
Integrating Publisher/Subscriber Services in Component
Middleware for Distributed Real-time and Embedded Systems

George T. Edwards Balachandran Natarajan Douglas C. Schmidt Aniruddha Gokhale

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37203

Contact Author: g.edwards@vanderbilt.edu

Abstract

Although component-based software development has
widespread acceptance in the enterprise business and
desktop application domains, developers of distributed,
real-time and embedded (DRE) systems have encountered
limitations with the available component middleware
platforms. These limitations often preclude developers of
DRE systems from fully exploiting the benefits of compo-
nent software. In particular, component middleware plat-
forms lack standards-based publisher/subscriber commu-
nication mechanisms that support key quality of service
(QoS) requirements, such as low latency, bounded jit-
ter, and end-to-end operation priority propagation. QoS-
enabled publisher/subscriber services are available in ob-
ject middleware platforms, such as Real-time CORBA, but
such services have not been integrated into component
middleware due to a number of development and configu-
ration challenges.

This paper provides three contributions to the integra-
tion of publisher/subscriber services in component mid-
dleware. First, we outline key challenges associated with
integrating publisher/subscriber services into component
middleware. Second, we describe a methodology re-
solving these challenges based on software design pat-
terns and Model-Driven Middleware (MDM). Third, we
describe a pattern-oriented component middleware plat-
form and a complementary MDM tool that we have devel-
oped to integrate publisher/subscriber services into com-
ponent middleware applications.

1 Introduction

To reduce the complexity of designing robust, efficient,
and scalable distributed real-time and embedded (DRE)
software systems, developers increasingly rely onmiddle-
ware [1], which is software that resides between appli-
cations and the lower-level run-time infrastructure, such
as operating systems, network protocol stacks, and hard-
ware. Middleware isolates DRE applications from lower-
level infrastructure complexities, such as heterogeneous
platforms and error-prone network programming mech-
anisms. It also enforces essential end-to-end quality
of service (QoS) properties, such as low latency and
bounded jitter; fault propagation/recovery across distri-
bution boundaries; authentication and authorization; and
weight, power consumption, and memory footprint con-
straints.

Over the past decade, middleware has evolved to
support the creation of applications via composition of
reusable and flexible softwarecomponents[2]. Compo-
nents are implementation/integration units with precisely-
defined interfaces that can be installed in application
server run-time environments. Examples of commercial-
off-the-shelf (COTS) component middleware include the
CORBA Component Model (CCM), J2EE, and .NET.

Component middleware generally supports two mod-
els for component interaction: (1) arequest-response
communication model, in which a component invokes a
point-to-point operation on another component, and (2)
an event-basedcommunication model, in which a com-
ponent transmits arbitrarily-defined, strongly-typed mes-

1



sages, calledevents, to other components. Event-based
communication models are particularly relevant for large-
scale DRE systems (such as avionics mission comput-
ing, distributed audio/video processing, and distributed
interactive simulations) because they help reduce soft-
ware dependencies and enhance system composability
and evolution. In particular, thepublisher/subscriberar-
chitecture [3] of event-based communication allows ap-
plication components to communicate anonymously and
asynchronously. The publisher/subscriber communica-
tion model defines three software roles:

• Publishersgenerate events to be transmitted.
• Subscribersreceive events via hook operations.
• Event channelsaccept events from publishers and

deliver events to subscribers.

The publisher/subscriber design is an especially power-
ful architecture for event-based communication because
it provides (1)anonymityby decoupling event publishers
and subscribers and (2)asynchronyby automatically no-
tifying subscribers when a specified event is generated.

QoS-enabled component middleware platforms lever-
age the benefits of component-centric software devel-
opment while simultaneously preserving the optimiza-
tion patterns and principles of distributed object com-
puting middleware. Before DRE application developers
can derive benefits from QoS-enabled components, how-
ever, common middleware services must be integrated
with component middleware in a manner that minimizes
the complexity associated with configuration and deploy-
ment. This paper describes a novel scheme that employs
model-based techniques to integrate a family of pub-
lisher/subscriber services within QoS-enabled CORBA
component middleware.

Our previous work on publisher/subscriber architec-
tures focused on the patterns and performance optimiza-
tions of event channels in the context of real-time ob-
ject middleware [4], specifically ahighly scalable[5] and
real-time [6] CORBA Event Service [7]. This paper ex-
tends our previous work by describing how patterns and
Model-Driven Middleware (MDM) [8] can be applied
to simplify the integration of publisher/subscriber ser-
vices in QoS-enabled component middleware. We have
developed a MDM tool-suite namedComponent Syn-
thesis with Model-Integrated Computing(CoSMIC) [9,
10] that employs our QoS-enabled CCM implementa-

tion, theComponent-Integrated ACE ORB(CIAO). The
CoSMIC toolsuite supports the development, assembly,
and deployment of QoS-enabled component applications.
This paper focuses on theEvent QoS Aspect Language
(EQAL), which is the CoSMIC tool that supports the
specification and configuration of publisher/subscriber
services.

The remainder of this paper is organized as follows:
Section 2 details the key challenges associated with im-
plementing and configuring publisher/subscriber services
in component middleware; Section 3 describes a pattern-
oriented component middleware framework and a com-
plementary MDM tool we developed to address these
challenges; and Section 4 presents concluding remarks.

2 Publisher/Subscriber Service In-
tegration Challenges in Compo-
nent Middleware

This section describes the inherent R&D challenges that
must be overcome in order to utilize QoS-enabled pub-
lisher/subscriber services for component-based applica-
tion development. For each challenge, we describe the
context in which the challenge arises, identify the specific
problem that must be addressed, and outline an approach
to resolving the challenge. Section 3 then illustrates how
we applied those solution approaches in CIAO and CoS-
MIC.

2.1 Challenge 1: Providing Pub-
lisher/Subscriber Service Access via
the Container Programming Model

Context. The container programming modelestab-
lishes a paradigm for component interaction with a run-
time execution environment. Specifically, the container
programming model designates a software entity, known
as acontainer, to manage a set of components. The con-
tainer supports an API framework through which devel-
opers control component lifecycles and access common
middleware services, including publisher/subscriber ser-
vices. The container architecture decouples components
from application server implementations, thereby enhanc-
ing flexibility and reuse.

2



A CCM container provides component implementa-
tions with access to common CORBA services, includ-
ing (but by no means limited to) two distinct pub-
lisher/subscriber services: the Event Service and the No-
tification Service. CIAO supports both these services,
as well as an extended version of the Event Service, the
Real-Time Event Service. Each publisher/subscriber ser-
vice that CIAO supports has different capabilities and is
accessed via a distinct interface. Figure 1 illustrates the
different aspects of QoS-enabled publisher/subscriber ser-
vice support within the CIAO container framework.

Figure 1: CIAO Publisher/Subscriber Service Frame-
work

Problem. The standardized CCM container interface is
designed to encapsulate only a subset of the Notification
Service, rendering the broader range of CORBA-based
publisher/subscriber services inaccessible. The container
interface is generic by design, simplifying its use and
enabling component interoperability among CCM imple-
mentations. Its design, however, prevents access to any
advanced publisher/subscriber service capabilities, such
as QoS guarantees. For example, the standard con-
tainer interface lacks any mechanism to specify priori-
ties, timeouts, or event correlation. In the case of DRE
applications, such capabilities are essential for effective
system operation. At the same time, exposing compo-
nents to dissimilar and proprietary publisher/subscriber
services requires developers to manipulate an overly com-
plicated and confusing range of interfaces, prevents com-
pliance with relevant OMG standards, and bloats compo-
nent memory footprint.
Solution approach→ Enhance containers to encap-
sulate, implement, and configure publisher/subscriber
services. CIAO’s container framework presents appli-
cation components with a uniform interface (shown as
the QoS adapter in Figure 1) through which various

publisher/subscriber services can be selected and con-
figured. This interface enables application components
to use any combination of the publisher/subscriber ser-
vices supported by CIAO. More importantly, the con-
tainer framework supports QoS configuration of pub-
lisher/subscriber services (e.g., assignment of priorities
and latency thresholds), without exposing components to
service implementation details by encapsulating service-
specific QoS specification operations within a high-level
interface. Consequently, components can invoke these
services in a straightforward manner (i.e., without becom-
ing tightly coupled to low-level CORBA programming
details), while preserving the flexibility and customizabil-
ity of the underlying services.

Section 3.1 describes how we applied patterns to en-
hance CIAO’s container framework to support a range of
publisher/subscriber services.

2.2 Challenge 2: Configuring Pub-
lisher/Subscriber Quality-of-Service
in Component Deployments

Context. Component-based DRE software deploy-
ments often require custom QoS configurations to target
multiple OS, network, and hardware platforms, each of
which may have slightly different requirements. In such
cases, event QoS requirements (such as latency thresh-
olds and priorities) may only be known when compo-
nents are deployed, rather than when they are developed.
Contemporary component middleware frameworks use
XML descriptor files to specify the publisher/subscriber
configurations and QoS constraints associated with par-
ticular software deployments. The component deploy-
ment mechanism is responsible for parsing these files
and making the appropriate invocations on the pub-
lisher/subscriber configuration interface provided by the
container.

Problem. It is tedious and error-prone tomanually
specify the QoS requirements of large-scale DRE compo-
nent deployments. Component middleware has become
complex to configure due to an increasing number of op-
erating policies (such as transaction and security prop-
erties, persistence and lifecycle management, and pub-
lisher/subscriber QoS configurations) that exist at mul-
tiple middleware layers and employ legacy specification

3



mechanisms not based on XML. To further complicate
matters, many combinations of policies are semantically
invalid and will result in system failure.
Solution approach→ Leverage modeling tools to con-
figure and deploy components in a graphical, intuitive
way. In the context of this paper, a modeling tool is a
software package that allows users to construct graphical
representations of complex concepts from primitive ele-
ments. To be useful, the tool must enforce syntactic rules
among the modeling elements and specify the semantics
of any valid model. In the context of component appli-
cations, modeling tools enable the creation of reusable
component deployment models that are easier to build,
understand, and maintain than manually written deploy-
ments. Moreover, modeling tools can automatically (1)
generate XML descriptor files that describe component
interactions and configuration files that specify middle-
ware operating policies and (2) validate models to ensure
consistency and coherency among component properties.

Section 3.2 describes the publisher/subscriber QoS
configuration tool we developed as part of the CoSMIC
tool-suite [9].

3 Pattern-Oriented and Model-
Driven Middleware Solutions in
CIAO and CoSMIC

The two challenges described in Section 2 require
different solution approaches. To address the pub-
lisher/subscriber service access challenge discussed in
Section 2.1, we employed pattern-oriented software [11,
3] techniques. To address the publisher/subscriber ser-
vice configuration challenge described in Section 2.2, we
employed Model Driven Middleware (MDM) techniques.
This section describes our two solution approaches in de-
tail.

3.1 Employing Patterns to Provide Pub-
lisher/Subscriber Service Access via the
Container Programming Model

The CIAO publisher/subscriber service architecture,
shown in Figure 1, employs patterns to address the de-
sign goals of the container programming model, outlined

in Section 2.1. For example, while maintaining effi-
ciency and reliability requirements, CIAO preserves the
lightweight nature of components. An individual compo-
nent need know nothing about the services that implement
event-passing – the container encapsulates that complex-
ity. It therefore follows that component application de-
velopers need not be concerned with these details, further
simplifying the design of the core component logic. For
each design goal mandated by the CIAO container pro-
gramming model, the pattern-oriented solution is detailed
below.

Design goal 1→ Simplify component development by
exposing a simple publisher/subscriber service inter-
face. To achieve this design goal in CIAO, we used the
Adapterpattern [11], which converts one interface into
a different one expected by clients. Since the CORBA
publisher/subscriber services were designed prior to CCM
their interfaces are not ideal for components. The con-
tainer therefore implements an adapter that provides
components with a simple, uniform interface and trans-
lates calls on that interface into calls on a specific pub-
lisher/subscriber service interface. The benefits of this de-
sign are twofold: (1) component developers need not con-
cern themselves with peculiar configuration interfaces and
(2) no matter what changes occur to the underlying pub-
lisher/subscriber services, the interface exposed to com-
ponents does not change.

Design goal 2→ Enhance reuse and extensibility by
allowing new publisher/subscriber services to be eas-
ily plugged-in. To achieve this design goal, we used
the Strategypattern [11], which defines classes that en-
capsulate different algorithms and declares an interface
common to all supported algorithms. In CIAO, a local
CORBA interface serves as the common interface, and
the various implementations encapsulate algorithms for
the different publisher/subscriber services. This design
results in service implementations that are interchange-
able from the container perspective. After object creation,
the container has no knowledge of the actual algorithm
being used, which enables fast operation delegations and
simplifies container design.

Design goal 3→ Reduce the memory footprint of
the container by decoupling the creation of pub-
lisher/subscriber service instances. To achieve this
design goal, we used theBuilder pattern [11], which sep-

4



arates the construction of objects from their representa-
tion, allowing the same process to create multiple imple-
mentations of the same object type. The creation of pub-
lisher/subscriber service instances is somewhat complex
in CIAO since (1) they must be initialized properly and
(2) different implementations are possible. CIAO defines
a builder class, orfactory, that encapsulates the complex-
ity of creating and initializing publisher/subscriber ser-
vice implementations. The result is finer control of the
construction process, isolation of construction code, and
the ability to vary the publisher/subscriber service imple-
mentation.

Design Goal 4→ Ensure components only incur the
cost of services that are required by deferring pub-
lisher/subscriber service selection and configuration
decisions until run-time. To achieve this design goal,
we used theComponent Configuratorpattern [12], which
allows an application to link and unlink its component im-
plementations at run-time. In CIAO, publisher/subscriber
service libraries are loaded dynamically on-demand to
avoid encumbering the application with unused services,
while still allowing components to wait until deployment
time to select a particular service. More generally, CIAO
enables entire applications to be composed of indepen-
dently developed services, thereby simplifying composi-
tion and deployment.

Design Goal 5→ Enable component access to the full
set of QoS features available in publisher/subscriber
services by encapsulating service-specific QoS speci-
fication operations within a high-level interface. To
achieve this design goal, we used theWrapper Facade
pattern [13], which defines a concise, robust, portable,
and maintainable interface to encapsulate low-level func-
tions and data structures. The CIAO publisher/subscriber
framework implements CORBA interfaces that contain
operations to configure QoS parameters for an individ-
ual publisher or subscriber connection. The operations of
these interfaces forward invocations to the corresponding
service-specific operations for each publisher/subscriber
service. This design results in a concise and robust pro-
gramming interface capable of configuring the QoS fea-
tures in multiple dissimilar publisher/subscriber services.

3.2 Employing Model-Driven Design, Ver-
ification, and Synthesis to Configure
QoS in Component Deployments

Section 3.1 describes how the CIAO container framework
supports access to publisher/subscriber services. Specify-
ing service configurations textually is unnecessarily com-
plex, however. We therefore describe theEvent QoS As-
pect Language(EQAL), which is the CoSMIC MDM
tool for graphically specifying publisher/subscriber ser-
vice configurations. EQAL consists of two complimen-
tary entities:

• A meta-modelthat defines a modeling language, or
paradigm. The meta-model specifies the types of
modeling elements, their properties, and relation-
ships.

• Model interpretersthat synthesize middleware con-
figuration files from models. The EQAL model inter-
preters automatically generate publisher/subscriber
service configuration files and component property
description files.

The EQAL meta-model defines a modeling paradigm
for the Generic Modeling Environment (GME) [14].
Within this paradigm, a modeler specifies the desired
publisher/subscriber service (i.e., event service, notifica-
tion service, or real-time event service) and the config-
uration of that service for each component event connec-
tion. EQAL model interpreters can be executed to validate
the models and synthesize text-based configuration files
for a given component assembly. Component deployers
can therefore build publisher/subscriber service configu-
rations for component applications using the EQAL mod-
eling paradigm and associated model interpreters. Below
we describe each part of EQAL shown in Figure 2.

Figure 2: The Event QoS Aspect Language Architec-
ture

5



Meta-model. A meta-model comprises a concrete man-
ifestation of a modeling paradigm,i.e., the syntactic,
semantic, and presentation abstractions defined by a
domain-specific modeling language [15]. The EQAL
meta-model defines a modeling paradigm for pub-
lisher/subscriber service configuration models, which
specify QoS configurations, parameters, and constraints.
For example, the EQAL meta-model contains a distinct
set of modeling constructs for each publisher/subscriber
service supported by CIAO. Policies and strategies that
can be modeled include (but are not limited to) filtering,
correlation, timeouts, locking, disconnect control, and
priority.

Publisher/subscriber service policies have differing
scope, from a single port to an entire event channel. The
EQAL meta-model allows modelers to provision reusable
and sharable configurations at each level of granularity.
A modeler assigns configurations to individual event con-
nections and then constructs filters for each connection.
Two forms of event generation using the push model are
supported,i.e., a component may be an exclusive supplier
of an event type or a component may supply events to a
shared channel.

Model constraints. Dependencies among pub-
lisher/subscriber QoS policies, strategies, and configura-
tions are complex. Ensuring coherency among policies
and configurations has been a major source of complexity
in component middleware [16]. During the modeling
phase, EQAL ensures that dependencies between config-
uration parameters are enforced by declaring constraints
on the contexts in which individual options are valid.
EQAL can then automatically verify the legitimacy
of configurations and notify the user during modeling
time of incompatible QoS properties. For example,
priority-based thread allocation policies are only valid
with component event connections that have assigned
priorities.

Model interpreter. EQAL synthesizes multiple config-
uration files. A component deployment framework parses
these files, creates event channels, and configures each
connection, while shielding the actual component imple-
mentations from the lower-level middleware service de-
tails. A single component deployment may encompass
any number of EQAL models and may require a large

number of files to be synthesized. However, the EQAL
interpreters can generate all the necessary configuration
specifications with a single user command. Based on
the root model specified for interpretation, EQAL gen-
erates as many descriptors as required, making multiple
passes through the model hierarchy if necessary. These
files must currently be written by hand, which is time-
consuming and error-prone. At the same time, component
deployment platforms are highly intolerant of syntactical
and semantic errors, making debugging difficult and te-
dious. Accordingly, the automation of this process - and
the associated assurance of model validity - improves the
reusability of components across diverse deployment sce-
narios.

EQAL incorporates two distinct model interpreters.
The first interpreter generates XML descriptor files that
are used by a component deployment framework. This
interpreter relies on all types of EQAL models during syn-
thesis, and thus the modeler must have completely speci-
fied the component event configuration - from event chan-
nels down to individual ports - for this interpreter to func-
tion. The second interpreter generates service configu-
ration svc.conf files for The ACE ORB (TAO) [17],
which is the underlying Object Request Broker (ORB)
used by CIAO. Thesvc.conf files are scripts that spec-
ify event channel policies and strategies. This interpreter
only requires that event channel configurations have been
modeled. Both file types - XML descriptors and TAO
svc.conf files - have well-defined structure and syntax.

• XML descriptor synthesis. XML descriptors are
the standard way to describe component deployments in
CCM. These files specify how components are connected
together, on what hosts they will run, how the components
are instantiated, among numerous other properties. The
XML descriptors synthesized by the EQAL interpreter
indicate the QoS requirements of individual component
event connections. Since the CCM specification does not
explicitly address the mechanisms for ensuring compo-
nent QoS properties, the EQAL-generated descriptors are
based on official schema developed at Boeing for their
extension mechanisms built into CCM, however, the de-
scriptors remain compliant with the CCM specifications.
We use Bold Stroke schema because it has been carefully
crafted, refined, tested, and optimized in the context of
real-world DRE avionics mission computing systems.

6



• Service configuration file generation. The inter-
preter that generates event channelsvc.conf files is
more straightforward than the XML descriptor generator.
Although there are a large number of policies that result
in many modeling element sub-types, the majority of the
complexity in resolving event channel configurations is
accomplished by the EQAL modeling constraints. De-
pendencies and interactions between event channel poli-
cies are complex, making handcrafting these files hard,
but once a valid set of parameters is guaranteed, this
EQAL interpreter need only discover the artifacts con-
tained within a configuration and write the appropriate
parameters to a file.

4 Concluding Remarks

The integration of QoS-enabled publisher/subscriber ser-
vices into component middleware allows developers of
DRE systems to leverage the benefits of component-
centric software development. This paper described how
QoS-enabled publisher/subscriber services can be inte-
grated into a component middleware container frame-
work using patterns and how such services can be con-
figured using modeling tools. The integration techniques
we described allow DRE system developers to utilize
the full extent of publisher/subscriber service capabil-
ities without becoming tightly-coupled to service im-
plementations. The modeling techniques described al-
low DRE system deployers to rapidly create, validate,
and synthesize component publisher/subscriber QoS con-
figurations. Finally, this paper demonstrated each in-
tegration strategy in CIAO and CosMIC. The CIAO
and CosMIC distributions are available for download
at www.dre.vanderbilt.edu/CIAO/ and www.
dre.vanderbilt.edu/cosmic/ , respectively.

References
[1] Richard E. Schantz and Douglas C. Schmidt, “Middleware for

Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” inEncyclopedia of Software
Engineering, John Marciniak and George Telecki, Eds. Wiley &
Sons, New York, 2002.

[2] George T. Heineman and Bill T. Councill,Component-Based
Software Engineering: Putting the Pieces Together,
Addison-Wesley, Reading, Massachusetts, 2001.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal,Pattern-Oriented Software
Architecture—A System of Patterns, Wiley & Sons, New York,
1996.

[4] Douglas C. Schmidt and et al., “TAO: A Pattern-Oriented Object
Request Broker for Distributed Real-time and Embedded
Systems,”IEEE Distributed Systems Online, vol. 3, no. 2, Feb.
2002.

[5] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy,
“Patterns and Performance of a CORBA Event Service for
Large-scale Distributed Interactive Simulations,”International
Journal of Computer Systems Science and Engineering, vol. 17,
no. 2, Mar. 2002.

[6] Douglas C. Schmidt and Carlos O’Ryan, “Patterns and
Performance of Real-time Publisher/Subscriber Architectures,”
Journal of Systems and Software, Special Issue on Software
Architecture - Engineering Quality Attributes, 2002.

[7] Object Management Group,Event Service Specification Version
1.1, OMG Document formal/01-03-01 edition, Mar. 2001.

[8] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran
Natarajan, Jeff Gray, and Nanbor Wang, “Model Driven
Middleware,” inMiddleware for Communications, Qusay
Mahmoud, Ed. Wiley and Sons, New York, 2003.

[9] Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh
Balasubramanian, Arvind Krishna, George T. Edwards, Gan
Deng, Emre Turkay, Jeffrey Parsons, and Douglas C. Schmidt,
“Model Driven Middleware: A New Paradigm for Deploying and
Provisioning Distributed Real-time and Embedded Applications,”
Submitted to The Journal of Science of Computer Programming:
Special Issue on Model Driven Architecture, 2004.

[10] Aniruddha Gokhale, “Component Synthesis using Model
Integrated Computing,”
www.dre.vanderbilt.edu/cosmic , 2003.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

[12] Douglas C. Schmidt and Stephen D. Huston,C++ Network
Programming, Volume 2: Systematic Reuse with ACE and
Frameworks, Addison-Wesley, Reading, Massachusetts, 2002.

[13] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann,Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2, Wiley & Sons,
New York, 2000.

[14] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg
Nordstrom, Jonathan Sprinkle, and Gabor Karsai, “Composing
Domain-Specific Design Environments,”IEEE Computer, Nov.
2001.

[15] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty,
“Model-Integrated Development of Embedded Software,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 145–164, Jan. 2003.

[16] Douglas C. Schmidt and Chris Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware,”IEEE Communications
Magazine, vol. 37, no. 4, Apr. 1999.

[17] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee,
“The Design and Performance of Real-Time Object Request
Brokers,” Computer Communications, vol. 21, no. 4, pp.
294–324, Apr. 1998.

7


