
Model-driven Integration of Federated Event Services in
Real-time Component Middleware

Gan Deng Aniruddha Gokhale Balachandran Natarajan

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37203

Contact Author: gan.deng@vanderbilt.edu

Abstract

Rapid advances in hardware, networking technologies
and software technologies, including standards-based op-
timized component middleware, has enabled the growth
of component middleware-based complex, large-scale
distributed real-time and embedded (DRE) systems.
These DRE systems found in different domains, such
as avionics, telecommunications, defense, enterprise and
healthcare, often use a publisher/subscriber communica-
tion paradigm, such as that provided by an event service.
A federation of such event services provides a scalable
solution to address the complex distribution challenges of
DRE systems. By connecting event channels from dif-
ferent systems together a federated event service enables
seamless and application-transparent interchange of event
information across distribution boundaries.

Although component middleware supports the creation
of applications via composition of reusable and flexible
software components, however, to deploy such systems
effectively involves numerous challenges in integrating
the various distributed components communicating via
different event channels. Current state of the art in de-
ploying a federation of event services for these component
middleware-based DRE systems involves ad hoc tech-
niques that are tedious and error-prone.

This paper describes a novel scheme we have devel-
oped based on a model-based paradigm that resolves the
challenges in configuring the federated event service. Our
approach centers around the notion of the federated event
service Modeling Language (FESML), which is a model-

ing tool we have developed to resolve the configuration
and deployment challenges of federated event service for
component middleware-based DRE systems.

Key Words: Federated Event Service, Component Mid-
dleware, CORBA Component Model, Model-based sys-
tems.

1 Introduction

Over the past decade,component middlewarehas evolved
to support the creation of applications via composition of
reusable and flexible softwarecomponents. Components
are implementation/integration units with crisply-defined
interfaces that can be installed and instantiated in appli-
cation server run-time environments. Middleware is sys-
tems software that resides between applications and the
underlying operating systems, network protocol stacks,
and hardware in complex distributed systems to enable or
simplify how these components are connected. Examples
of commercial-off-the-shelf (COTS) component middle-
ware include the CORBA Component Model (CCM) [1],
J2EE [2], and .NET [3]. Large-scale Distributed Real-
time and Embedded (DRE) systems (such as avionics
mission computing [4], distributed audio/video process-
ing [5], and distributed interactive simulations [6]), which
is the focus of our research, are increasingly based on
component middleware.

One model of communication between components
supported by component middleware is based on the pub-
lish/subscribe paradigm [7]. This is achieved via the in-

1



tegration of event or notification services within the com-
ponent middleware. The publisher/subscriber design is a
powerful architecture for event-based communication be-
cause it provides anonymity, by decoupling event publish-
ers and subscribers, and asynchronism, by automatically
notifying subscribers when a specified event is generated.

DRE systems are often characterized by the presence of
a large number of components using the publish/subscribe
communication paradigm. Examples of these systems
include distributed interactive simulation environments,
such as the Next-Generation Run Time Infrastructure
(RTI-NG) implementation for the Defense Modeling and
Simulation Organization (DMSO) High Level Architec-
ture (HLA) [8].

Naive implementations of an event service will send
one message for each remote consumer interested in the
event. This design will waste network resources since the
same data is transmitted multiple times, often to the same
target host.

The strategy by which a predictably performing dis-
tributed event service with minimal network traffic over-
head can be configured within our optimized CCM imple-
mentation called CIAO [9] is to build a federation of real-
time event services. Such a service, called a federated
event service, allows sharing filtering information to min-
imize or eliminate the transmission of unwanted events to
a remote entity. Moreover, a federated event service al-
lows events that are being communicated in one channel
to be made available on another channel. The channels
typically communicate through CORBA Gateways, UDP,
or IP Multicast [10]. By connecting event channels from
different systems together a federated event service allows
event information to be interchanged seamlessly, provid-
ing a level of integration between the two systems, thus
improving the quality of service (QoS) of the system.

To deploy a federated event service for a complex DRE
system requires complex integration efforts in configur-
ing a federation of event services with a distributed com-
ponent middleware. Current state of the art in deploy-
ing such a federation involvesad hocintegration efforts
based mostly on handcrafting the federation deployment
descriptor metadata. This metadata is usually specified in
XML adhering to some DTD or Schema. The descrip-
tor metadata comprises information, such as the type of
federations (i.e., using a CORBA Gateway, or UDP or
IP Multicast), object references of remote event channels,

object reference of local event channels, and other infor-
mation. Since the components may involve a large num-
ber of different types of events and event channels,ad hoc
techniques of deploying federation of event services is a
very tedious and error-prone task.

To address this challenge, therefore, requires principled
methods that can be analyzed, validated and verified for
correctness and robustness. Model-based techniques are
well suited to address these challenges. Therefore, this
paper provides a novel approach we have developed us-
ing model-based techniques to deploy federation of event
services for DRE systems.

Previous work on federated event services has fo-
cused on the patterns and performance optimizations of
highly scalable[6] and real-time [11] CORBA Event
Service [12] implementations in the context of real-time
CORBA object middleware [10]. This paper extends this
previous work by describing how our ongoing R&D on
Model Driven Middleware (MDM) [13] can be applied to
to simplify the integration of a federated event service in
QoS-enabled component middleware.

MDM is an emerging paradigm that integratesmodel-
based software techniques(including Model-Integrated
Computing [14, 15] and the OMG’s Model Driven Ar-
chitecture [16]) withQoS-enabled component middle-
ware (including Real-time CORBA [8] and QoS-enabled
CCM [9]) to help resolve key software development and
validation challenges encountered by developers of large-
scale DRE middleware and applications.

Section 2 describes a MDM tool we have developed to
simplify the configuration and deployment of federated
event service in CIAO, which is our QoS-enabled imple-
mentation of the CORBA Component Model; and Sec-
tion 3 provides concluding remarks and future work.

2 Resolving Federated Event Ser-
vice Integration Challenges in
CIAO

To address the challenges in deployment of federated
event services described in Section 1, we have devel-
oped the Federated Event Service Modeling Language
(FESML), as a part of of the CoSMIC [17] tool chain [18],
which is a Model Driven Middleware toolsuite that sup-

2



ports the development, assembly, and deployment of
DRE systems. The artifacts that FESML provides in-
clude event consumers, event suppliers, event channels,
CORBA Gateways, UDP Senders, UDP Receivers and
Multicast ports, among others.

Figure 1 illustrates an example of how FESML can
be used to model a federation of event channels using
CORBA gateways and which includes other artifacts of
the publish/subscribe paradigm, such as event consumers,
event suppliers, event channels in different sites.

Figure 1:Federated Event Channel

The rest of the section describes the artifacts of the
FESML modeling paradigm.

2.1 FESML Syntactic Elements

The FESML meta-model defines two level of syntactic
elements: (1) The outer level contains only theSiteele-
ment, which allows the user to define how many sites are
present in the distributed environment and how they could
be connected with each other through event channels and
CORBA Gateway, which are exposed asPort elements
from the outside view; (2) The second level, which is the
inner level representing a site, contains a list of syntac-
tic elements including Event Supplier, Event Consumer,
Event Channel, CORBA Gateway, IP Multicast Sender
and Receiver, and Event Type References, which allows

the user to configure the deployment of these artifacts in-
side a site.

Figure 2 is a screenshot of the FESML tool used to
model a federated event service with three sites. The top
part of the Figure 2 shows the outer level configuration,
and the bottom part shows the inner level of the configu-
ration.

Figure 2:FESML Artifacts

2.2 Model Checker

To ensure the validity of the modeled federated event ser-
vice, the event channels’ configuration and settings must
be checked to ensure that they are consistent with the fed-
eration types. For example, when the user chooses the
IP Multicast as the type of federations to federate event
channels, since IP Multicast uses the Observer [19] ca-

3



pabilities of event channels, the Observer functionality in
event channel must be enabled and activated to ensure the
IP Multicast could work properly. To ensure such seman-
tically consistent configuration, it would be ideal that any
violation of such rules will be detected in the early model-
ing phase rather than in the later component deployment
phase.

FESML provides a built-in constraint model checker
that checks for syntactic and semantic compatibility of the
federation of event channels to ensure the correct assem-
bly and deployment of event service.

2.3 Model Interpreter

The FESML encompasses a model interpreter, which syn-
thesizes the federated event service assembly and deploy-
ment descriptor XML files. The information captured in
the descriptor files includes the relationship between each
artifacts, the physical location of each supplier, consumer,
event channel, CORBA Gateway, etc. This file will be
then further fed into the CIAO assembly and deployment
tool to deploy the system.

Currently there is no standard XML DTD or Schema to
describe a real-time event service configuration metadata
or metadata for the federation of the event services. Our
approach, therefore, extends the existing standard compo-
nent assembly metadata DTD with elements for deploy-
ment of federated event services.

The shift toward high-level design languages and mod-
eling tools is creating an opportunity for increased au-
tomation in generating and integrating application com-
ponents. The goal is to shield all the low level details
about how to configure the federation of event service
away from application developers.

3 Concluding Remarks and Future
Work

Large-scael distributed real-time and embedded systems
need a real-time publisher/subscriber paradigm for com-
munication. This entails the need to deploy a federation of
event services. This paper describes a novel approach of
using model-based techniques to deploy a federated event
service. We have developed a tool called FESML to ad-

dress the assembly and deployment challenges of feder-
ated event services.

The true test of FESML will be its usefulness in
configuring real component-based software systems. In
the coming months, this tool will be tested in multi-
ple real-world scenarios involving mission-critical dis-
tributed, real-time systems.

The OMG has issued an specification for a Notification
Service, which is a superset of the CORBA Event Service
that adds interfaces for event filtering, configurable event
delivery semantics, security, and event delivery at speci-
fied levels of QoS. CIAO already provides the implemen-
tation for the Notification Service specification. FESML
is being enhanced to allow these services to be modeled
and configured in a large distributed environment.

References
[1] Object Management Group,CORBA Components, OMG

Document formal/2002-06-65 edition, June 2002.

[2] Sun Microsystems, “JavaTM 2 Platform Enterprise Edition,”
http://java.sun.com/j2ee/index.html, 2001.

[3] Microsoft Corporation, “Microsoft .NET Development,”
msdn.microsoft.com/net/, 2002.

[4] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt,
“The Design and Performance of a Real-Time CORBA
Scheduling Service,”Real-Time Systems, The International
Journal of Time-Critical Computing Systems, special issue on
Real-Time Middleware, vol. 20, no. 2, Mar. 2001.

[5] David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy, Irfan
Pyarali, and Douglas C. Schmidt, “Application of the QuO
Quality-of-Service Framework to a Distributed Video
Application,” in Proceedings of the 3rd International Symposium
on Distributed Objects and Applications, Rome, Italy, Sept. 2001,
OMG.

[6] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy,
“Patterns and Performance of a CORBA Event Service for
Large-scale Distributed Interactive Simulations,”International
Journal of Computer Systems Science and Engineering, vol. 17,
no. 2, Mar. 2002.

[7] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal,Pattern-Oriented Software
Architecture—A System of Patterns, Wiley & Sons, New York,
1996.

[8] Arvind S. Krishna, Douglas C. Schmidt, Ray Klefstad, and
Angelo Corsaro, “Real-time CORBA Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed. Wiley
and Sons, New York, 2003.

[9] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig
Rodrigues, Balachandran Natarajan, Joseph P. Loyall, Richard E.
Schantz, and Christopher D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Qusay Mahmoud, Ed. Wiley
and Sons, New York, 2003.

4



[10] Douglas C. Schmidt and et al., “TAO: A Pattern-Oriented Object
Request Broker for Distributed Real-time and Embedded
Systems,”IEEE Distributed Systems Online, vol. 3, no. 2, Feb.
2002.

[11] Douglas C. Schmidt and Carlos O’Ryan, “Patterns and
Performance of Real-time Publisher/Subscriber Architectures,”
Journal of Systems and Software, Special Issue on Software
Architecture - Engineering Quality Attributes, 2002.

[12] Object Management Group,Event Service Specification Version
1.1, OMG Document formal/01-03-01 edition, Mar. 2001.

[13] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran
Natarajan, Jeff Gray, and Nanbor Wang, “Model Driven
Middleware,” inMiddleware for Communications, Qusay
Mahmoud, Ed. Wiley and Sons, New York, 2003.

[14] Janos Sztipanovits and Gabor Karsai, “Model-Integrated
Computing,” IEEE Computer, vol. 30, no. 4, pp. 110–112, Apr.
1997.

[15] Jeffery Gray, Ted Bapty, and Sandeep Neema, “Handling
Crosscutting Constraints in Domain-Specific Modeling,”
Communications of the ACM, pp. 87–93, Oct. 2001.

[16] Object Management Group,Model Driven Architecture (MDA),
OMG Document ormsc/2001-07-01 edition, July 2001.

[17] Center for Distributed Object Computing, “Component Synthesis
using Model Integrated Computing (CoSMIC),”
www.dre.vanderbilt.edu/cosmic, Vanderbilt University.

[18] Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh
Balasubramanian, Arvind Krishna, George T. Edwards, Gan
Deng, Emre Turkay, Jeffrey Parsons, and Douglas C. Schmidt,
“Model Driven Middleware: A New Paradigm for Deploying and
Provisioning Distributed Real-time and Embedded Applications,”
Submitted to The Journal of Science of Computer Programming:
Special Issue on Model Driven Architecture, 2004.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

5


