
CoSMIC: An OMG MDA Toolsuite for Distributed Real-time and
Embedded Applications∗

Aniruddha Gokhale Balachandran Natarajan Jeff Parsons
Krishnakumar B. Tao Lu Boris Kolpakov

ISIS
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

Contact Author: a.gokhale@vanderbilt.edu

Abstract

The Object Management Group (OMG) has adopted the
Model Driven Architecture (MDA) to standardize the
integration of the modeling and simulation paradigm
with middleware technology platforms. The MDA de-
fines platform-independent models (PIMs) and platform-
specific models (PSMs) that streamline platform integra-
tion issues and protect investments against the uncertainty
of changing platform technology. This technology has
been most successful to date notably for enterprise and
business applications, where modeling techniques using
the Unified Modeling Language (UML) have been inte-
grated with component middleware technologies, such as
Enterprise Java Beans (EJB), Microsoft’s .NET, and the
CORBA Component Model (CCM).

The MDA technology is yet to make its impact in the
domain of distributed real-time and embedded applica-
tions (DRE) in areas such as avionics, telecommunica-
tions, industrial process control and defense. Recent ef-
forts, notably within OMG and some DARPA DoD pro-
grams, have started addressing these issues.

CoSMIC is an OMG MDA tool suite tailored to the re-
quirements of DRE applications. CoSMIC addresses the
following unresolved challenges in using COTS middle-
ware to build mission-critical DRE systems with time and
space constraints:

∗Work supported by DARPA PCES grant number F33615-00-C-
1695

1. Lack of middleware composability to support
multidimensional QoS: An increasing number of
DRE applications, such as controllers for surface-
mount component pick-and-place machines, have
stringent QoS requirements that must be satisfied
simultaneously in real-time. QoS provisioning in
large-scale DRE systems crosscuts multiple system
layers and requires end-to-end enforcement. This
entails the need for separate, modularized, fine-
grained, small footprint DRE middleware addressing
individual QoS properties that can then be combined
and assembled to provision QoS. However, existing
middleware lack the tools to compose middleware
components tailored to the QoS needs of DRE ap-
plications.

2. Accidental complexities in integrating software
systems: Ad hoc techniques in determining, com-
posing, assembling, and deploying the right mix of
semantically compatible, QoS-enabled COTS mid-
dleware components do not scale well as the DRE
application size and requirements increase. More-
over, ad hoc techniques, such as manually selecting
the components, are often tedious, error-prone, and
lack a solid foundation to support verification and
validation.

3. Accidental complexities in configuring middle-
ware: Existing DRE COTS middleware tend to pro-
vide a large number of configuration parameters (or
knobs) required to customize and fine-tune the mid-

1



dleware behavior and performance. However, deter-
mining the right combination of semantically com-
patible knobs from among a large set of available op-
tions is fraught with accidental complexities that are
a deterrent to the use of COTS middleware in DRE
systems. A tools-based approach is needed that al-
lows specification and analysis of DRE application
requirements, resulting in automated selection of the
right set of parameters that must be used to configure
the DRE middleware.

4. Lack of principled methodologies to support re-
flective middleware capabilities:DRE applications
most often operate in dynamically changing environ-
ments. Therefore, it is necessary for the underlying
DRE middleware to be adaptive in order to maintain
end-to-end QoS. Adaptation requires instrumenting
the middleware to reflect upon the runtime middle-
ware resource usage data and adapting the behav-
ior based on the collected data. Existing practice
in configuring these QoS meta data collection points
i.e., reflective hooks, within DRE middleware are
based on ad hoc manual programming techniques
that are error prone and hard to verify. Moreover,
these hooks tend to crosscut multiple layers of DRE
middleware.

To address the aforementioned challenges, the CoS-
MIC R&D activities involve the following tasks:

1. Development of aspect-oriented modeling tools for
high-level specification of DRE application QoS re-
quirements. The interaction of these requirements
serve as the basis for the phases involving analysis
and aspect-oriented code generation.

2. Development of analysis tools that analyze the end-
to-end QoS and time/space constraints of DRE ap-
plications. This goal also requires developing anal-
ysis, verification and validation tools for the com-
posite models so that the synthesized middleware is
already partially validated, thereby reducing testing
costs and project schedules.

3. Mapping the end-to-end QoS constraints specified in
the models to the target-specific middleware config-
uration parameters

4. Development of generators that compose optimized
and fine-tuned middleware components to meet the

end-to-end constraints. The goal is to generate the
right set of customized middleware composed from
fine-grained QoS-enabled middleware components.

5. Developing aspect weavers and program transforma-
tion tools that can weave in application QoS require-
ments to compose customized middleware from fine-
grained QoS enabled components. The goal is to en-
sure that changes to the application’s QoS properties
can be validated and woven transparently without re-
quiring expensive, time-consuming and error-prone
recoding and experimentation.

6. Development of additional aspect weavers that in-
strument synthesized code to collect, organize and
present QoS meta-information to the QoS adapta-
tion layer that controls the middleware infrastruc-
ture. The model-driven synthesis approach helps the
user to specify these properties at the modeling level
thereby eliminating the accidental complexities in-
volved in existing ad hoc techniques to accomplish
this.

If these capabilities are not realized, complex DRE ap-
plications will continue to be built using existing non-
validated, non-verifiable ad hoc techniques that are te-
dious and error prone, and almost always result in un-
wieldy total ownership costs. Moreover, these non-
scalable techniques will continue to be used to provision
end-to-end QoS for such systems. This will continue to
haunt DRE application developers since build schedules
will continue to slip, allocated budgets will continue to be
insufficient, and total ownership costs will continue to be
insurmountable. This will be all the more prevalent with
COTS hardware and software refresh.

2


