
Addressing the Middleware Configuration Challenges
using Model-based Techniques

Emre Turkay
Institute for Software Integrated Systems

Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

emre.turkay@vanderbilt.edu

Aniruddha Gokhale
Institute for Software Integrated Systems

Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

a.gokhale@vanderbilt.edu

ABSTRACT
Component middleware, such as J2EE, .Net and CORBA
Component Model (CCM) have been increasingly used to
develop and deploy large-scale distributed systems in dif-
ferent domains, including defense, enterprise, avionics and
industrial process control. The applications in each of these
domains require different levels and types of quality of ser-
vice (QoS) guarantees from their underlying component mid-
dleware. In an effort to support a large number of applica-
tions, therefore, component middleware developers provide
enormous flexibility in the way the middleware can be con-
figured and fine-tuned for the target application. Ad hoc
techniques used to configure the middleware are tedious and
error-prone.

This paper describes a novel scheme we are using based on
model-based systems engineering to address the concerns of
complex middleware configuration. We present a modeling
paradigm called Options Configuration Modeling Language
we have used in the context of configuring a QoS-enabled
CORBA component middleware.

Keywords: Component middleware, Model-driven Software
Synthesis, Middleware Configuration.

1. INTRODUCTION
The emergence of next-generation large-scale, distributed
and quality-of-service sensitive (LDQoSS) systems, such as
internet-wide immersive tools for telemedicine and scien-
tific applications, distributed mission training for defense,
or time-sensitive, large-volume online stock trading in finan-
cial markets, stems from rapid technological advances in
networking, hardware, storage, and component middleware
technologies.

For example, networking technologies such as DiffServ [1]

and Multi-Protocol Label Switching [2] are enabling network
service providers to provision and deliver network-level quality-
of-service (QoS) to LDQoSS systems. Complementing the
networking advances are the substantial amount of R&D
efforts that have focused on developing standards-based off-
the-shelf component middleware, such as CORBA Compo-
nent Model (CCM) [3], J2EE [4] and .Net [5] to support
these LDQoSS systems.

Component middleware encapsulates specific services or sets
of services to provide reusable building blocks that can be
composed to develop LDQoSS systems rapidly and robustly
than those built entirely from scratch. In particular, com-
ponent middleware offers the following reusable capabilities:

• Horizontal infrastructure services, such as request bro-
kers

• Vertical models of domain concepts, such as common
semantics for higher-level reusable component services,
and

• Connector mechanisms between components, such as
remote method invocations or message passing.

Context: Customizing the flexible component mid-

dleware for LDQoSS systems
To be able to support the large variety of component middleware-
based LDQoSS systems, therefore, developers of QoS-enabled
component middleware provide maximum flexibility to en-
able LDQoSS system developers to configure and fine-tune
the performance of component middleware appropriately at
multiple levels, including the request broker, reusable ser-
vices and message passing mechanisms.

Challenges: Choosing the right set of middleware

configuration parameters for LDQoSS systems
The flexibility provided by component middleware devel-
opers is manifested in a large number of configuration pa-
rameters at the multiple levels described earlier. Examples
of these configuration parameters include options to decide
the internal request buffering strategies, the request demul-
tiplexing and dispatching strategies, the data marshaling
strategies, the appropriate concurrency models to be used,
the end-to-end network connection management strategies,
and the end-to-end priority propagation strategies, among
others. This large number of configuration options incurs
a high degree of complexity for LDQoSS system developers



in making the right choices of the configuration options for
their systems. This problem is further exacerbated by the
fact that not all combinations of configuration parameters
and their values form a semantically compatible set that
can be supported by the component middleware. It there-
fore requires a high level of expertise and understanding of
the component middleware to determine the optimum set of
semantically compatible configurations to be used. Ad hoc
techniques based on manually choosing these configuration
parameters is tedious and error-prone, and has no scientific
basis for analytically proving the correctness of the config-
ured end system.

Solution Approach: Use model-driven techniques to
resolve middleware configuration challenges
To address the challenges described above requires princi-
pled, analytically and empirically proven methods to con-
figure and validate component middleware for LDQoSS sys-
tems. These methods must enforce the physical constraints
of LDQoSS systems, as well as satisfy the system’s stringent
QoS requirements. Model-based techniques hold promise in
resolving these challenges since these technique are amenable
to model checking, validation and verification. Section 2 de-
scribes how we are using model-based techniques to resolve
the component middleware configuration challenges to sup-
port LDQoSS systems.

2. RESOLVING THE MIDDLEWARE CON-
FIGURATION CHALLENGES VIA OCML

Section 1 describes the challenges incurred in configuring
component middleware appropriately to support LDQoSS
systems. This section presents our R&D based on model-
driven tools to address these challenges. We describe the
Options Configuration Modeling Language (OCML) tool that
is part of our Model-Driven Middleware (MDM) [6] tool-
chain called CoSMIC [7]. Model-Driven Middleware com-
bines the strengths of modeling and QoS-enabled component
middleware to support LDQoSS systems.

The Options Configuration Modeling Language (OCML) is
a modeling language we have developed using the Generic
Modeling Environment (GME) [8] to address the middle-
ware configuration challenges. OCML is used to define the
constraints and dependencies on the options used to cus-
tomize the component middleware. Figure 1 depicts the
OCML workflow diagram showcasing the dual use of the
OCML tool that can be used both my component middle-
ware developers and LDQoSS system developers. Section 2.1
describes the elements of OCML. Section 2.2 explains the
dual use of the OCML tool.

2.1 Language Definition
This section describes the artifacts of the OCML language
including the syntax, semantics, constraints and generative
tools.

2.1.1 Syntactic definition
The OCML meta-model defines two sets of syntactic ele-
ments: (1) The hierarchical organization of the options a
LDQoSS system will require and (2) the option dependency
rules, which constrains the available combination of these
options. In the following we describe each syntactic element
of OCML.

Figure 1: OCML Workflow

Option Category Elements
The modeling elements used in hierarchical organization of
the options are listed and described below together with
their corresponding icons in the GME modeling environ-
ment:

Option category Middleware configuration options
hierarchically reside in the option categories . An op-
tion category may include other option categories re-
cursively. All the options can have a default value.
The option category and all the options can have a
description attribute, which is a textual description of
that category or the option.

Numeric option Options having an integer numeric
value are named as integer options. An integer option
can be limited in range when it will have maximum
and minimum value attributes.

String option Options having an alphanumeric value
are named as string options .

Enum option Options that can be selected from a
set of values are named as enum options.

Enum option value The enumerated values that can
be contained in enum options are represented with
enum option value elements. One of the enum option
values in the same enum option group can have a de-
fault attribute set to true, which makes it the default
value of the associated enum option.

Flag option The flag option can be set to a combi-
nation of the values from the given value set.

Flag option value Each flag element for a flag op-
tion is defined as a flag option value .

Rule Definition Elements
A rule definition element is a combination of logical oper-
ations. A rule can contain other rules or references to a
set of options associated via some combinations of logical
operators that are explained below.



And operator Logical “and” operator.

Or operator Logical “or” operator.

Not operator Logical “not” operator. Not operator
can have only one input argument.

Implies operator The outputs should be satisfied if
the inputs are satisfied.

If and only if operator If the input side is satis-
fied, then the output must be satisfied too (and vice
versa).

Connector A connector is used to associate two or more
integer or string options with the equality association.

2.1.2 Associations
The logical operators and options can be bound to each
other via associations that are used to build legal and se-
mantically meaningful rules for options composition. There
are five kinds of associations in OCML as described below.
These associations are contained by the rule elements.

Bool association All the logical operators except connec-
tor and rules can be associated with the bool associ-
ation. Connections can only be sources of the bool
associations.

Selection association All the options can be sources of
selection associations. They are associated with the
logical operators and rules except connectors.

Value equality associations (string and integer) String
and integer options can be associated with rules and
logic operators, except connector , with the value equal-
ity association. Value equality associations have value
attributes which have the same type with the source
option’s type (string, numerical and boolean).

Option equality associations (string and integer) A set
of string, or integer options can be associated with a
connector via an option equality association. A con-
nector can only be associated with the same type of
options.

Range association Numeric options can be associated with
rules and logic operators, except connector, with the
range association. Range association has two attributes
– max and min.

2.1.3 Semantics
The set of options is a collection of configuration parameters
for a specific application domain. They are provided in a
structured form so that they can be used by two purposes;
(1) The description attributes of each option is used in the
generation of the document generation process. (2) They
are referred in the rule definition section and their references
are connected with the logical operators to form meaningful
logical expressions (i.e., rules).

The rule definition elements are simply the logical values
associated with each other to generate visual logical expres-
sions. The logical operators and rules also transform any
kind of option based logical associations into the bool as-
sociations. For example, an and operation having a value
of equality association with an integer option can further
be connected to other logical operators or rules with a bool
association. Rules also serve as a container for other rules.
If a rule model contains only other rules and no options at
all, it is implemented as a pure container class and without
a requirement of an and operator it assumes all the options
contained are connected with an and operation.

Options, rules and logical operators should be associated
with the associations listed above to define complete logi-
cal expressions. The logical meaning of each association is
described below;

• Bool associations are used to associate a logical op-
erator with another logical operator. They are used
to define complex logical expressions. For example, an
and operator can be inverted with a not operator by
adding an association where the source of the associa-
tion is the and operator and the destination is the not
operator.

• To build a rule on the condition of an option is pre-
sented at the application configuration selection as-
sociation is used. Association of the selection asso-
ciation with an option and a logical expression means
if that option is selected then the specific port of the
logical operation should be set to true otherwise false.

• Value equality associations are used to check if the
value of a string or an integer option is equal to a given
constant value.

• The purpose of the existence of option equality as-
sociations is to provide a dynamic equality check.
To provide a complete logical expression with the op-
tion equality association a connector element should be
used. Connector element simply has the logical value
true if all the associated options have the same value.

• Range association is specific for the numerical op-
tions and checks if the value of the given option is in
the range of [min, max] where min and max are the
attributes of the connection.

2.1.4 Constraints
Complementary to the syntactic rules defined in the OCML
metamodel are some constraints. The modeling paradigm’s
constraint checking ensures the models meet the specified
constraints thereby validating the models for correctness.
The models are also required to conform to the following
constraints:

• A connection can be associated with only one type of
option. For example, Integer options and String op-
tions cannot be associated with the same connection.

• Connections are exceptional logical expressions i.e.,
they cannot be destinations of bool associations. Their
usage is restricted to option equality checking

• Two different enum value options contained by the
same enum option must not be provided directly or



indirectly to an and operator. Although the other con-
straint checks are handled with the OCL statements in
the meta-model definition, this check is handled at the
model interpretation phase.

2.1.5 OCML Generative Tools
OCML generative tool made up of a model interpreter gen-
erates two different outputs. These include documentation
of all supported options in HTML format and the Configura-
tion File Generator source code, which are described below.

Documentation generation
The generated HTML documentation includes information
about every option and cross references for the dependen-
cies. The OCML meta-model contains an option paradigm
where options are hierarchically categorized into option cat-
egories. Every option category and the options themselves
contain description attribute, which can include hyper-text
information. The HTML documentation contains the collec-
tion of these descriptions in a human readable format when
rendered within a HTML browser. The rules paradigm of an
OCML model includes all the dependencies of the options.
The documentation also displays the cross-references for the
dependent objects and together with the textual represen-
tation of the rules.

Configuration file generator
The second output generated by the OCML interpreter is
the source code of the Configuration File Generator (CFG)
application. CFG is a graphical interface for describing the
configuration of the application domain of the OCML model.
The CFG application provides an easy to use features as
listed below;

• Easy navigation through all the options the application
provides and selected with a single-click.

• Prevents the generation of invalid/unoptimized config-
uration by providing an on-line automatic constraint
manager.

• The UI environment displays the generated documen-
tation and automatically navigates through this doc-
ument so that the user can easily see the information
about the option which is currently in focus.

• The user interface is platform independent.

2.2 Dual Use of OCML tool
OCML has two phases, which are used by both the applica-
tion developer and the middleware developer. The middle-
ware developer uses OCML to model the options in categor-
ical order and also defines the dependencies of these options
as rules. For this stage OCML tool is used as a modeling
language to create the model generated by the middleware
developer. OCML also provides an interpreter for the de-
signed model, which when executed, generates the CFG and
the documentation. Both the CFG and the documentation
is generated according to the model defined by the middle-
ware developer. The application developer uses the CFG
and the generated documentation to set up the configura-
tion of a specific application, which is validated against the
rules modeled by the middleware developer. This dual use
of OCML tool is represented in Figure 1.

2.3 OCML Use Case Scenario
OCML is initially designed to be a modeling tool for the
configuration of the CIAO [9] component middleware con-
figuration options, however it is generic enough to be used
as a modeling tool for different tools and libraries. How-
ever CIAO configuration options provides a good example
for demonstrating OCML.

The CIAO options are categorically divided into four sec-
tions as simple and advanced resource factories, server strat-
egy factory, and client strategy factory. All these categories
are defined as different Option categories and the options
modeled within them hierarchically.

A sample rules governing options and expressed textually is
shown below.

• If the CIAO’s ORBAllowReactivationOfSystemIds is
set to value 0 then ORBActiveHintsInIds cannot be
declared and therefore cannot have a specific value.

• If the ORBConnectionPurgingStrategy is set to value
NULL, then neither ORBConnectionCacheMax nor
ORBConnectionCachePurgePercentage can be declared
and can have a specific value.

After the CIAO developers design the models for CIAO op-
tions and the rules explained above, the model is interpreted
and the interpretation process generates the CIAO-specific
CFG and documentation.

Further, the application developer uses the CFG generated
in the previous process to define the configuration set for
her specific application. The CFG provides online help when
the application configuration is done and it also restricts the
user from specifying configurations which conflict with the
rules defined by the middleware developer.

3. CONCLUSIONS
Component based QoS enabled middleware provides solu-
tions for the various aspects of the application development
and deployment process and also provides policies and mech-
anisms for provisioning and enforcing large-scale DRE ap-
plication QoS requirements.

CoSMIC is developed to provide solution for the complexity
of choosing syntactically and semantically compatible set
of configurations for a specific application which uses QoS
enabled middleware.

OCML is developed as a part of the CoSMIC MDM tool
suite. While OCML defines a language for options configu-
ration modeling, it brings out a solution to resolve the com-
plexity of middleware configuration.

OCML project is a work in progress and latest information
and source code can be obtained from www.dre.vanderbilt.

edu/~turkaye/ocml. The CoSMIC MDM tool suite avail-
able for download at www.dre.vanderbilt.edu/cosmic. CoS-
MIC tool suite is developed in association with the CIAO
component middleware, which is available for download at
www.dre.vanderbilt.edu/CIAO.



4. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,

and W. Weiss, “An Architecture for Differentiated
Services,” Internet Society, Network Working Group
RFC 2475, pp. 1–36, Dec. 1998.

[2] E. Rosen, A. Vishwanathan, and Callon R,
“Multiprotocol Label Switching Architecture,” Internet
Society, Network Working Group, Standards Track
RFC 3031, pp. 1–61, Jan. 2001.

[3] Object Management Group, CORBA Components,
OMG Document formal/2002-06-65 edition, June 2002.

[4] Sun Microsystems, “JavaTM 2 Platform Enterprise
Edition,” http://java.sun.com/j2ee/index.html, 2001.

[5] Microsoft Corporation, “Microsoft .NET
Development,” msdn.microsoft.com/net/, 2002.

[6] Aniruddha Gokhale, Douglas C. Schmidt,
Balachandran Natarajan, Jeff Gray, and Nanbor Wang,
“Model Driven Middleware,” in Middleware for
Communications, Qusay Mahmoud, Ed. Wiley and
Sons, New York, 2003.

[7] Center for Distributed Object Computing, “Component
Synthesis using Model Integrated Computing
(CoSMIC),” www.dre.vanderbilt.edu/cosmic,
Vanderbilt University.

[8] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter
Volgysei, Greg Nordstrom, Jonathan Sprinkle, and
Gabor Karsai, “Composing Domain-Specific Design
Environments,” IEEE Computer, Nov. 2001.

[9] Nanbor Wang, Douglas C. Schmidt, Aniruddha
Gokhale, Craig Rodrigues, Balachandran Natarajan,
Joseph P. Loyall, Richard E. Schantz, and
Christopher D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed.
Wiley and Sons, New York, 2003.


