
Domain-Specific Intelligence Frameworks for Assisting
Modelers in Combinatorically Challenging Domains ∗

Jules White,
Douglas C. Schmidt

Vanderbilt University,
Department of Electrical Engineering and

Computer Science
Box 1679 Station B

Nashville, TN, 37235, USA

{jules, schmidt}@dre.vanderbilt.edu

Andrey Nechypurenko,
Egon Wuchner

Siemens AG,
Corporate Technology (SE 2)

Otto-Hahn-Ring 6
81739 Munich, Germany

{andrey.nechypurenko,
egon.wuchner}@siemens.com

ABSTRACT
Domain-Specific Modeling Languages (DSMLs) are a means
of simplifying the development of a large class of systems.
There are many domains, however, where the domain con-
straints are so restrictive and the solution spaces so large
that it is extremely difficult for a modeler to manually pro-
duce a correct solution using a DSML. For example, mod-
eling the deployment of software components to nodes and
observing configuration and resource constraints, even when
only a few tens of model entities are present, can easily gen-
erate solution spaces with millions or more possibile deploy-
ments and few correct ones. This paper address the chal-
lenge of creating a Domain-Specific Intelligence Framework
(DSIF) to help a modeler solve combinatorically challeng-
ing modeling problems. The paper provides five key con-
tributions to the integration of DSMLs and model intelli-
gence. 1) We present experiments showing how a domain-
specific knowledge base and domain-specific solution algo-
rithms can greatly reduce the complexity of integrating a
solver. 2) We provide methods for templatizing a Knowledge
Base (KB) and KB-based constraint solvers so that they can
be paramertized by a metamodel. 3) We present experi-
ments validating that a metamodel-parameterized KB and
solvers require less code and provide superior performance
to generic KBs and solvers. 4) We illustrate methods for us-
ing an Observer, templatized by a metamodel, to translate
events from the object graph of a DSML tool into DSKB
events and DSKB events back to object graph events. 5)
Finally, we present a case-study based on a tool for sovling
AUTOSAR, an automotive modeling standard, deployment
problems.

1. INTRODUCTION
∗Work is funded by and conducted in cooperation with
Siemens Coroprate Technology (CT SE 2)

GPCE4QoS ’06 Portland, Oregon USA

Domain-Specific Modeling Languages (DSMLs) are a means
of combining high-level visual abstractions, specific to a do-
main, with constraint checking and code-generation to sim-
plify the development of a large class of systems[10]. There
are many domains, however, where the domain constraints
are so restrictive and the solution spaces so large that it
is extremely difficult for a modeler to manually produce a
correct solution using a DSML. In these domains, model-
ing tools that merely provide solution-correctness checking
via constraints, provide few real benefits over a DSML-less
approach. The true complexity in these domains is their
combinatorial nature and not code construction. For exam-
ple, specifying the deployment of software components to
hardware units in a car, while observing configuration and
resource constraints, even when only a few tens of model
entities are present, can easily generate solution spaces with
millions or more possibile deployments and few correct ones.
For these combinatorially complex modeling problems, it is
impractical, if not impossible, to create a complete and valid
model manually.

One approach to creating solutions for problems in these
domains is to transform partial solutions, such as a listing
of components and the nodes they may be deployed to, into
a format that can be solved using a general purpose solver,
such as a constraint logic programming solver. There are a
large number of optimization, constraint solver, and infer-
ence engines available that can be utilized for this purpose.
As noted in [7], however, modeling is emerging as a major
challenge: automating the formulation of real problems in
a suitable form for efficient algorithmic processing is hard.
Transforming an arbitrary graphical DSML model into a
format suitable for a general purpose solver is extremely te-
dious and error-prone. Integrating the results of the solver
back into a DSML tool and providing interactive capabilities
is also difficult.

To address the challenges of modeling combinatorically com-
plex domains, methods are needed to reduce the cost of in-
tegrating Model Intelligence, or mechanisms that can guide
the user from a partially specified model to a complete and
correct one. Furthermore, these methods should respect the
domain-specificity of the modeling tool and provide a flexible
mechanism for specifying solvers using domain notations.

This paper address the problem of creating and maintaining
a Domain-Specific Intelligence Framework (DSIF) to help a
modeler solve combinatorically challenging modeling prob-
lems. The paper provides five key contributions to the in-
tegration of DSMLs and model intelligence. 1) We present
experiments showing how a domain-specific knowledge base
and domain-specific intelligence framework can greatly re-
duce the complexity of integrating a solver. 2) We pro-
vide methods for templatizing a Knowledge Base (KB) and
KB-based constraint solvers so that they can be paramer-
tized by a metamodel. 3) We present experiments validating
that a metamodel-parameterized KB and solvers require less
code and provide superior performance to generic KBs and
solvers. 4) We illustrate methods for using an Observer [5],
templatized by a metamodel, to translate events from the
object graph of a DSML tool into DSKB events and DSKB
events back to object graph events. 5) Finally, we present a
case-study based on a tool for sovling AUTOSAR, an auto-
motive modeling standard, deployment problems.

The rest of the paper is organized as follows: Section 2 dis-
cusses challenges of AUTOSAR deployment, which we will
use as a motivating example; Section 3 presents KB, solver,
and Observer templatization techniques for creating DSIFs;
Section 4 presents our results from applying Model Intelli-
gence to modeling AUTOSAR deployments; and Section 5
presents concluding remarks.

2. MOTIVATING EXAMPLE
AUTOSAR is a new standard for automotive software de-
velopment modeling. The goal of the standardisation is to
solve the set of typical problems inherent when developing
large scale, distributed real-time systems for the automotive
domain.

In particular, large efforts are required to relocate functions
between Electronic Control Units (ECUs), i.e. computers
and micro-controllers running software components within
a car. The main reason for the difficulties in this case are:
a) each component typically has a large set of constraints
that need to be met by the target ECU; b) there are large
numbers of possible deployments of components to ECUs in
an automobile.

For example, finding a set of interconnected nodes able to
run a group of components that communicate via a bus is
difficult to do manually. Modelers must determine whether
the available communication channels between the target
ECUs meet the bandwidth, latency, and framing constraints
of the components communicating through them. It is also
very important in automotive domain to reduce the overall
price of the solution, which necessitates optimizations, such
as finding deployments that use as few ECUs as possible or
that minimize bandwidth requirements. It is hard, if not
impossible, to answer these questions manually for a real
system model.

In order to illustrate the practical benefits of integrating a
DSIF with a DSML, we present a case-study based on a tool
we have developed to solve AUTOSAR-like constraints for
the valid deployment of software components to ECUs.

There are two views on the AUTOSAR systems:

• Logical collaboration structure specifies compo-
nents or functions that should communicate with each
other and through what interfaces.

• Physical deployment structure captures the capa-
bilities of each ECU, their interconnecting buses, and
their available resources.

The mapping from components in the logical to physical
structure (the deployment model) is generally specified with
a graphical tool. Figure 1 illustrates the idea of mapping
from the logical collaboration structure to the physical de-
ployment structure using a graphical tool.

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

RTE

AUTOSAR
SW Component1

RTE

Basic Software

RTE

Basic Software Basic Software

ECU1 ECU2 ECU3

Gateway

...

Virtual Function Bus

Tool Supporting Deployment of Software Components

Mapping

Figure 1: Mapping from the logical collaboration to

the physical deployment structure

Modern cars are typically equipped with 80 or more ECUs
and several hundred or more software components. Simply
drawing arrows from 160 components to 80 ECUs is tedious.
Adding to the difficulty of a manual approach, are require-
ments governing the valid ECUs that can host a component,
such as the amount of memory required to run, CPU power,
operating system type and version (if any), etc. These con-
straints have to be carefuly considered while deciding where
to deploy a particular component. The problem is further
exacerbated when the physical communication pathes and
aspects, such as available bandwidth in conjunction with
periodical real-time messaging, are considered.

In the research work presented in this paper, we use a tool to
specify the mapping of components to nodes in AUTOSAR
models as our case study. The goal of our case-study tool
was to create (semi)automated mechanisms to map soft-
ware components to ECUs without violating the known con-
straints. The following sections describe our approach and
show how a DSIF can provide significant reductions in com-
plexity for our AUTOSAR deployment examples.

3. CREATING DOMAIN-SPECIFIC INTEL-
LIGENCE FRAMEWORKS

Based on the motivation in the previous section, our main
research goals were to: a) define the infrastructure for pro-
viding a DSIF for a DSML; b) provide a mechanism to auto-
mate the creation and integration of a DSIF and c) provide
mechansims to automatically complete a partially specified
model using information extracted from the domain con-
straints.

In previous work [11, 13, 12], we have illustrated how a
DSML can improve the modeling experience and bridge the
gap between the problem and solution domain by the in-
troduction of domain-specific abstractions. As a result of
these efforts, the Generic Eclipse Modeling System (GEMS)
was created. GEMS provides a convenient way to define the
metamodel, i.e. the visual syntax of the DSML. Based on
the metamodel, GEMS can automatically generate a graphi-
cal editor that enforces the grammar specified in the DSML.
In addition, to facilitate code-generation, GEMS provides
convenient infrastructure (such as built-in support for Vis-
itor pattern implementation) to simplify model traversal.
We used GEMS as the basis for our AUTOSAR deployment
modeling tool and our work on DSIFs.

3.1 Describing Domain Constraints
One of the key research challenges was determining how to
specify the set of model constraints in such a way that they
could be used not only to check the model for correctness
but also to guide the user through a series of model modifi-
cations to bring it to a valid state. We considered using Java,
the Object Constraint Language (OCL) and Prolog for our
constraint specification language. Initially, we implemented
our AUTOSAR deployment constraints in each of the three
languages to evaluate their pros and cons. The following list
summarize our observations:

• Java can be used to define constraints by writing code
fragments which access the in-memory object graph of
the model and ensure that constraint conditions are
met. GEMS, can dynamically compile arbitrary Java
constraints that are invoked by modeling events, such
as the user creating a deployment connection from
a component to a node. Java constraint specifica-
tion is convenient for exposing simple constraints, but
its utility as a constraint language decreases as mod-
els become more complicated and consequently the
Java constraints require more object graph traversal
code. Java also has the disadvantage that the con-
straint writer must have intimate knowledge of the in-
ternal data structures used by GEMS to maintain the
model. In many domains, modelers should not be ex-
pected to have any Java experience. Our key criterion
for not choosing Java-based constraints, however, was
that there is no method for deriving the intput to an
arbitrary Java constraint that will cause it to evalu-
ate to true. Java constraints can be used to check for
correctness but cannot be used to infer possible valid
additions to the model and hence provide modeling
suggestions.

• OCL is very compact, in terms of the amount of code
that must be written by a user, and does not require
the constraint writer to have detailed knowledge of the
internal object graph. OCL, however, has the same

core disadvantage of Java. Given an arbitrary OCL
expression, there is no easy way to deduce a sequence
of model changes that will satisfy the constraint. It is
worth noting, however, that the OCL language itself
does not prevent finding the solutions to an expression
but the currently available tools do not provide this
capability. Theoretically, OCL could be implemented
on top of a Prolog engine and provide this capability.

• Prolog is a declarative programming language where
the programmer can define the set of rules in terms
of known facts or a knowledge base (KB). Prolog can
then evaluate these rules and determine if they can
be satisifed by the known facts. Prolog provides a
unique degree of flexibility for writing constraints in
that it not only replies with whether or not a rule can
be satisfied but what the valid fact combinations are
that will satisfy it. If the user completely specifies the
input variables, Prolog merely checks whether the rule
holds for the provided input. If, however, some of the
input variables are not specified, Prolog has the unique
ability to return the set of possible facts from the KB
that lead the rule to evaluate to “true”.

As a result of the evaluation we conducted, we came to con-
clusion that Prolog is the most appropriate language for
providing both constraint checking and model suggestions.
The declarative nature of the language reduces the num-
ber of lines of code needed to be written to both transform
an instance of a DSML into a knowledge base and create
constraints (its roughly comparable to OCL for writing con-
straints). Most importantly, Prolog provides the ability for
the modeling tool to derive sequences of modeling actions
that will take the model from an incomplete or invalid state
to a valid one. This capability, as we will discuss later, is
crucial for domains, such as deployment, where completely
manual model specification is infeasible or extremely time
consuming.

The following section details our approach to creating DSIFs
using Prolog and GEMS.

3.2 Prolog-based approach
To provide Model Intelligence, the modeling tool must be
able to capture the current state of the model and reason
about how to guide the model through a series of modi-
fications so that it satisfies the domain constraints. For
our AUTOSAR deployment example, the DSIF must pro-
vide a mechanism for, given a set of components, their re-
quirements, nodes, and their resources, suggest a valid as-
signment of components to nodes. Our work provides this
reasoning capability to GEMS by automatically generating
a Prolog representation of each model, allowing the user to
specify Prolog constraints, and then querying the constraints
for valid sequences of model changes to bring the model to
a valid state.

GEMS metamodels represent a set of model entites and the
role-based relationships between them. For each model, our
DSIF parameterizes a Prolog KB using these metamodel-
specified entities and roles. For each entity, we generate
a unique id and a predicate statement specifying the type

associated with it. For example, a component in our AU-
TOSAR model is transformed into the predicate statement
component(id), where id is the unique id for the component.
For each instance of a role-based relationship in the model,
a predicate statement is generated that takes the id of the
entity it is relating and the value it is relating it to. For
example, if a component, with id 23, has a TargetHost rela-
tionship with a node, with id 25, the predicate statement
targethost(23,25) is generated. This predicate statement
specifies that the entity with id 25 is a TargetHost of the
entity with id 23. Each KB provides a domain-specific set
of predicate statements.

The domain-specific interface to the KB provides several
advantages over a generic format, such as the format that
would be used by a general purpose constraint solver. 1.
The KB maintains the domain-specific notations from the
DSML making the format more intuitive and readable to do-
main experts. 2. Maintaining the domain-specific notations
allows constraints to be specified using domain notations,
improving a developer’s ability to understand how require-
ments map to constraints. 3. In experiments that we con-
ducted, writing constraints using the domain-specific predi-
cates produced rules that had fewer levels of indirection and
greatly outperformed rules written using a generic format.
As would be expected, the size of the performance advan-
tage was dependent on the generality of the KB format. For
accessing properties of the model entities, the predicate syn-
tax presents the most specific KB format. Given an entity
id and role name, the value can be accessed with the state-
ment role(id,Value), which has exactly zero or one facts that
match it.

There are two types of Prolog rules needed to enable Model
Intelligence:

• User-defined constraints - they are a semantical
enrichment of the model that specify the requirements
of a correct model. These constraints are also used to
automatically deduce the sets of valid model changes
to create a correct model. As an example, consider the
following constraint to check if a node is a valid host
of a component:

is_a_valid_component_targethost(Component,

Node).

It can be used to both check a Component-Node com-
bination:

is_a_valid_component_targethost(23,25).

and to find valid Nodes that can play the TargetHost
role for a particular components:

is_a_valid_component_targethost(23, Nodes).

In this example, the Nodes variable will be assigned
the list of all valid nodes for the TargetHost role of the
specified component. This example illustrates how the
constraint can be used to check as well as to generate
the solution. It is also worth noting that there are a
lot of existing algorithms and libraries developed by

the artificial intelligence community and other Pro-
log enthusiasts which can be used while performing
complex model analysis. In other work, we have used
the new DSIF capabilities of GEMS to integrate an
existing Prolog Qualitative Differential Equation sim-
ulator into one of our DSMLs. The integration was
very straightforward and required less than 100 lines
of Prolog code.

• Generated reusable rules - during the development
of our DSIF infrastructure and while writing different
constraints we found that certain types of problems
occur frequently. For example, a common problem
is given a model entity and a role that can be as-
signed on the entity, to find the set of valid values
for that role. This directly corresponds to our AU-
TOSAR deployment example where we need to find
the valid nodes for each component’s TargetHost role.
It is possible to formulate the solutions to these com-
mon problems in a template form so that they can
be parameterized by the metamodel and included in
the generated KB. Many of the common constraint
solutions are based on inference and thus our DSIF is
modularized according to the architecture proposed in
[6]. The DSIF separates the inference based solvers
and the domain-specific solvers, such as a bin-packing
solver. As a result, we have developed a set of reusable
inference-based rules which can be used by a constraint
writer to reduce manual coding. As discussed in [7],
constraint frameworks that integrate multiple solution
methods provide the best approach. The metamodel-
parameterized rules generated into the DSIF can also
be used to automatically provide visual feedback to
a modeler. We have integrated a tool infrastructure
into GEMS that listens for user-initiated connections,
finds all valid connection roles that the source entity
may participate in, and then finds the set of all valid
values for these connection relationships. These valid
connection endpoints are then suggested to the user
by highlighting valid model entities. This feedback
mechanism is automatically incorporated into GEMS-
generated DSMLs. Modelers only need to specify the
constraints and the generated DSIF framework can au-
tomatically find valid solutions for some types of prob-
lems. The feedback mechanism and solver are also dy-
namic, users can add constraints at modeling time and
immediately begin receiving guidance from the DSIF.

The DSIFs generated by GEMS leverage SWI Prolog and
use the Java Prolog Library (JPL) to invoke Prolog queries
from within Java. The KB is synchronized with the model
by issuing Prolog assert/1 and retract/1 statements when
new information is added or removed from the model. One
complexity resulted by the use of a domain-specific knowl-
edge base was that translating events from the object graph
of the model into KB events was much more difficult. The
complexity is that the knowledge base format does not cor-
respond directly to the object graph. To overcome this
problem, a Observer is used that is parameterized by the
metamodel at runtime so that object graph events can dy-
namically be translated into type and relationship predicate
statements. For each object graph event, the Observer looks
up the meta type of the event source, deduces the modified

role, translates the event into a predicate, and asserts the
predicate into the DSKB.

The DSIF also provides mechansims to trigger arbitrary Pro-
log rules from the modeling tool and incorporate their re-
sults into the model object graph. This mechanism is use-
ful for providing global rules for solving complex problems
involving multiple model entities and roles. For example,
for the AUTOSAR deployment tool, a rule was developed
to check not only configuration constraints but also resource
constraints for all components and derive a valid TargetHost
for every component. This feedback interface allows Pro-
log rules to return further assertions or retractions to the
knowledge base which are then translated into object graph
events. The assertions and retractions use the native DSKB
format. Again, the metamodel-paramaterized Observer is
used to decompose the predicate statements into changes
involving the role of an object in the object graph. The de-
composition is performed by using the predicate as the role
name, the id to lookup the correct model object, and the
metamodel to find the correct code entry point to change
the role value.

While developing these feedback mechanisms, we also found
that it could be useful to base the model on the state of an
application running outside of GEMS for monitoring pur-
poses. To enable this type of monitoring-based DSML, we
implemented a CORBA interface within gems which can
receive updates to the DSKB using a predicate/arguments
format. As a result, with a small amount of effort, GEMS
can be turned into a very powerful monitoring and control
system. For example, it is straightforward to convert GEMS
into an Eclipse Rich Client Platform (RCP) application and
run it as a standalone, only showing the model and corre-
sponding set of rules. This can be used, for example, to
show failed Nodes in our AUTOSAR deployment example,
recalculate a new deployment strategy, and trigger the re-
deployment of components. In this case, the information
about failed nodes is received from a remote observer us-
ing the provided CORBA interface. The following CORBA
IDL fragment shows the core part of the CORBA interface
we are providing (exceptions, and some other definitions are
omitted).

enum Operation {Insert, Update, Delete};

struct EntityRecord {

Operation op;

string predicate;

StringSeq params;

};

typedef sequence<EntityRecord> EntityRecordSeq;

interface Model {

void applyChanges(in EntityRecordSeq entities);

void getEntities(in long offset, in long count,

out EntityRecordSeq entities);

};

4. CASE STUDY: DEPLOYMENT MODEL-
ING FOR AUTOSAR

To validate our DSIF approach to Model Intelligence, we
created a DSML for modeling AUTOSAR deployment prob-
lems. Our goal was to create a modeling tool that enabled

the developer to specify partial solutions, as sets of com-
ponents, requirements, nodes, and resources. A further re-
quirement was that the tool could produce both valid assign-
ments for a single component’s TargetHost role and global
assignments for the TargetHost role of all components. It is
often the case in the automotive domain that certain soft-
ware components cannot be moved between ECUs from one
model car to the next due to manufacturing, quality assur-
ance, or other concerns. In these situations, developers must
be able to fix the TargetHost role of certain components and
allow the tool to solve for valid assignments of the remaining
unassigned component TargetHost roles. Thus, we also re-
quired that our tool be able to complete a partially specified
deployment of components to nodes, if a valid deployment
exists.

For the first step, we created a deployment metamodel which
defines a DSML that allows the user to model components
with arbitrary configuration and resource requirements and
nodes with arbitrary sets of provided resources. Each com-
ponent configuration requirement is specified as an assertion
on the value of a resource of the assigned TargetHost. For
example, OSVersion > 3.2 would be a valid configuration
constraint. Resource constraints were created by specifying
a resource name and the amount of that resource consumed
by the component. Each Node was not allowed to have
more components deployed to it than its resources could
support. Typical resource requirements were the RAM us-
age and CPU usage. Each host in turn could provide an
arbitrary number of resources. Constraints comparisons on
resources were specified using <, >, - and = signs to denote
that the value of the resource with the same name and type
(for example OS version) must be less, greater or equal to
the value specified in requirement. The “-” relationship in-
dicates a summation constraint or that the total value of the
demands on a resource, by the components deployed to the
providing node, does not exceed the amount present on the
node. Figure 2 shows a screen-shot of the our deployment
DSML.

Figure 2: Mapping from the logical collaboration to

the physical deployment structure

After defining the metamodel and generating the deploy-
ment DSML using GEMS, we added the a set of Prolog
constraints to enforce the configuration and resource con-

straint semantics of our models. Our constraint rules speci-
fied that for each child requirement element of a component,
a corresponding resource child of the TargetHost must sat-
isfy the requirement. Our complete configuration constraint
rules are listed below:

comparevalue(V1,V2,’>’) :- V1 > V2.

comparevalue(V1,V2,’<’) :- V1 < V2.

comparevalue(V1,V2,’=’) :- V1 == V2.

%Resource constraints were checked in further

%rules. This rule helped to reduce the possible

%nodes that could be check for a deployment

%configuration, since a node cannot meet a

%resource constraint if it does not have at least

%the sepecified amount of the resource.

comparevalue(V1,V2,’-’) :- V1 >= V2.

matchesResource(Req,Resources) :-

member(Res,Resources),

self_name(Req,RName),

self_name(Res,RName),

self_type(Req,Type),

self_value(Req,Rqv),

self_value(Res,Rsv),

comparevalue(Rsv,Rqv,Type).

is_a_valid_component_targethost(Comp,Host) :-

self_requires(Comp,Requirements),

self_provides(Host,Resources),

forall(member(Req,Requirements),

matchesResource(Req,Resources)

....

It is worth noting that these 16 lines of code are the EN-
TIRE solution for providing not only configuration con-
straint checking for an arbitrary set of requirements and re-
sources but also to enable the DSIF to provide valid sugges-
tions for deploying a component. In our experiments, Prolog
could solve for a valid global deployment of 900 components
to 300 nodes, that observed configuration constraints, in .08
seconds.

The rules required for solving for valid assignments using re-
source constraints were, as expected, significantly more com-
plicated since resource constraints are a form of bin-packing
(an NP-Hard problem). Still, however, we were able to de-
vise heuristic-based rules in Prolog that could solve a 160
component / 80 node model deployment in 1.5 seconds.
Our resource rules were not meant to provide the most op-
timal solution algorithm but mere to show the feasability of
using Prolog for the domain.

5. RELATED WORK
Decision support systems are similar to the Model Intelli-
gence approach proposed in this paper. In [1], Achour and
all propose a modeling tool based on the Unified Medical
Language System (UMLS), to create KBs for diagnosing and
treating diseases. Both their approach and the Model Intel-
ligence approach attempt to glean domain knowledge and

constraints from an expert and simplify a users ability to find
the correct solution to a partially specified problem. For the
UMLS-based decision support system, the goal is to, given
a set of patient condition information, find the appropriate
diagnosis and course of treatment. The approach proposed,
however, differs significantly from the research proposed in
this paper. First, the research proposed here is designed to
facilitate the creation of decision support systems for any
domain-specific modeling language. Furthermore, the DSIF
is not limited solely to decision tree type guidance but also
complex analysis and optimizations specified by a user. Fi-
nally, the DSIF proposed in this paper is automatically gen-
erated from a metamodel and integrated with a graphical
modeling tool. GEMS and its DSIF generation capabilities
are a tool for creating graphical modeling tools with inte-
grated modeling decision support for arbitrary domains.

Many complex modeling tools are available for describing
and solving combinatorial constraint problems, such as those
presented in [8, 3, 9, 2, 4]. These tools provide mechanisms
for describing domain-constraints, a set of knowledge, and
finding solutions to the constraints. These tools, however,
are not designed to generated domain-specific solvers based
on a metamodel. These tools also do not support the gen-
eration of a DSML graphical environment and integrated
graphical suggestions. Finally, as discussed previously, these
tools do not provide automation of the problem specification
as our GEMS-based DSIFs do.

6. CONCLUSIONS
The work presented in this paper addresses the scalability
problems of completely manual modeling approaches. These
scalability issures are particularly problematic for domains
that have large solutions spaces and few correct solutions. In
such domains, it is impossible or extremely time consuming
to create correct models manually and therefore constraint
solvers are needed. Constructing an phrasing a problem
instace from a DSML instance is a time-consuming task.

Our solution uses the idea of generating a DSIF that encom-
passes a semantically rich knowledge base in Prolog format
and allows users to specify constraints in declarative for-
mat that can be used to derive modeling suggestions. The
key advantage of this approach is that the same set of con-
straints can not only be used check whether a manually de-
fined model is correct but also to ask for valid solutions by
keepting some parameters, like TargetHost, open. The ap-
proach also allows the modeler to both specify constraints
using the domain-specific notation of the knowledge base
and to specify solution algorithms, for constraint types not
covered by the reusable rules, in a domain specific man-
ner. Another key capability of the DSIF approach is that it
automates the problem specification for the underlying con-
straint solver. Finally, our results have also shown that it
is possible to templatize many common solvers so that they
can be parameterized by a metamodel and made domain-
specific.

From our work, we have learned several important lessons:

• Many typical types of constraints that use <, >, and
= comparisons between two values can easily be solved

by the rules generated in the DSIF. For these types of
comparisons, the user merely needs to specify the con-
straint and the GEMS-generated DSIF can automati-
cally solve them and provide valid modeling feedback.

• Certain types of constraint comparisons, such as sum-
mation comparisons, require significantly more work
to solve. For these constraint types, it is critical that
the DSIF include templatizations of known solution
algorithms, since they are too costly to reinvent and
rediscover.

• Many combinatorically complex problems have been
previously solved using Prolog and expert system ap-
proaches. The DSIFs generated by GEMS can of-
ten easily incorporate these existing algorithms with
a minimal amount of code.

• Optimization of a model is a much more challenging
task than finding a valid solution. For our deploy-
ment example, we were able to create algorithms that
minimze the number of nodes used by a deployment.
These algorithms, however, do not scale well if there
are a large number of valid solutions. Much more work
will be needed to provide templatizable optimization
rules.

In future work, we plan to apply DSIF to multiple combina-
torically challenging domains, such as service configuration,
failure analysis, and workflow composition. We are also col-
laborating with optimization researchers to develop more
reusable solution algorithms that can be generated into the
DSIF. GEMS and its DSIF generation framework is an open
source project available from:
http://www.sf.net/projects/gems.

7. REFERENCES
[1] S. L. Achour, M. Dojat, C. Rieux, P. Bierling, and

E. Lepage. A umls-based knowledge acquisition tool
for rule-based clinical decision support system
development. Journal of the American Medical
Information Association, 8(4):351–360, July 2001.

[2] Y. Caseau, F.-X. Josset, and F. Laburthe. Claire:
Combining sets, search and rules to better express
algorithms. Theory and Practice of Logic
Programming, 2:2002, 2004.

[3] J. Cohen. Constraint logic programming languages.
Commun. ACM, 33(7):52–68, 1990.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A Modeling Language for Mathematical Programming.
Duxbury Press, November 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[6] J.-K. Hao and J.-J. Chabrier. A modular architecture
for constraint logic programming. In CSC ’91:
Proceedings of the 19th annual conference on
Computer Science, pages 203–210, New York, NY,
USA, 1991. ACM Press.

[7] P. V. Hentenryck. The OPL optimization programming
language. MIT Press, Cambridge, MA, USA, 1999.

[8] L. Michel and P. V. Hentenryck. Comet in context. In
PCK50: Proceedings of the Paris C. Kanellakis
memorial workshop on Principles of computing &
knowledge, pages 95–107, New York, NY, USA, 2003.
ACM Press.

[9] G. Smolka. The oz programming model. In JELIA
’96: Proceedings of the European Workshop on Logics
in Artificial Intelligence, page 251, London, UK, 1996.
Springer-Verlag.

[10] J. Sztipanovits and G. Karsai. Model-integrated
computing. Computer, 30(4):110–111, 1997.

[11] J. White, D. Schmidt, and A. Gokhale. The j3 process
for building autonomic enterprise java bean systems.
icac, 00:363–364, 2005.

[12] J. White and D. C. Schmidt. Simplifying the
development of product-line customization tools via
mdd. In Workshop: MDD for Software Product Lines,
ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, October
2005.

[13] J. White and D. C. Schmidt. Reducing enterprise
product line architecture deployment costs via
model-driven deployment and configuration testing. In
13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based
Systems, 2006.

