed applications on these middleware platforms. The
non-functional provisioning concerns comprise the problem
of choosing the right set of configuration and composition
parameters of the middleware platforms and validating that
these meet the QoS requirements of the applications. Tra-
ditional approaches to middleware provisioning typically
use low-level, non-intuitive, and technology-specific mech-
anisms, which are not reusable across multiple middleware
technologies.

From our experience collaborating with industry practi-
tioners [20], we have seen approaches to provisioning that
required the manual configuration of XML files that are sev-
eral thousand lines long. In traditional approaches to provi-
sioning, often the QoS validation phase is decoupled from
the configuration phase. Moreover, the validation phase
uses processes that do not leverage decisions made at the
configuration phase, which limits the optimizations and fi-
delity of the QoS validation phases. Overall, this results
in an ad hoc, iterative process for middleware provisioning,
which may adversely impact application time-to-market.

A solution to this problem is to provide a mechanism
that raises the level of abstraction at which system integra-
tors can provision middleware. Visual aids are one of the
best known techniques to intuitively reason about any sys-
tem [7]. Visual tools have been highly successful in the
domain of simulations (e.g., Matlab Simulink) and design
(e.g., Cadence tools for circuit design or AutoCAD). Visual
tools thus hold promise for middleware provisioning also.

A desirable visual tool for the provisioning problem is
one that can provide a clean separation of concerns [15]
between the configuration and QoS validation phases, yet
unifies the two phases such that decisions at one phase can



automate and optimize steps at subsequent phases. These
qualities largely eliminate the overhead of the trial-and-
error, iterative process incurred by traditional methodolo-
gies.

This paper describes POSAML (Patterns-oriented Soft-
ware Architecture Modeling Language), which is a visual
domain-specific modeling language (DSML) [9, 10], and
an associated set of generative programming tools [4] that
meet the desired properties of a visual tool for middleware
provisioning. Fundamental to POSAML is the notion of
middleware building blocks that are viewed as being made
up of software patterns [6, 19]. Reasoning about middle-
ware systems in terms of visual models of patterns not only
raises the level of abstraction, but also offers a technology-
independent solution to middleware provisioning. Further-
more, capturing the essence of the provisioning decisions
in visual models and using generative programming tools
improves the potential reuse capabilities that can be applied
across contemporary middleware platforms.

The rest of the paper is organized as follows: Section 2
introduces the challenges in designing a visual framework
for middleware provisioning; Section 3 describes the de-
sign of the POSAML visual framework for middleware
provisioning; Section 4 compares our work to existing
research; and Section 5 concludes with a description of
lessons learned and future work.

2 Designing Visual Tools for Middleware
Provisioning

Middleware provisioning is the activity that comprises
the configuration and customization of the middleware plat-
form and validating that these meet the QoS needs of the
application under expected workloads. The motivation for
visual tools in middleware provisioning stem from the non-
intuitive, non-reusable and error-prone nature of traditional
approaches. For visual tools to be effective, they must meet
a set of criteria described below and resolve the challenges
arising in meeting these criteria.

Criterion 1: Accounting for variability across a range of
middleware technologies: Figure 1 illustrates the struc-
ture of contemporary middleware technologies. It depicts
multiple layers of middleware each of which addresses spe-
cific requirements and provides reusable functional capa-
bilities. For example, the host infrastructure middleware
provides a uniform layer of abstraction to mask the hetero-
geneity arising from different operating systems, hardware
and networks; the distributed middleware provides location
transparency; common services include directory services,
messaging services, and transaction services among others;
and domain-specific services include additional reusable ca-

pabilities that are specific to a domain (e.g., avionics or tele-
com).

Figure 1. Middleware Structure

Distributed applications are typically hosted on multiple
heterogeneous middleware platforms in a networked envi-
ronment. For each host in the deployment environment,
the middleware stacks on which an application is hosted
may need to be fine-tuned in different ways to meet the
different QoS requirements of applications. To support a
wide range of application QoS needs, contemporary mid-
dleware technologies provide several different reusable ca-
pabilities that can be individually configured and composed
with each other. This flexibility offered by individual mid-
dleware technologies gives rise to variability that a middle-
ware provisioner faces when provisioning applications on
the platforms.

The visual tool used for middleware provisioning must
handle this variability in the context of application QoS
needs, and provide an intuitive user interface to the mid-
dleware provisioner to eliminate provisioning errors. Our
approach to resolve these challenges is based on abstract-
ing away the implementation- and technology-specific de-
tails of contemporary middleware solutions and focus on
the patterns of reuse [6] that form the building blocks of
the different layers of middleware. Section 3.1 describes
how we leverage and formalize these insights to design and
implement the POSAML visual tool for middleware provi-
sioning.

Criterion 2: Need for a unified framework: Middle-
ware provisioning needs to be guided by the application
QoS needs. This requires that the QoS validation must
be performed based on decisions made in the configuration
and customization phase. Thus, the QoS validation phase



needs to have complete knowledge of the configuration de-
cisions. The QoS validation phase requires systems devel-
opers to develop appropriate application testing and middle-
ware benchmarking code in accordance to the configuration
decisions.

This requirement adds a new dimension of variability
and dependability to the challenges described in Criterion
1. To address both of these criteria, visual mechanisms
should provide a unified framework that can address both
the configuration and QoS validation concerns that arise in
middleware provisioning. Such a framework must provide
the means to capture the configuration decisions and make
them available in the QoS validation phase. Section 3.2 de-
scribes how POSAML provides intuitive abstractions of the
middleware stacks to the system integrators, which eases
the task of configuration and customization. Additionally,
it enables the QoS validation of the configured system us-
ing the same visual capability.

Criterion 3: Separation of concerns: As noted earlier,
provisioning involves both the configuration and the valida-
tion phases. Criterion 1 illustrated the variability demon-
strated by contemporary middleware technologies and calls
for a visual mechanism that provides intuitive user inter-
faces to middleware provisioners. Criterion 2 discussed the
need for a unified framework since the QoS validation phase
is dependent on the configuration phase. Addressing these
two criteria requires careful design since any ad hoc design
decisions may tangle the QoS validation activities with the
configuration activities defeating the goals of providing in-
tuitive mechanisms for middleware provisioning.

Although traditional approaches to middleware provi-
sioning decouple the configuration and validation phases,
such a decoupling is not useful since the QoS validation
activities do not have any knowledge of the configuration
decisions, and these activities are typically carried out by a
different set of actors. To address the need to decouple the
two phases yet meet the earlier two criteria requires that the
visual tool provide a clean separation of the QoS validation
phase from the configuration phase so that the two concerns
do not tangle with each other yet unifies them at a level that
does not impact the user perception. Section 3.3 describes
how POSAML provides these separation of concerns at the
user interface level within the unified framework.

3 The POSAML Visual Framework for Mid-
dleware Provisioning

This section describes the POSAML (Pattern Oriented
Software Architecture Modeling Language) visual model-
ing framework for middleware provisioning. We discuss the
design of POSAML and how it meets the criteria described
in Section 2.

3.1 Meeting Criterion 1: Accounting for
Variability Across a Range of Middle-
ware

Figure 1 illustrated the structure of contemporary mid-
dleware, which are made up of different layers of soft-
ware performing various functions, such as data marshal-
ing, event handling, brokering, concurrency handling and
connection management. In an object-oriented design of
a middleware framework, these capabilities are realized by
building blocks based on proven patterns of software de-
sign [6]. A software pattern codifies recurring solutions to
a particular problem occurring in different contexts, which
is embodied as a reusable software building block in mid-
dleware. The architectural patterns found in contemporary
middleware systems are discussed extensively in the book
Pattern Oriented Software Architecture: Patterns for Net-
worked and Concurrent Systems(POSA) [19]. We leverage
these characteristics of middleware design to develop our
visual provisioning framework.

In our approach, a visual representation of these patterns
enables system provisioners to view the middleware stacks
at a higher level of abstraction, which is independent of any
specific middleware technology. The QoS validation mech-
anisms associated with the visual capability subsequently
map these abstractions to technology-specific platforms. In
the following we discuss how patterns [6] and pattern lan-
guages [1] enable us to identify and resolve the variability
in middleware provisioning.

(a) Identifying Variability in Composing Functionality

When deploying complex applications, systems provision-
ers must decide the composition and customization of mid-
dleware that hosts the application. Middleware composi-
tion includes assembling individual but compatible building
blocks of middleware at multiple layers. The systems pro-
visioner chooses a block based on various factors including
the context in which the application will be deployed, the
concurrency and distribution requirements of the applica-
tion, the end-to-end latency and timeliness requirements for
real-time systems, or throughput for other enterprise sys-
tems (e.g., telecommunications call processing). We refer
to this provisioning variability asmiddleware compositional
variability.

Figure 2 illustrates a family of interacting patterns that
form a pattern language [1] for middleware designed to sup-
port such applications. The middleware can be customized
by composing compatible patterns. For example, event de-
multiplexing and dispatching via the Reactor or Proactor
patterns [19] can be composed with the concurrent event
handling provided by the Leader-Follower or Active Ob-
ject patterns [19]. However, an Asynchronous Completion



Figure 2. Middleware Patterns and Pattern
Languages

Token (ACT) pattern works only with asynchronous event
demultiplexing provided by the Proactor. Thus, a combina-
tion of Reactor and ACT is invalid. Our POSAML visual
framework formalizes the concept of a pattern language to
resolve the middleware compositional variability concerns
in middleware provisioning.

(b) Identifying Variability in Building Block Configura-
tions

Middleware developers provide numerous configuration
options to customize the behavior of individual building
blocks. This flexibility further exacerbates the already in-
curred variability in design choices that the systems pro-
visioner is required to make. Since the variability is on a
per building block basis – as opposed to a composition de-
scribed above – we refer to this asbuilding block configura-
tion variability.

As a concrete example, the Reactor pattern can be con-
figured in many different ways depending on the event
demultiplexing capabilities provided by the underlying
OS and the concurrency requirements of an application.
For example, the demultiplexing capabilities of a Reac-
tor could be based on theselect() or poll() system
calls provided by POSIX-compliant operating systems or
WaitForMultipleObject() available on Windows.
Moreover, the handling of the event in the Reactor’s event
handler can be managed by a single thread of control or
handed over to a pool of threads depending on the concur-

rency requirements. POSAML captures the representation
of individual patterns and their variations to address the per
building block configuration variability.

3.2 Meeting Criterion 2: Unified Frame-
work

In this section, we discuss how the insights we gain from
exploring the patterns and pattern languages become part
of our visual framework for middleware provisioning. Sec-
tion 2 describes the need for a unified framework that en-
ables the QoS validation phase of provisioning to leverage
the decisions made at the configuration phase. Model-based
solutions based on visual aids can provide the desired so-
lution. Model-driven Engineering (MDE) [10, 17], which
is a model-based solution, has gained prominence in pro-
viding the capabilities to model systems and use genera-
tive programming techniques to synthesize artifacts that re-
sult from the models. This paper describes the POSAML
MDE framework for assisting provisioners to make the right
choices in configuring and composing large systems and
validating that these meet the applications’ QoS.

Our research contributions within the unified MDE
framework include the design of a visual domain-specific
modeling language (DSML) called POSAML (Patterns-
oriented Software Architecture Modeling Language), which
enables the modeling of middleware stacks and their con-
figurations by providing intuitive visual abstractions of
middleware building blocks. POSAML also provides
middleware-specific QoS validation by virtue of allowing
different model interpreters to be plugged into the MDE
framework.

3.2.1 Visual Modeling Capabilities in POSAML

Figure 3 shows the metamodel for the top-level view of
POSAML, which has been developed using the Generic
Modeling Environment (GME) [12]. GME is a tool that en-
ables domain experts to develop visual modeling languages
and generative tools associated with those languages. The
modeling languages in GME are represented as metamod-
els. A metamodel in GME depicts a class diagram us-
ing UML-like constructs showcasing the elements of the
modeling language and how they are associated with each
other. For example, the “Model” element defines an element
that can comprise other elements. The “Connection” ele-
ment describes the type of association between other mod-
eling elements of the language. The “Aspect” element de-
scribes a specific view provided by the modeling environ-
ment thereby promoting separation of concerns within a
modeling environment. By providing such views, the mod-
eling environment effectively allows visual separation of
concerns which is a criterion that we had to meet. The same



GME environment can be used by provisioners to model the
provisioning decisions using the POSAML metamodel.

Figure 3. Top-level Metamodel of Middleware
Structure

The metamodel illustrated in Figure 3 consists of the vi-
sual syntactic and semantic elements that describe individ-
ual patterns, and specifies how they can be connected to
each other according to the pattern language. The figure
also illustrates how the metamodel separates the concerns
of modeling the pattern, its configuration and their compo-
sitions, and system QoS validation by virtue of using GME
aspects. This separation is shown as three aspects; namely
Pattern, Feature and Benchmarking.

The unified framework allows middleware provisioners
to plug in different model interpreters that can automatically
synthesize artifacts that are specific to a particular middle-
ware technology.

3.2.2 Generative Capabilities in POSAML

A unified framework must provide the mechanisms for the
decisions made at configuration time to be available at QoS
validation time, and enable the synthesis of validation ar-
tifacts. In an MDE framework, such capabilities are re-
alized via generative programming capabilities. Within
the GME DSML development environment, in particular,
these capabilities are realized by GME model interpreters,
which traverse the graphical hierarchy of a model. The
POSAML metamodel is a middleware-independent model-
ing language. By leveraging the GME environment’s ca-
pabilities, different middleware-specific QoS validationin-
terpreters can be plugged in. The following describes two
model interpreters that we have developed:

(a) Configurator Interpreter

This interpreter is used to generate two artifacts which are
required to configure middleware. One of the generated ar-
tifacts is a configurator file and the other one is a script file.
The configurator file is used to set QoS related configuration

policies using middleware-specific mechanisms for differ-
ent applications. The middleware provisioner is shielded
from these details since the interpreters automate the task
of generating the platform-specific details.

(b) Benchmark Interpreter

The configuration and QoS modeling capabilities in
POSAML serve as inputs to determine the benchmarking
artifacts necessary to validate QoS. Using the benchmark-
ing interpreter, which can be plugged into POSAML via
the GME environment, the provisioner can generate bench-
marking parameters for an existing benchmarking library.
These parameters include artifacts, such as the number of
data exchanges, the number of client threads, the data to be
sent, the number of event handlers and the service time (in
case of reactor). They are generated in XML format and can
be used to parametrize an existing benchmarking library.

3.3 Meeting Criterion 3: Separation of
Concerns

Section 3.2 described the POSAML unified framework.
The visual modeling capabilities allow a systems provi-
sioner to model middleware provisioning decisions while
the generative capabilities automate the QoS validation. In
this section we describe how the unified POSAML frame-
work separates the concerns of configuration and QoS vali-
dation within the unified framework.

The middleware configuration is accomplished through
POSAML’s feature modeling [4,5] capability, which assists
a systems engineer in configuring a variety of different mid-
dleware features (e.g., choosing the pattern and its config-
uration parameters). The benchmarking capability (though
visually decoupled from the provisioning capability) is in-
ternally integrated and is used in automatically synthesizing
empirical benchmarks for the provisioned system to per-
form QoS validation. The remainder of this section de-
scribes these capabilities of POSAML.

3.3.1 Feature Modeling in POSAML

A Feature model [4] is defined as an abstraction of a family
of systems in a particular domain capturing commonalities
and variabilities among the members of the family. In our
POSAML modeling language, a feature modeling aspect
provides domain-specific artifacts to model a system, in
contrast to using low-level platform-specific artifacts. The
feature modeling capabilities in POSAML provide struc-
tural representations of different possible middleware pat-
tern properties. In our case, the feature modeling comprises
several non-functional and QoS requirements, such as the



Figure 4. Middleware Provisioning in POSAML

choice of network transport, listening end points, concur-
rency requirements, and periodicity of requests, all repre-
sented as higher-level artifacts.

This level of modeling enables system provisioners to se-
lect various strategies, resource settings and factories within
the middleware that can be parameterized according to user
needs by driving the selection process using the visual fea-
ture modeling framework. For example, the designer can
specify the “End points” feature for the Acceptor-Connector
Pattern to describe the ports and communication mecha-
nisms used by the client and server to communicate with
each other.

3.3.2 QoS Validation Modeling in POSAML

To enable the performance analysis of a configured and cus-
tomized system, the modeling language provides a method
to model benchmarking characteristics. The POSAML
metamodel enables the systems provisioner to model the
workload (number of threads, data, and the number of data
exchanges), as well as which metric to measure (latency
or throughput). It is also possible to set the service times
for event handlers within the application. In the QoS vali-
dation view, the provisioner can select which benchmark-
ing parameters to select for the performance analysis of
the modeled system. These parameters are then automat-
ically written to an XML file by the benchmarking inter-
preter described earlier. This file can be used by an existing
benchmarking library within the middleware which is being
benchmarked.

3.4 POSAML in Action

This section describes the workflow of activities per-
formed by a systems provisioner using the capabilities of
POSAML. We use a sample client-server application to
demonstrate concretely the capabilities of POSAML. We
focus on a subset of the middleware blocks used by the sam-
ple application.

Step 1: Modeling Application Structure

Figure 4 shows an example where the provisioner has mod-
eled the sample application as a composition of the Reactor
and Acceptor-Connector patterns. The Reactor exemplifies
the event handling within the server, while the Acceptor-
Connector demonstrate the communication mechanisms be-
tween the client and server. In addition to this high-level
view, the user can click on any one of the patterns and model
its internals, as shown in the ovals in the figure (whose de-
tails are described below). From the figure, it can be seen
that POSAML follows a hierarchical modeling structure. At
the top-most level one can model inter-pattern relationships
and constraints. At the lower level, a provisioner can drill
down into each pattern to model the participants of the pat-
tern and the inter-pattern relationships between them.

Step 2 (a): Modeling the Reactor Pattern

The ability to handle and dispatch simultaneously occurring
events effectively without any additional resource overhead
is an integral part of middleware used in real-time, event-
driven and performance-critical environments. The Reac-



tor [19] allows event-driven applications to demultiplex and
dispatch service requests that are delivered to an applica-
tion from one or more clients. The Reactor pattern inverts
the flow of control in a system during event handling.

The Reactor model for a POSAML model of our sample
client-server application is shown in Figure 5, where the
provisioner configures the following participants:

Figure 5. Model of the Reactor Pattern

1. Handle: The handle uniquely identifies event sources
such as network connections or open files. Whenever
an event is generated by an event source, it is queued
up on the handle for that source and marked as “ready.”

2. Reactor: The reactor is the dispatching mechanism of
the Reactor pattern. In response to an event, it dis-
patches the corresponding event handler for that event.

3. Event Handler: The event handlers are the entities
which actually process the event. These are registered
with the reactor and are dispatched by the reactor when
the event for which they are registered occurs.

4. Handle Set: The registered handles form a set called
the “Handle Set.”

5. Synchronous Event Demultiplexer: This entity is
actually implemented as a function call, such
asselect() or WaitForMultipleObjects()
(in case of Windows-based systems). It waits for one
or more indication events to occur, and then propagates
these events to the reactor.

6. Concrete Event Handlers: The concrete event handlers
specialize the generalized Event Handler. They are re-
sponsible for processing specific types of events, such
as input data or timeouts.

In order to minimize the risk of choosing incorrect
and incompatible features, various constraints are specified
within the POSAML metamodel using both OCL, which
checks constraints at modeling time, and interpreters, which
check constraint violations when the generative tools are
used. Constraint checking within the POSAML metamodel
includes cardinality and relationship constraints. For ex-
ample, a reactor can be connected to one and only one syn-
chronous event demultiplexer. These constraints ensure that

the modeler does not build an incorrect model thereby en-
suring that systems conform to the semantics of the pattern
languages.

Step 2(b): Modeling the Acceptor-Connector Pattern

A system engineer can model the Acceptor-Connector pat-
tern in POSAML for the sample application as shown in
Figure 6. Various constraints minimize the risk of choos-
ing a wrong combination of elements in the pattern. Only
the correct combinations of connections and features are al-
lowed to be added for a particular pattern. For example,
only the “End Point” feature can be added to the Acceptor-
Connector pattern. The middleware provisioner models the
following participants of the Acceptor-Connector pattern:

Figure 6. Model of Acceptor-Connector

1. Acceptor: The Acceptor is a factory that implements
a passive strategy to establish a connection and initial-
ize the associated Service Handler. It creates a passive
mode end point transport handle that has necessary end
points needed by the Service Handlers.

2. Connector: A Connector is a factory that implements
the active strategy to establish a connection and initial-
ize the associated Service Handler. It initiates the con-
nection with a remote Acceptor and has synchronous
mode (using the Reactor pattern) and asynchronous
mode (using the Proactor pattern) connections.

3. Dispatcher: The Dispatcher manages registered Event
Handlers. In case of the Acceptor, the Dispatcher de-
multiplexes connection indication events received on
transport handles. Multiple Acceptors can be regis-
tered within the Dispatcher. For Connector, the Dis-
patcher demultiplexes completion events that arrive in
response to connections.

4. Service Handler: A Service Handler is an abstract
class that is inherited from Event Handler. It imple-
ments an application service playing the client role,
server role or both roles. It provides a hook method
that is called by an Acceptor or Connector to activate



the application service when the connection is estab-
lished.

5. Transport End points: These represent a factory that
listens for connection requests to arrive, accepts those
connection requests and creates transport handles that
encapsulate the newly connected transport end points.
By using these end points data can be exchanged by
reading or writing to their associated transport handles.
A transport handle encapsulates a transport end point.

Step 3: Modeling the Features of Pattern Participants

A systems developer uses the feature aspect of POSAML as
a visual tool to select different pattern-specific featuresof
the middleware. Figure 7 illustrates an instance of a feature
model. The system engineer can model zero or more fea-
tures using this tool. If features are not selected from the
model, default values for these features will be selected.

Figure 7. POSAML Model: Feature View

1. Concurrency: This feature is important for differ-
ent middleware to manage concurrency and allow long
running operations to execute simultaneously without
impeding the progress of other operations. Server con-
currency strategies found in contemporary middleware
solutions, such as the TAO CORBA middleware [18],
support different types of concurrency strategies, in-
cludingreactiveandthread per connection.

2. Reactor Type: This feature is used to specify the kind
of reactor used by the system. For example, depending
on the concurrency strategy chosen, the reactor could
be single-threaded or multi-threaded. Different strate-
gies can be plugged within the reactor for event demul-
tiplexing. This depends on whether the reactor is used
to demultiplex network events or GUI events.

3. Thread Queue: In the case of concurrent request han-
dling by a reactor, different strategies can be selected
for handling queued events (e.g., FIFO or LIFO).

4. End points: This feature applies to the acceptor-
connector patterns, which instructs the system of the
listening end points for the server role. The range
of available end points in POSAML include listen-
ing ports (e.g., TCP port number), host IP addresses
or canonical names, and the protocol used (e.g., TCP,
UDP, Shared Memory or other custom transports).

Step 4: Modeling the QoS Validation

A sample model that can be constructed using POSAML
is shown in Figure 8. In this case the system provisioner
has modeled two patterns, the Reactor and the Acceptor-
Connector, as well as the benchmarking characteristics to
analyze the performance of the Reactor pattern. The latency
and throughput metrics are shown attached to the Reactor
pattern. In addition, the model also specifies the number of
client threads and the service time for each event handler in
the Reactor Pattern.

Figure 8. Benchmarking Aspect

Step 5: Using the Generative Capabilities

The generative capabilities in POSAML use the models to
synthesize artifacts for concrete middleware platforms. Dif-
ferent services can be configured using this interpreter. For
example, it could include some service settings that are used
to control the creation of configurable resources used by an
object broker. Other settings are used to control the be-
havior of client and server including the concurrency strat-
egy, demultiplexing strategies, request multiplexing strate-
gies, wait strategies, and connection strategies. We used
POSAML to create a configuration file and script file for
a CORBA middleware called TAO. A snippet of the gen-
erated service configuration file and benchmarking artifacts
are shown below.



static Advanced_Resource_Factory
"-ORBReactorType tp -ORBReactorThreadQueue LIFO"

static Server_Strategy_Factory
"-ORBConcurrency reactive"

- <benchmark_inputs>
<connections>10</connections>
<data>ABCDEF</data>
<data_exchanges>200</data_exchanges>

- <reactor_inputs>
<reactor_type>wfmo</reactor_type>
<handlers>2</handlers>
<service_time>Uniform</service_time>

</reactor_inputs>
</benchmark_inputs>

The POSAML model interpreter also generates a script
file shown below that contains inputs to run any application
(e.g., the Naming service or benchmarking evaluation tool)
with proper end points (e.g., listening ports, protocol and
host name). These end points are also used by the Acceptor-
Connector pattern for different transport handles. For exam-
ple, in the snippet below, the benchmarking test is run on an
endpoint that uses the IIOP protocol used in CORBA.

benchmark_test -ORBEndpoint iiop://127.0.0.1:9000

4 Related Work

With the growing complexity of component-based sys-
tems, composing system-level performance and depend-
ability attributes using component attributes and system ar-
chitecture is gaining attention. Crnkovicet al. [3] classify
the quality attributes according to the possibility of predict-
ing the attributes of the compositions based on the attributes
of the components and the influence of other factors within
the architecture and the environment. However, they do
not propose any methods for composing the system-level
attributes.

At the model and program transformation level, the work
by Shen and Petriu [21] investigated the use of aspect-
oriented modeling techniques to address performance con-
cerns that are weaved into a primary UML model of func-
tional behavior. It has been observed that an improved sep-
aration of the performance description from the core be-
havior enables various design alternatives to be considered
more readily (i.e., after separation, a specific performance
concern can be represented as a variability measure that can
be modified to examine the overall systemic effect). The
performance concerns are specified in the UML profile for
Schedulability, Performance, and Time (SPT) with under-
lying analysis performed by a Layered Queuing Network
(LQN) solver.

A disadvantage of the approach is that UML forces a spe-
cific modeling language. The SPT profile also forces per-
formance concerns to be specified in a manner than limits
the ability to be tailored to a specific performance analysis

methodology. As an alternative, domain-specific modeling
supports the ability to provide a model engineer with a no-
tation that fits the domain of interest, which improves the
level of abstraction of the performance modeling process.

There have been efforts to evaluate the performance of
middleware patterns analytically by various researchers [16,
23]. A drawback of using analytical models is that it
is difficult to predict the behavior of a complex system
based on analytical methods alone. Harkema,et al [8]
have worked on the performance evaluation of the CORBA
method invocation and threading models. However, they
have not focused on the pattern-based approach towards
performance analysis of middleware. Model-driven tech-
niques are increasingly being used for middleware develop-
ment, but converting static pattern-based middleware mod-
els into simulation or empirical models for the purpose of
performance evaluation has not yet been a focus in the re-
search community.

There are various middleware specialization techniques
described in the literature, which can be leveraged to cus-
tomize middleware. For example, Feature-Oriented Pro-
gramming (FOP) [5] is an appropriate technique to design
and implement program families, which uses incremen-
tal and stepwise refinement approaches [2]. FOP aims to
cope with the increasing complexity and lack of reusabil-
ity and customizability of contemporary software systems.
Aspect-Oriented Programming (AOP) [11] is another re-
lated programming paradigm and has similar goals: It fo-
cuses primarily on separating and encapsulating crosscut-
ting concerns to increase maintainability, understandability,
and customizability.

5 Conclusions

Distributed systems implemented with standardized
middleware present several challenges with respect to the
accidental complexities associated with provisioning (i.e.,
configuration and QoS validation). In current practice, pro-
visioning of middleware are performed through low-level,
non intuitive and non reusable means. The manual nature
of these techniques are error prone and tedious, and pro-
hibit a system provisioner from rapidly exploring various
design alternatives. To address these challenges, this paper
presented POSAML, which is a visual modeling language
that addresses the provisioning problem at a higher-level of
abstraction.

From our experience, we have found that POSAML al-
lows various provisioning scenarios to be explored in a
rapid manner that is middleware-independent. The con-
cerns that are separated among the various aspects in
POSAML provide an ability to evolve the configuration in
a manner that isolates the effect to a single design change.
When a choice is made for a pattern, POSAML removes all



of the inconsistent choices among other patterns. This al-
lows the provisioner to work with a narrowed search space
and ignore all incompatible configurations. Furthermore,
model interpreters associated with POSAML assist in gen-
erating the artifacts needed to perform QoS validation.

We have applied POSAML to model several case studies
implemented in the ACE/TAO middleware. Although our
experience in using POSAML to configure and provision
these case studies has been positive, there are still a few
limitations that remain. For example, our generative tech-
niques are applied only for the TAO middleware. We are
addressing these limitations as part of our planned future
work.

POSAML is part of the CoSMIC tool suite and is avail-
able for download fromwww.dre.vanderbilt.edu/
cosmic.

Acknowledgments

This research was supported by the following grants
from the National Science Foundation (NSF): Univ. of Con-
necticut (CNS-0406376 and CNS-SMA-0509271), Vander-
bilt Univ. (CNS-SMA-0509296) and Univ. of Alabama at
Birmingham (CNS-SMA-0509342).

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel.A Pattern Language. Oxford
University Press, New York, NY, 1977.

[2] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-
wise Refinement.IEEE Transactions on Software Engineer-
ing, 30(6):355–371, June 2004.

[3] I. Crnkovic, M. Larsson, and O. Preiss.Book on Architecting
Dependable Systems III, R. de Lemos (Eds.), chapter “Con-
cerning predictability in dependable component-based sys-
tems: Classification of quality attributes”, pages 257–278.
Springer-Verlag, 2005.

[4] K. Czarnecki and U. W. Eisenecker.Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Reading, Massachusetts, 2000.

[5] Don Batory. Multi-Level Models in Model Driven Develop-
ment, Product-Lines, and Metaprogramming.IBM Systems
Journal, 45(3), 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[7] H. Giese, I. H. Kruger, and K. M. L. Cooper. Workshop
on Visual Modeling for Software Intensive Systems.Pro-
cedings of 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05), page 4, 2005.

[8] Harkema, M. and Gijsen, B. M. M. and van der Mei, R.
D. and Hoekstra, Y. Middleware Performance: A Quanti-
tative Modeling Approach. InInternational Symposium on
Performance Evaluation of Computer and Communication
Systems (SPECTS), 2004.

[9] Jeff Gray and Juha-Pekka Tolvanen and Steven Kelly and
Aniruddha Gokhale and Sandeep Neema and Jonathan
Sprinkle. CRC Handbook on Dynamic System Modeling,
(Paul Fishwick, ed.), chapter Domain-Specific Modeling.
CRC Press, Boca Raton, Florida, 2006.

[10] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software.Proceedings
of the IEEE, 91(1):145–164, Jan. 2003.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. InProceedings of the 11th European Con-
ference on Object-Oriented Programming, pages 220–242,
June 1997.

[12] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nord-
strom, J. Sprinkle, and G. Karsai. Composing Domain-
Specific Design Environments.IEEE Computer, pages 44–
51, November 2001.

[13] Microsoft Corporation. Microsoft .NET Development.
msdn.microsoft.com/net/, 2002.

[14] Object Management Group.CORBA Components, OMG
Document formal/2002-06-65 edition, June 2002.

[15] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton.
N Degrees of Separation: Multi-Dimensional Separation of
Concerns. InProceedings of the International Conference
on Software Engineering, pages 107–119, May 1999.

[16] S. Ramani, K. S. Trivedi, and B. Dasarathy. Performance
analysis of the CORBA event service using stochastic re-
ward nets. InProc. of the 19th IEEE Symposium on Reliable
Distributed Systems, pages 238–247, October 2000.

[17] D. C. Schmidt. Model-Driven Engineering.IEEE Computer,
39(2), 2006.

[18] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and
C. Gill. TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems.IEEE Dis-
tributed Systems Online, 3(2), Feb. 2002.

[19] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[20] D. C. Sharp. Reducing Avionics Software Cost Through
Component Based Product Line Development. InProceed-
ings of the 10th Annual Software Technology Conference,
Apr. 1998.

[21] H. Shen and D. C. Petriu. Performance analysis of uml mod-
els using aspect-oriented modeling techniques. InProc. of
Model Driven Engineering Languages and Systems (MoD-
ELS 2005), Springer LNCS 3713, pages 156–170, Montego
Bay, Jamaica, October 2005.

[22] Sun Microsystems. JavaTM 2 Platform Enterprise Edition.
java.sun.com/j2ee/index.html, 2001.

[23] Swapna Gokhale and Aniruddha Gokhale and Jeff Gray. A
Model-Driven Performance Analysis Framework for Dis-
tributed, Performance-Sensitive Software Systems. InPro-
ceedings of the NSF NGS Workshop, International Con-
ference on Parallel and Distributed Processing Symposium
(IPDPS) 2005, Denver, CO, April 2005.


