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Abstract

High-performance Web servers are essential to meet the grow-
ing demands of the Internet and large-scale intranets. Satis-
fying these demands requires a thorough understanding of key
factors affecting Web server performance. This paper presents
empirical analysis illustrating how dynamic and static adap-
tivity can enhance Web server performance. Two research
contributions support this conclusion.

First, the paper presents results from a comprehensive em-
pirical study of Web servers (such as Apache, Netscape Enter-
prise, PHTTPD, Zeus, and JAWS) over high-speed ATM net-
works. This study illustrates their relative performance and
precisely pinpoints the server design choices that cause per-
formance bottlenecks. We found that once network and disk
I/O overheads are reduced to negligible constant factors, the
main determinants of Web server performance are its proto-
col processing path and concurrency strategy. Moreover, no
single strategy performs optimally for all load conditions and
traffic types.

Second, we describe the design techniques and optimiza-
tions used to develop JAWS, our high-performance, adaptive
Web server. JAWS is an object-oriented Web server that was
explicitly designed to alleviate the performance bottlenecks
we identified in existing Web servers. It consistently outper-
forms all other Web servers over ATM networks. The per-
formance optimizations used in JAWS include adaptive pre-
spawned threading, fixed headers, cached date processing,
and file caching. In addition, JAWS uses a novel software ar-
chitecture that substantially improves its portability and flex-
ibility, relative to other Web servers. Our empirical results
illustrate that highly efficient communication software is not
antithetical to highly flexible software.

�This work was funded in part by NSF grant NCR-9628218, Object Tech-
nologies International, Eastman Kodak, and Siemens MED.

1 Introduction

During the past two years, the volume of traffic on the World
Wide Web (Web) has grown dramatically. Traffic increases
are due largely to the proliferation of inexpensive and ubiq-
uitous Web browsers (such as NCSA Mosaic, Netscape Nav-
igator, and Internet Explorer). Likewise, Web protocols and
browsers are increasingly applied to specialized computation-
ally expensive tasks, such as image processing servers used by
Siemens [7] and Kodak [13] and database search engines (e.g.,
AltaVista and Lexis Nexis).

To keep pace with increasing demand, it is essential to de-
velop high-performance Web servers. Therefore, the central
themes of this paper are:

� High-performance Web servers must be adaptive: To
achieve optimal performance, Web servers must adapt to vari-
ous conditions, such as machine load and network congestion,
the type of incoming requests, and the number of simultane-
ous connections. While it is always possible to improve per-
formance with more expensive hardware or a faster OS, our
objective is to produce the fastest Web server possible for a
given hardware/OS platform configuration.

� Standard Web server benchmarking suites are inad-
equate over high-speed networks: Our experience mea-
suring Web server performance on ATM networks reveals
that existing benchmarking tools (such as WebSTONE and
SPECWeb) designed for low-speed Ethernet networks are in-
adequate to capture key performance determinants on high-
speed networks.

To address these issues, this paper describes an adaptive
Web server framework and a Web server/ATM testbed de-
signed to empirically determine (1) the scalability of Web
servers under varying load conditions, (2) the performance im-
pact of different server design and implementation strategies,
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and (3) the pros and cons of alternative Web server designs.
This paper presents empirical results that illustrate that no

single Web server configuration is optimal for all circum-
stances. Based on these results, we conclude that optimal Web
server performance requires bothstaticanddynamicadaptive
behavior.

Staticadaptivity allows a Web server to bind common op-
erations to high-performance mechanisms provided by the na-
tive OS (e.g., Windows NT 4.0 support for asynchronous I/O
and network/file transfer). Programming a Web server to use
generic OS interfaces (such as synchronous POSIX threading)
is insufficient to provide maximal performance across OS plat-
forms. Therefore, asynchronous I/O mechanisms in Windows
NT and POSIX must be studied, compared, and tested against
traditional concurrent server programming paradigms that uti-
lize synchronous event demultiplexing and threading [7].

Dynamicadaptivity allows a Web server to alter its run-time
behavior “on-the-fly.” This is useful when external conditions
have changed to the point where the initial configuration no
longer provides optimal performance. Such situations have
been observed in [7] and [9].

The remainder of this paper is organized as follows: Sec-
tion 2 outlines our Web server/ATM benchmarking testbed
and analyzes our benchmark results; Section 3 describes the
OO design and performance of JAWS, our high-performance
Web server; Section 4 summarizes the Web server optimiza-
tion techniques identified by our empirical studies; and Sec-
tion 5 presents concluding remarks.

2 Web Server Performance over ATM

This section describes our experimental methodology, bench-
marking and analysis tools, the results of our experiments, and
our analysis of the results. To study the primary determinants
of Web server performance, we selected five Web server im-
plementations and analyzed their performance through a series
of blackbox and whitebox benchmarking experiments. Our
analysis of these results identified the following key determi-
nants of Web server performance:
� Filesystem access overhead costs are high:Most dis-
tributed applications benefit from caching and Web servers
are no exception. In general, Web servers that implement
file caching strategies (such as Enterprise, Zeus, and JAWS)
perform substantially better than those that did not (such as
Apache).
� Concurrency overhead is significant: A large portion of
non-I/O related Web server overhead is due to the Web server’s
concurrency strategy. Key overheads include synchronization,
thread/process creation, and context switching. Therefore, it
is crucial to choose the right concurrency strategies to ensure
optimal performance.

� Protocol processing overhead can be expensive:Although
the HTTP/1.0 protocol is relatively simple, a naive implemen-
tation can introduce a substantial amount of overhead. For in-
stance, the dynamic creation of response headers and the use
of multiple write system calls significantly inhibits perfor-
mance.

These and related performance issues are described in Sec-
tion 4.

2.1 Web Server Test Suite

The servers chosen for our tests were Apache v1.1, PHTTPD
v0.99.76, Java Server 1.0, Netscape Enterprise v2.01 and Zeus
Server v1.0. The choice of servers for our study were based
on two factors. The first wasvariation in Web server design,
to gauge the performance impact of alternative approaches to
concurrency, event dispatching, and filesystem access. The
second waspublished performance, as reported by benchmark
results published by Jigsaw [2] and NCSA [10], as well as
information available from WebCompare [17].

2.2 Web Server/ATM Testbed
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Figure 1: Web Server/ATM Testbed Environment

2.2.1 Hardware and Software Platforms

We studied Web server performance by observing how the
servers in our test suite performed on high-speed networks un-
der heavy workloads. To accomplish this, we constructed a
hardware and software testbed consisting of the Web server
being tested, and multiple clients connected to it via a high-
speed ATM switch [19], as shown in Figure 1.1

1We also performed measurements over 10 Mbps Ethernet, but due to a
lack of performance variance, we omitted the discussion from this paper.
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The experiments in this paper were conducted using a Bay
Networks LattisCell 10114 ATM switch connected to four
dual-processor UltraSPARC-2s running SunOS 5.5.1. The
LattisCell 10114 is a 16 Port, OC3 155 Mbs/port switch. Each
UltraSPARC-2 contains 2 168 MHz CPUs with a 1 Megabyte
cache per-CPU, 256 Mbytes of RAM, and an ENI-155s-MF
ATM adaptor card that supports 155 Megabits per-sec (Mbps)
SONET multi-mode fiber. The Maximum Transmission Unit
(MTU) on the ENI ATM adaptor is 9,180 bytes. Each ENI
card has 512 Kbytes of on-board memory. A maximum of
32 Kbytes is allotted per ATM virtual circuit connection for
receiving and transmitting frames (for a total of 64 K). This
allows up to eight switched virtual connections per card. This
testbed is similar to the one used in [5].

2.2.2 Benchmarking Methodology

We used the WebSTONE [4] v2.0 benchmarking software to
collect client- and server-side metrics. As described in Sec-
tion 2.3, these metrics includedaverage server throughput, av-
erage client throughput, average number of connections-per-
second, andaverage client latency. The testbed comprised
multiple concurrentWeb clients, running on UNIX hosts de-
picted in Figure 1. Each Web client transmits a series of HTTP
requests to download files from the server. The file access pat-
tern used in the tests is shown in Table 1.

Document Size (bytes) 500 5 K 50 K 5 M
Frequency 35% 50% 14% 1%

Table 1: File Access Patterns

This table represents actual load conditions on popular servers,
based on a study of file access patterns conducted by SPEC [3].

We benchmarked each Web server on an UltraSPARC-2
host, while the Web clients ran on three other UltraSPARC-
2s. Web clients are controlled by a centralWebmaster, which
starts the Web clients simultaneously. The Webmaster also
collects and combines the measurements made by individual
clients. Since the Webmaster is less performance critical, it
ran on an UltraSPARC-1 connected to the testbed machines
with 10 Mbps Ethernet. The UltraSPARC-1 contained a 167
MHz CPU with 1 Megabyte cache and 128 MBytes of RAM.

2.2.3 Web Server Performance Analysis Techniques

We used two techniques to analyze the performance of Web
servers:blackboxand whiteboxbenchmarks. Theblackbox
tests measure externally visible Web server performance met-
rics (such as throughput and average response time seen by
clients). We accomplished this by controlling the Web clients
to vary the load on the server (i.e., the number of simultaneous

connections). These clients computed several blackbox met-
rics, as explained in Section 2.3.

To precisely pinpoint thesource of performance bottle-
necks, we employed whitebox benchmarks. This involved the
use of profiling tools, including the UNIXtruss(1) tool,
TNF [18], andQuantify [8]. These tools trace and log the
activities of Web servers and measure the time spent on vari-
ous tasks, as explained in Section 2.4.

2.3 Blackbox Performance Analysis

The following WebSTONE blackbox metrics were measured
in our Web server performance study. These metrics were
obtained using a range of simultaneous connections from
1 to 42. Server file caches were pre-loaded by running a
“dummy” client before doing the performance measurements.
We present the blackbox results below. The whitebox results
for each server are presented in Section 2.4.

Server throughput: This measures the number of bits the
server writes onto the network per second. Figure 2 depicts
the results. The process-based concurrency models of Apache
exhibits the lowest overall throughput. The multi-threaded
Netscape Enterprise server consistently outperforms the other
servers; the Process Pool based Zeus server also performs
quite well. Both sustained aggregate throughput higher than
35 Mbps over the 155 Mbps ATM network (for one concurrent
connection to the server, the server throughput is low because
the average size of the requested files are relatively small).

Server connections/sec: This metric computes the number
of connections the server completes per second. The results
are shown in Figure 3. This figure depicts how many connec-
tions are completed per second by the servers, as we increase
the number of simultaneous connections to the server. The En-
terprise server completed more connections per second than
other Web servers, followed by the Zeus server.

Client throughput: This is the average number of bits re-
ceived per second by the client. The number of bits received
includes the HTML headers sent by the server. The results
are depicted in Figure 4. Clearly, as the number of concurrent
clients increases, the server throughput is multiplexed amongst
a larger number of connections, and hence the clients’ average
throughput drops. Therefore, those servers that exhibit high
server throughput (e.g., Enterprise and Zeus) also exhibit cor-
respondingly high average client throughput.

Client latency: Latency is defined as the average amount of
delay in milliseconds seen by the client from the time it sends
the request to the time it completely receives the file. The
results are shown in Figure 5. This graph is similar to the
client throughput graph in Figure 4. It shows how the latency
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observed by individual clients increases, especially for the
process-based concurrency mechanism employed by Apache.

13691215182124273033363942

A
pa

ch
e

Ja
va

 S
er

ve
r

P
H

T
T

P
D Z

eu
s

E
nt

er
pr

is
e

0

5

10

15

20

25

30

35

40

45

50

S
er

ve
r 

T
h

ro
u

g
h

p
u

t 
in

 M
b

it
s/

se
c

Concurrent
 Connections

Figure 2: Server Throughput
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Figure 4: Client Throughput
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Figure 5: Client Latency

2.4 Whitebox Performance Analysis

To determine the design and implementation issues that cause
Web servers to exhibit the blackbox performance results in
Section 2.3, we conducted the following whitebox experiment.
Every Web server in our suite was subjected to an identical
load. 15 simultaneous connections were set up to the Web
server. Each connection made 1,000 requests (i.e., 15,000 total
requests). The access patterns of these requests were identical
to those presented in Section 2.2.2.

While the Web server was serving these requests, we used
the Solaristruss andTNF tools to count the number of sys-
tem calls made and the time spent in each call. We then cate-
gorized these calls into the tasks shown in Table 2.

Task System calls
File operations open, close, stat , etc.
Writing files write, writev, ioctl , etc.
Reading requests read, poll, getmsg , etc.
Signal handling sigaction, sigsetmask , etc.
Synchronization lwp mutex flock,unlock g, etc.
Process control fork, execve, waitid, exit , etc.
Miscellaneous time, getuid , etc.

Table 2: Categories of Web Server System Call Tasks

In addition, we used a software monitoring tool called
truss to measure the amount of time the Web server spent
at user-level (i.e., when the server was not making a system

call). This allowed us to estimate the amount of time each
Web server spent in HTTP processing. The whitebox results
for each Web server are presented below, ordered by increas-
ing performance.

Note that theideal Web server would spend most of its
time performing network I/O,i.e., reading HTTP requests and
writing requested files to the network. In particular, it would
have negligible overhead resulting from synchronization (due
to efficient concurrency control and threading strategies) and
filesystem operations (due to caching).

File operations
14%

Signal Handing
7%

Process Control
1%

Context Switching
53%

Reading Requests
5%

Writing Files
11%

HTTP processing
9%

Figure 6: Apache

Writing Files
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Reading Requests
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File operations
8%

Synchronizing
21%

HTTP Processing / 
Java VM overhead

46%

Figure 7: Java Server
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7% Writing Files
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Figure 8: PHTTPD
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Figure 9: Zeus
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Figure 10: Enterprise

Whitebox Analysis Results

3 Strategies for Developing High-
Performance Web Servers

The analysis in Section 2 illustrates the superior performance
of Netscape Enterprise and Zeus and identifies key factors that
determine Web server performance. These factors include the
server concurrency strategy, synchronization overhead, pro-
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tocol processing overhead, andcaching strategy. Applying
whitebox measurement techniques in our ATM/Web Server
testbed enabled us to determine preciselywhy Netscape En-
terprise and Zeus perform much better than other Web servers
over high-speed ATM networks.

After empirically determining the key Web server perfor-
mance factors, our next objective was to develop an OO Web
server development framework called JAWS. JAWS is de-
signed to systematically develop and test the performance im-
pact of different Web server design strategies and optimization
techniques. This section outlines the object-oriented design
of JAWS and presents the results of systematically applying
techniques uncovered in the analysis in the previous section.
We conclude this section by demonstrating how a highly op-
timized version of JAWS gives equivalent (and sometimes su-
perior) performance compared with Netscape Enterprise and
Zeus.

3.1 The Object-Oriented Architecture of JAWS
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Figure 11: The Object-Oriented Architecture of JAWS

Figure 11 illustrates the OO software architecture of the
JAWS Web server. As shown in Section 2, concurrency strate-
gies, event dispatching, and caching are key determinants of
Web server performance. Therefore, JAWS is designed to
allow these Web server strategies to be customized accord-
ing to key environmental factors. These factors include traf-
fic patterns, workload characteristics, support for kernel-level
threading and/or asynchronous I/O in the OS, and the number
of available CPUs.

JAWS is structured as a framework [16] that contains the
following components: anEvent Dispatcher, Concurrency
Strategy, I/O Strategy, Protocol Pipeline, Protocol Handlers,

Cached Virtual Filesystem, andTilde Expander. Each com-
ponent is structured as a set of collaborating objects imple-
mented with the ADAPTIVE Communication Environment
(ACE) C++ communication framework [15]. Each component
plays the following role in JAWS:

Event Dispatcher: This component is responsible for coor-
dinating theConcurrency Strategywith the I/O Strategy. As
events are processed, they are dispensed to theProtocol Han-
dler, which is parameterized by a concurrency strategy and an
I/O strategy, as discussed below.

Concurrency Strategy: This implements concurrency
mechanisms (such as single-threaded, Thread-per-Request,
or synchronous/asynchronous Thread Pool [7]) that can
be selected adaptively at run-time or pre-determined at
initialization-time. These strategies are discussed in Sec-
tion 3.2.3.

I/O Strategy: This implements the I/O mechanisms (such as
asynchronous, synchronous, and reactive). Multiple I/O mech-
anisms can be used simultaneously.

Protocol Handler: This component allows developers to
apply the JAWS framework to create various Web server
configurations. A Protocol Handler is parameterized by a
concurrency strategy and an I/O strategy (though these re-
main opaque to the protocol handler). In JAWS, the Proto-
col Handler implements parsing and processing of HTTP re-
quest methods. The abstraction allows other protocols (e.g.,
HTTP/1.1 and DICOM) to be incorporated easily into JAWS.
To add a new protocol, developers simply implement a new
Protocol Handler, which is then configured into the JAWS
framework.

Protocol Pipeline: This component provides a framework to
allow a set of filter operations (e.g., compression, decompres-
sion, and parse HTML) to be incorporated easily into the data
being processed by the Protocol Handler. This enables a server
programmer to easily incorporate functional extensions (such
as image filters or database operations) transparently into the
Web server.

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of filesys-
tem access. The caching policy is strategized (e.g., LRU, LFU,
Hinted, and Structured). This allows different caching policies
to be profiled for effectiveness and enables optimal strategies
to be configured statically or dynamically. These strategies are
discussed in Section 3.2.4.

Tilde Expander: This mechanism is another cache compo-
nent that uses a perfect hash table [14] to map abbreviated
user login names (e.g., �schmidt ) to user home directo-
ries (e.g., /home/cs/faculty/schmidt ). When per-
sonal Web pages are stored in user home directories (and user
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directories do not reside in one common root), this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd .

In general, the OO design of JAWS decouples the func-
tionality of Web server components from their implementation
strategies. For instance, the JAWS Concurrency Strategies can
be decoupled from its Protocol Handlers. Thus, a wide range
of strategies can be supported, configured, tested, and evalu-
ated. As a result, JAWS can adapt to environments that may
require different concurrency, I/O, and caching mechanisms.
This additional flexibility is not antithetical to performance,
as shown in Section 3.3.1 where JAWS demonstrates that de-
coupled and flexible Web server designs can achieve superior
performance.

3.2 Performance Impacts of Web Server
Strategies

The following subsection describes the concurrency, I/O, and,
caching strategies supported by JAWS. The discussion focuses
on the performance of the various strategies and how they in-
teract with each other. The JAWS framework allows the Web
server strategies to be changed easily, which facilitates con-
trolled measurements of different server configurations. The
results of this study are described below.

3.2.1 JAWS Baseline

Our study of the performance impact of different Web server
strategies began with a version of JAWS that was not tuned
with any optimizations. Thisbaseline implementation of
JAWS consists of its original default run-time configuration,
running with a pool of 20 threads. Below, we illustrate the
performance impacts in relation to the baseline implementa-
tion.

3.2.2 Protocol Processing Optimizations

Our initial optimizations for JAWS implemented techniques
that reduced protocol processing overhead. These techniques
included: caching the HTTP response header, lazy time header
calculation, and the use of thewritev system call to send
multiple buffers of data in a single operation. Figure 12
shows the performance improvements when these enhance-
ments were implemented. As shown in the figure, these opti-
mizations resulted in a�65% improvement in server through-
put over the baseline version.

3.2.3 Concurrency Strategies

Our experiments in Section 2 suggest that the choice of con-
currency and event dispatching strategies significantly impacts

the performance of Web servers that are subject to changing
load conditions. Carrying these results forward, we deter-
mined the quantitative performance impacts of using differ-
ent concurrency strategies (i.e., Thread Pool and Thread-per-
Request), as well as varying parameters of a particular concur-
rency strategy (e.g., the minimum and maximum number of
active threads) in JAWS.

Thread Pool results: In theThread Poolmodel, a group of
threads are spawned at initialization time. All threads block
in accept 2 waiting for connection requests to arrive from
clients. This eliminates the overhead of waiting to create a
new thread before a request is served. The Thread Pool model
is used by the JAWS baseline implementation.

The performance graph in Figure 13 compares the perfor-
mance of JAWS using the Thread Pool strategy on a dual-CPU
UltraSPARC 2, while varying the number of threads in the
Thread Pool. Note that the server throughput does not corre-
late clearly with the size of the Thread Pool. In addition, as
we increase the size of the Thread Pool the variance in server
throughput is not appreciable. Therefore, we conclude that a
smaller Thread Pool (e.g., 6 threads) performs just as well as
a larger Thread Pool (e.g., 42 threads). However, the traffic
patterns used in our benchmarks (shown in Table 1) exhibit
a large distribution of small files. Therefore, if the distribu-
tion shifted to larger files, a larger Thread Pool may behave
more efficiently than a smaller Thread Pool because a smaller
Thread Pool will be depleted with many long running requests.
In this case, latency for new requests will increase, thereby de-
creasing the overall throughput.

To avoid underutilizing CPU resources, the number of
threads in the Thread Pool should be no lower than the num-
ber of processors in the system. Thus, Figure 13 illustrates that
server throughput is low when only one thread is in the Thread
Pool, especially under higher loads (> 24 concurrent connec-
tions). This behavior is due to the absence of concurrency.

Thread-per-Request results: A common model of concur-
rency (e.g., used byinetd ) is to spawn a new process to han-
dle each new incoming request.Thread-per-Requestis similar,
except that threads are used instead of processes. While a child
process requires a (virtual) copy of the parent’s address space,
a thread shares its address space with other threads in the same
process.

Figure 14 compares the performance of applying the
Thread-per-Request strategy in JAWS with the baseline im-
plementation. The graph depicts how performance varies with
changing server loads, in comparison with the JAWS baseline

2Several operating systems (e.g., Solaris 2.5) only allow one thread in a
process to callaccept on the same port at the same time. This restriction
forces JAWS to use thread mutexes to serializeaccept calls, which intro-
duces additional synchronization overhead.

6



performance. This result illustrates the need for dynamic adap-
tivity. For low loads, (i.e., up to 9 concurrent connections) the
baseline Thread Pool implementation performs well. How-
ever, at higher loads, the Thread-per-Request model offers su-
perior performance. This is because the Thread Pool model
on Solaris requires additional synchronization while accepting
new connections, as explained above.
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JAWS Performance Comparisons

3.2.4 File Caching Strategies

Our analysis in Section 2 determined that accessing the filesys-
tem is a significant performance inhibitor. This concurs with
other Web server performance research [11, 20] that uses
caching to achieve better performance. While the baseline ver-
sion of JAWS does employ caching, it spends too much time
synchronizingconcurrent thread access to the Cached Virtual
Filesystem (CVF).

To address this concern, the CVF was re-engineered. The
new implementation accounted for the following factors:

� Locking the entire cache can be avoided– The original
implementation locked on entry to every operation, be-
cause each operation was implemented to modify shared
state. Once this requirement was removed, greater con-
currency was achieved by only locking the hashed index
entry of the cache.

� The cache lock can be inherited by the file– Acquiring a
new lock for the cached object itself is unnecessary since

all users of the cached file must acquire it through the
CVF. Thus, within the CVF, operations on a cached file
are serialized automatically.

Figure 15 shows a significant performance gain with the
new CVF. In particular, with lower synchronization overhead
the performance improves by as much as 40% when concur-
rent contention for files is high.

3.3 Performance Analysis

In the previous section, we demonstrated the impact that each
design strategy had on the performance of JAWS compared to
its baseline implementation. Below, we provide detailed per-
formance analysis of the optimized version of JAWS. We first
present whitebox performance results comparing the JAWS
baseline with the optimized JAWS. We conclude with black-
box benchmarking results that demonstrate how the optimized
JAWS outperforms Netscape Enterprise and Zeus, which have
the best performance of the Web servers benchmarked in Sec-
tion 2.3.

3.3.1 JAWS Whitebox Analysis

This section compares whitebox analysis of the JAWS baseline
implementation against the optimized JAWS implementation.
Figure 16 illustrates the percentage of time the JAWS baseline
spends servicing HTTP requests.

Writing Files
22%

Reading Requests
5%

File operations
9%

Synchronization
44%

Misc. System Calls
2%

HTTP processing
18%

Figure 16: Baseline JAWS

Writing Files
27%

Reading Requests
8%

File operations
12%

Synchronization
37%

HTTP processing
16%

Figure 17: Optimized JAWS

JAWS Whitebox Analysis

In contrast, Figure 17 provides insight into how combin-
ing the optimization strategies analyzed in the previous section
helped to improve the performance of JAWS. In particular, the
synchronization time is reduced by 7%, and the network trans-
fer time increased by 5%.

Earlier in this section we described the individual impacts of
applying the different design strategies to the baseline JAWS.
Our whitebox results demonstrate that combining these tech-
niques have yielded an optimized version of JAWS with much
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improved performance. The deployment of the protocol opti-
mization strategies reduced HTTP processing time and the im-
proved file cache implementation minimized synchronization
overhead. The use of a tuned Thread Pool strategy removes
thread creation overhead and minimizes the resource utiliza-
tion of the server.

3.3.2 JAWS Blackbox Analysis

We conclude this section by comparing the benchmark results
of the optimized JAWS against Netscape Enterprise and the
Zeus Web servers. Figures 18-21 provide a new insight us-
ing the same metrics described in Section 2.3. These metrics
reveal the following conclusion:JAWS is capable of outper-
forming the best existing Web servers.

This result confirms that a open flexible Web server frame-
work is capable of providing equivalent performance to the
best commercial Web servers. We believe this achievement
is possible due to JAWS’ adaptive framework that allowed us
to systematically tune run-time parameters to optimize JAWS’
performance. With automated adaptation, it should be possi-
ble for JAWS to dynamically adjust its behavior at run-time to
handle different server load conditions than those encountered
during our benchmarking tests.
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Figure 18: Server Through-
put
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Figure 19: Connections/sec
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Figure 20: Client Through-
put
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Figure 21: Client Latency

Further evidence of the need for adaptivity is seen in the
performance difference between JAWS and Netscape Enter-
prise. Although JAWS consistently outperforms Enterprise

under heavy loads, Enterprise consistently delivers higher
server throughput during light loads. These results indicate the
need to alter server behavior to handle lightvs. heavy loads.
Further research is necessary to reveal how Enterprise delivers
this performance.

4 Summary of Web Server Optimiza-
tion Techniques

This section summarizes the most significant determinants of
Web server performance. These observations are based on
our studies of existing Web server designs and implementa-
tion strategies, as well as our experience tuning JAWS. These
studies reveal the primary targets for optimizations to develop
high performance Web servers.

Lightweight concurrency: Process-based concurrency
mechanisms can yield poor performance, as seen in [6].
In multi-processor systems, a process-based concurrency
mechanism might perform well, especially when thenumber
of processes are equal to the number of processors. In this
case, each processor can run a Web server process and context
switching overhead is minimized.

In general, processes should bepre-forkedto avoid the over-
head of dynamic process creation. However, it is preferable to
use lightweight concurrency mechanisms (e.g., using POSIX
threads) to minimize context switching overhead. As with pro-
cesses, dynamic thread creation overhead can be avoided by
pre-spawningthreads into a pool at server start-up.

Specialized OS features: Often times, OS vendors will
provide specialized programming interfaces which may give
better performance. For example, Windows NT 4.0 pro-
vides theTransmitFile function, which uses the Windows
NT virtual memory cache manager to retrieve the file data.
TransmitFile allows data to be prepended and appended
before and after the file data, respectively. This is particularly
well-suited for Web servers since they typically send HTTP
header data with the requested file. Hence, all the data to the
client can be sent in a single system call, which minimizes
mode switching overhead.

Usually, these interfaces must be benchmarked carefully
against standard APIs to understand the conditions for which
the special interface will give better performance. In the case
of TransmitFile , our empirical data indicate that the asyn-
chronous form ofTransmitFile is the most efficient mech-
anism for transferring large files over sockets on Windows NT,
as shown in [7].

Request lifecycle system call overhead: The request life-
cycle in a Web server is defined as the sequence of instruc-
tions that must be executed by the server after it receives an
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HTTP request from the client and before it sends out the re-
quested file. The time taken to execute the request lifecycle
directly impacts the latency observed by clients. Therefore, it
is important to minimize system call overhead and other pro-
cessing in this path. The following describes various places in
Web servers where such overhead can be reduced.
� Reducing synchronization: When dealing with concur-
rency, synchronization is often needed to serialize access
to shared resources (such as the Cached Virtual Filesys-
tem). However, the use synchronization penalizes perfor-
mance. Thus, it is important to minimize the number of locks
acquired (or released) during the request lifecycle. In [6], it is
shown that servers that average a lower number of lock oper-
ations per request perform much better than servers that per-
form a high number of lock operations.

In some cases, acquiring and releasing locks can also result
in preemption. Thus, if a thread reads in an HTTP request
and then attempts to acquire a lock, it might be preempted,
and may wait for a relatively long time before it is dispatched
again. This increases the latency incurred by a Web client.
� Caching files: If the Web server does not perform file
caching, at least two sources of overhead are incurred. First,
there is overhead from theopen system call. Second, there
is accumulated overhead from iterative use of theread and
write system calls to access the filesystem, unless the file
is small enough to be retrieved or saved in a single call.
Caching can be effectively performed using memory-mapped
files, available in most forms of UNIX and on Windows NT.
� Using “gather-write”: On UNIX systems, thewritev
system call allows multiple buffers to be written to a device in
a single system call. This is useful for Web servers since the
typical server response contains a number of header lines in
addition to the requested file. By using “gather-write”, header
lines need not be concatenated into a single buffer before being
sent, avoiding unnecessary data-copying.
� Pre-computing HTTP responses:Typical HTTP requests
result in the server sending back the HTTP header, which con-
tains the HTTP success code and the MIME type of the file re-
quested, (e.g., text/plain ). Since such responses are part
of the expected case they can bepre-computed. When a file
enters the cache, the corresponding HTTP response can also
be stored along with the file. When an HTTP request arrives,
the header is thus directly available in the cache.

Transport layer optimizations: The following transport
layer options should be configured to improve Web server per-
formance over high-speed networks:
� The listen backlog: Most TCP implementations buffer in-
coming HTTP connections on a kernel-resident “listen queue”
so that servers can dequeue them for servicing usingaccept .
If the TCP listen queue exceeds the “backlog” parameter to
the listen call, new connections are refused by TCP. Thus,

if the volume of incoming connections is expected to be high,
the capacity of the kernel queue should be increased by giving
a higher backlog parameter (which may require modifications
to the OS kernel).
� Socket send buffers:Associated with every socket is a send
buffer, which holds data sent by the server, while it is be-
ing transmitted across the network. For high performance,
it should be set to the highest permissible limit (i.e., large
buffers). On Solaris, this limit is 64k.
� Nagle’s algorithm (RFC 896): Some TCP/IP implementa-
tions implement Nagle’s Algorithm to avoidcongestion. This
can often result in data getting delayed by the network layer
before it is actually sent over the network. Several latency-
critical applications (such as X-Windows) disable this algo-
rithm, (e.g., Solaris supports theTCP NODELAYsocket op-
tion). Disabling this algorithm can improve latency by forcing
the network layer to send packets out as soon as possible.

5 Concluding Remarks

The research presented in this paper was motivated by a desire
to build high-performance Web servers. Naturally, it is always
possible to improve performance with more expensive hard-
ware (e.g., additional memory and faster CPUs) and a more
efficient operating system. However, our research objective is
to produce the fastest server possiblefor a given hardware/OS
platform configuration.

As shown in Section 2, we began by analyzing the perfor-
mance of existing servers. The servers that performed poorly
were studied to discover sources of bottlenecks. The servers
that performed well were examined even more closely using
whitebox techniques to examine what they did right. We found
that checking and opening files creates significant overhead,
which can be alleviated by applying perfect hashing and other
caching techniques.

When network and file I/O are held constant, however, the
largest portion of the HTTP request lifecycle is spent dispatch-
ing theGETrequest to the Protocol Handler that processes the
request. The time spent in dispatching depends largely on the
choice of the concurrency strategy. Our results show that no
single concurrency strategy provides optimal performance in
all circumstances.

In general, research on adaptive software has not been pur-
sued deeply in the context of Web systems. Current research
on Webserverperformance has emphasized caching [11, 20],
concurrency [7], and I/O [12, 1]. While our results corrob-
orate that caching is vital to high performance, non-adaptive
caching strategies do not provide optimal performance in Web
servers [9]. Moreover, current server implementations and ex-
periments rely onstatically configured concurrency and I/O
strategies.
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As a result of our empirical studies, we observed that servers
relying on static, fixed strategies cannot behave optimally in
many high load circumstances. Therefore, we conclude that
high-performance Web servers must beadaptive, i.e., be cus-
tomizable to utilize the most beneficial strategy for particular
traffic characteristics, workload, and hardware/OS platforms.

JAWS supports Web server adaptivity by providing a frame-
work built using an adaptive communication environment
(ACE) [15]. Future versions of JAWS will support prioritized
request handling (to promote requests for smaller objects of re-
quests for larger objects), dynamic protocol pipelines (to sup-
port optimal end-to-end data filtering operations, such as com-
pression), as well as automatic configuration for concurrency,
I/O dispatching and caching strategies. We believe that com-
bining these techniques will produce a Web server that exhibits
extremely low latency and high throughput.

The complete source code for JAWS is available at
www.cs.wustl.edu/ �schmidt/ACE.html .
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