
Model-Driven Product-Line Architectures for
Mobile Devices

Jules White and Douglas C. Schmidt

Vanderbilt University
Department of Electrical Engineering and Computer Science

e-mail: {jules,schmidt}@dre.vanderbilt.edu).

Abstract: The large number of mobile device types and possible device configurations makes it possible
to deliver mobile applications to user devices that are not fully compatible with device characteristics.
In these situations, users must perform the tedious and error-prone tasks of altering their device
configurations to meet the needs of applications. Mobile application product-lines and automated
product variant selection engines are promising approaches for deriving and delivering custom tailored
applications to devices, thereby eliminating the need for end-user configuration.
This paper provides three contributions to model-driven product-line variant selection for mobile
devices. First, it describes an infrastructure-driven product variant configuration tool that tailors a
product variant to the specific capabilities of a mobile device. Second, it shows how this tool automates
the capture of device capabilities and maps them to product-line feature models. Third, it shows how
a constraint solver can be used to derive a valid product variant and incorporate a device’s resource
constraints into the derivation process.

1. INTRODUCTION

Current trends and challenges. Mobile devices, such as PDAs
and cell phones, are proliferating rapidly. Cell phone technol-
ogy has improved dramatically since 2003 and most popular
devices have some level of PDA capabilities. Users of mobile
devices have thus created a large and growing market for third-
party mobile applications, such as games and office tools. These
third-party applications are often delivered via over-the-air pro-
visioning, i.e., installed over a cellular data connection from a
remotely accessible provisioning server.

It is hard to create a single application that can handle a
large number of device configurations, however, since they
vary greatly in hardware capabilities, such as display size, pro-
cessing power, and memory. Moreover, applications must be
carefully configured to account for the unique characteristics
of each device, particularly when they have limited hardware
resources. For example, games are often delivered with differ-
ent resolution images or numbers of levels depending on the
memory available on the device. To select a correct configura-
tion of an application that includes media, therefore, requires
considering the overall resource constraints of the device.

One approach is to build a small number of variants of an
application that can be used to support many devices. Although
these application variants are designed to work in wide range
of device configurations, many applications still require device
users to manually configure their devices to accomodate vari-
ants. For example, Opera browsers run a series of tests when
they are first launched to ensure that device configurations are
compatible with installed browser variants. If device configu-
rations are not compatible, users receive an error message and
a link to a support forum to help diagnose the configuration
mismatch.

Although the approach of supporting a large number of devices
with a small set of variants is common in mobile applications, it

puts undue responsibility on device users to perform device and
application configuration. These users, however, rarely have the
initimate understanding of either the application or device’s
configuration nuances. Users are thus in the tedious and error-
prone process of wandering through support documentation to
resolve mismatches.

Solution approach → Infrastructure-driven product vari-
ant configuration. Product-line architectures (PLAs) (Clements
and Northrop [2002]) are a promising approach to help de-
velopers reduce the effort of mobile application development
and configuration (Anastasopoulos [2005], Zhang et al. [2003],
Muthig et al. [2004]). A PLA is comprised of a set of reusable
components that can be composed in different software con-
figurations (variants) for different device configurations. Con-
structing a product-line variant involves finding a way of
reusing and composing the product-line’s components to create
an application that will function correctly on a specific device.

There has been much work Benavides et al. [2005], Lemlouma
and Layaida [2004], Czarnecki et al. [2005], van der Storm
[2004], Sabin and Weigel [1998] on automating product-line
variant selection, This prior work, however, does not focus on
techniques for incorporating resource constraints into variant
selection for mobile applications. In particular, the process of
deriving and delivering a fully-configured application variant
for each custom device signature (i.e., the unique capabilties of
each device) presents challenges that have not been addressed
by existing product variant derivation techniques Mannion and
Camara [2003], Mannion [2002].

Another challenge of selecting and delivering a custom variant
for mobile devices is that the configuration is highly decoupled
in time and space from the place where the device capability
information resides. To select a variant for a device, therefore,
strategies must be developed to capture the important configu-
ration characteristics of an individual device and deliver them to
the provisioning server. Existing techniques for delivering de-



vice capabilities to a server either employ static databases capa-
bilities associated with device model numbers or user-provided
configuration values. Static database approaches cannot capture
the numerous possible variations between devices of the same
model, whereas users may not know how to obtain or provide
incorrect configuration values.

In prior work White et al. [2007b] we defined an architecture
for automated product variant selection for mobile devices that
accomodates resource constraints and addresses how config-
uration values are migrated from a device to a provisioning
server. This paper focuses on a previously unexplored dimen-
sion of work on automated variant selection: a technique called
infrastructure-driven product variant configuration that tailors
product variants for their target infrastructure. In particular,
we show how combining PLAs with an automated product-
line variant selection engine can deliver application variants for
mobile devices that are tailored to the unique configuration of
each individual device. Delivering these customized application
variant to users via over-the-air provisioning helps alleviate
the tedious and error-prone manual configuration traditionally
required from users.

Paper organization. The remainder of the paper is organized
as follows: Section 2 presents a case study used throughout
the paper to motivate the need for infrastructure-driven prod-
uct variant configuration; Section 3 describes the challenges
of selecting a product variant for an arbitrary mobile device;
Section 4 shows how we use model-driven development tools
to capture the relationship between device configuration and
application configuration; Section 5 discusses infrastructure-
driven product variant configuration and shows how the target
device’s configuration can be used to drive application configu-
ration; and Section 7 presents concluding remarks.

JSR 229 PaymentRef

JSR229_Client

HTTPSRef

HTTPS_Pay

PaymentApp

OpenDMTP LocatorForm

CustomerLocator

DeliveryOptions Menu OrderSubmissionTransport UI

FoodServices

TrainServices

Fig. 1. Feature Model for Train Services Applications

HighResImages LowResImages NoImages

SecondClassMenu

NoImages LowResImages HighResImages

FirstClassMenu

MenuDescription

Menu

Fig. 2. Food Services Menu Feature Model

JSR 135 Mobile Media APIRef MIDP 2.0Ref

TextAndImagesUI TextBasedUI

UI

Fig. 3. Food Services UI Feature Model

HTTPRef

HTTP_POST

JSR 120 Wireless Messaging Ref

SMS_Msg

HTTPSRef

HTTPS_POST

OrderSubmissionTransport

Fig. 4. Food Services Order submission Feature Model

PickupRequest

PaymentAppRef CustomerLocatorAppRef First Class Ref

ToSeatDelivery

OpenDMTPRef PaymentAppRef First Class Ref

ToCustomerDelivery

DeliveryOptions

Fig. 5. Food Services Delivery Options Feature Model

OptionalLibraries

JVMConfiguration SupportedProfiles Networking

JVM

TargetDevice

Fig. 6. Target Device Feature Model

JSR 75 PDA Profile JSR 135 Mobile Media

JSR 82 BlueTooth RFCOMM

CommLibs JSR 229 Payment JSR 120 Wireless Messaging

OptionalLibraries

Fig. 7. Java Optional Libraries Feature Model

2. MOTIVATING CASE STUDY EXAMPLE

To motivate our work on infrastructure-driven product variant
configuration, this section describes a mobile application case
study for ordering food on a train to show the complexity of
tailoring an application variant for an arbitrary device. In this
example, when a passenger boards a train, they can download
a variant of the train services application to their mobile device
from the railroad company’s provisioning server. First class
passengers can use this application to order gourmet foods and
have the food delivered directly to their seats. Second class
passengers can order food via a standard (not gourmet) menu,
but must go to the restaurant car to pickup the food.

The food services application is built using a product-line that
provides differing image sets of menu items that can be down-
loaded with the application depending on the device resources.
For example, Figure 2 shows how high and low resolution
images can consume varying amounts of storage space. Appli-
cations can also be adapted to functional variations of differ-
ent devices. For example, Figure 3 shows a TextAndImagesUI
for devices with JSR 135 Mobile Media API support and a
TextBasedUI for devices without JSR 135 support. The multiple
variations in application configuration be carefully matched
against the capabilities of requesting devices.

3. CHALLENGES OF OVER-THE-AIR PROVISIONING

Creating a functioning mobile application variant requires that
the application’s configuration matches the capabilities and
configuration of the hosting device. As described in Section 1
user are often required to partially adapt device configurations
to match application needs. In previous work (White et al.
[2007b]), we showed that rather than partially adapting devices
to applications, applications can be completely adapted to de-
vices. This section explains why adapting the application to
the device is hard to help motivate the solutions we describe
in Section 4.

The key to meshing a mobile application to the device it runs on
is understanding the device’s unique configuration. Although
documenting and reasoning about a device’s configuration may
initially appear easy, devices have a significant number of
points of variability, including:



(1) Hardware - Devices have widely varying display sizes,
memory capacities, storage capacities, processing capabil-
ities, data connection throughputs, etc.

(2) Middleware - Java Virtual Machines (JVM) deployed on
mobile devices come in different configurations and pro-
files that support different core libraries and functionality.
Each JVM also can be deployed with further optional
libraries, such as implementations of various Java Spec-
ification Requests (JSRs). JVMs may also have varying
stack sizes and even bugs that can affect their functional-
ity (Alves et al. [2005]).

(3) User customization - Many phones, such as the Black-
berry 8100, allow users to change important platform op-
tions, such as TCP/IP settings. Moreover, users can install
third-party software and media, thereby reducing stor-
age space and available memory. Users can also upgrade
firmware.

(4) Service provider customization - Each individual cell
phone service provider often customizes each mobile
phone for their service offerings. Many service providers
lock phones to their networks, may restrict phone func-
tionality to force customers to use pay services, provide
special APIs that are tightly linked to their services, and/or
limit the customizations that can be done to the phone to
reduce support costs.

(5) Context data - An emerging trend is to treat devices
differently depending on context data, such as the geo-
spatial coordinates of the device. Moreover, devices may
be categorized by attributes of a customer’s account (e.g.,
platinum, gold, or silver level customers) or a customer’s
purchase (e.g., first vs. second class).

Even after a device’s unique characteristics are known, a variant
selection engine must determine how to assemble the various
reusable components of the product-line into an application
that fits the device’s configuration. An analogous problem is
trying to find a way to connect two semi-complete halves of
a puzzle by adding a number of currently unused intermediate
pieces. For example, in the train food service application from
Section 2, once it is known that a device does not support
the JSR 135 Mobile Media API, a component must be found
that can bridge the application’s need for a GUI with the
requirement that the chosen GUI not use the Mobile Media API.
In this example, the connecting piece is the TextBasedUI.

The connecting of two halves can be far more complicated than
the direct inference from the previous example. In particular,
there may be multiple sets of pieces that can bridge the two
configurations; the goal is to select the set that minimizes
the memory consumed by the application or the bandwidth
required to transfer the application across a cellular connection
to the device. Moreover, selecting one component, such as the
TextBasedUI, will exclude the use of other components, such
as the HighResImages and LowResImages for the menu. When
all these rules and global resource constraints are considered,
selecting a variant is hard.

4. USING MODEL-DRIVEN DEVELOPMENT TO
REDUCE COMPLEXITY

Third-generation programming languages, such as Java, C#,
and C++, are not well suited to capture the high-level rules
needed to determine how device variability affects product vari-
ant construction. These languages require writing a significant

amount of custom logic to correctly assemble an application
variant for a given device configuration. Moreover, this com-
plex assembly logic must be adapted and maintained as the
product-line evovles and new device types emerge.

In contrast, model-driven development (MDD) is a promis-
ing technique that can be used to provide a higher-level of
abstraction and capture these composition rules that are hard
to encode with third-generation programming languages. Fea-
ture modeling (Kang et al. [1990], Antkiewicz and Czarnecki
[2004]) is an MDD technique that can be used to describe an
application in terms of functional and non-functional variations
(features) and the rules for composing features. This technique
provides an intuitive mechanism for describing variability and
has been applied across a large number of domains, including
automotive construction, boilers for nuclear reactors, and mo-
bile devices. Formal mechanisms also exist to translate feature
models and the selection of product variants into Constraint
Satisfaction Problems (CSPs) (Benavides et al. [2005], White
et al. [2007a]).

A CSP is a set of variables and a set of constraints over
these variables. A constraint solver is used to find a set of
values (a labeling) of the variables for which all the constraints
hold. Often, not only is a labeling needed, but a labeling that
simultaneously maximizes or minimizes the value of a function.
With a CSP formulation of variant selection, a constraint solver
can be used to derive a valid variant, as follows:

• The variables are the application features, e.g., TextBase-
dUI, TextAndImagesUI, HighResImages, LowResImages,
etc.

• The values of the variables determine if a particular fea-
ture is in a specific variant, e.g., TextAndImagesUI = 1
implies that the variant has the TextAndImagesUI user
interface.

• The constraints are the composition constraints for the
features, e.g., TextAndImagesUI requires the JSR 135
Mobile Media API and the SMS_Msg order submission
transport requires the JSR 120 Wireless Messaging API.

A labeling of a product variant CSP is a set of features that
can be enabled to create a complete and correctly constructed
application variant for a device. An optimized selection can
produce a variant that functions correctly within a device’s
constraints and minimizes a variant fitness function, such as the
total memory consumed by the variant.

4.0.0.1. Benefits of using constraint-based variant configura-
tion Using a constraint solver eliminates most of the manual
variant selection complexity described in Section 3, allows for
automation, and ensures solution quality. For example, when a
constraint solver is used to derive a variant, the variant selected
is not only correct with respect to the feature composition con-
straints, but it also guarantees worst case bounds on solution
quality. A variant can be selected that is optimal or an approxi-
mation algorithm can be used to find a solution that is at most a
guaranteed percentage away from the optimal solution.

4.0.0.2. Challenges of using a CSP configuration model
Transforming a product’s feature model into a CSP, however, is
a tedious and error-prone process. Typically, product engineers
who can easily build a feature model for an application do



not possess the mathematical background to perform a man-
ual translation of a feature model into a CSP. Moreover, as
a product-line evolves, the CSP must be updated continually
to reflect the application’s feature model. Expending a large
amount of energy to perform this manual and non-intuitive
mapping is less than ideal.

4.0.0.3. Addressing the challenges of CSP-based configura-
tion with MDD To address the limitations with conventional
CSP techniques—thereby reducing the cost of leveraging a
constraint solver for product derivation—we have developed
a model-driven development tool to provide an intuitive mod-
eling language to domain experts and automatically generate
the complex CSP from domain models. The graphical tool uses
feature models to capture the variabilities in the application and
uses code-generation to compile the feature models into a CSP
that can be operated on with a constraint solver. Using a MDD
approach shields domain experts from the tedious and error-
prone translation from feature models to CSPs. The graphical
feature modeling tool is based on the Generic Eclipse Modeling
System (GEMS) and runs in Eclipse.

Fig. 8. The Scatter MDD Approach

Figure 8 shows an overview of our MDD approach. In step
1, the application developers describe the high-level rules of
configuring the application using graphical feature models in
Eclipse. In step 2, the graphical modeling tool generates a CSP
representation of the problem that is in the native format (not a
visual format) of the constraint solver. In step 3, when a request
from a device arrives for an application variant, the capabilities
of the device are plugged into variables in the CSP produced
from the graphical feature models. Finally, a constraint solver
is used to derive an application configuration that matches the
capabilities of the device.

5. INFRASTRUCTURE-DRIVEN PRODUCT VARIANT
CONFIGURATION

To derive a valid variant with a CSP, product engineers select
certain features that should be enabled in the selected variant by
setting their corresponding variables in the CSP. Finding a vari-
ant on-the-fly for over-the-air provisioning requires a frame-
work for determining how to set the intial required features to
guide the solver. We have developed a model for providing this
initial input to the solver called infrastructure-driven product
variant configuration, which uses two sets of feature models:

• The points of variability in the software application that
will be configured, including the menu (first or second

class), GUI (text only or text and images), ordering sub-
mission mechanism (http, SMS message, etc.), and images
of menu items (high resolution, low resolution, etc.).

• The points of variability in the infrastructure to which the
application can be deployed, including the mobile device,
server, etc.

Constraints are applied to the application and infrastructure
feature models that show how the selection of features in the
infrastructure model restrict the features that can be selected in
the application feature models.

Figure 4 from the train services example in Section 2 shows
how the SMS_Msg feature (a feature from the application fea-
ture set) requires the JSR 120 Wireless Messaging API feature
be enabled in the infrastructure feature set. The infrastructure
features may also include context data, such as cabin class. The
ToSeatDelivery feature requires that the First Class feature be
enabled in the infrastructure feature set.

We term our derivation technique infrastructure-driven because
the infrastructure features are the intial input used by the con-
straint solver to derive the required application features. When
a request arrives for an application variant, the initial action the
server takes is to select the infrastructure features correspond-
ing to the capabilities of the requesting device. The provision-
ing server then asks the solver to derive an application variant
that meets the constraints of the selected infrastructure features.
The selection of infrastructure features therefore drives the se-
lection of application features.

Infrastructure-driven configuration addresses the original prob-
lem motivated in Section 1, namely the need to produce an
application variant that is adapted specifically to the request-
ing device. The infrastructure-driven model also provides a
clear architecture for automating software variant derivation:
requests arrive, the requestor’s configuration is determined, the
corresponding features in the infrastructure model are selected,
and a solver is used to derive the needed application features. As
shown in Section 5.2, the infrastructure-driven model can easily
be extended to incorporate resource constraints for media into
the derivation process.

5.1 Determining the Infrastructure Configuration

As we discussed in Section 1, adapting the application to the
device at the provisioning server migrates the configuration
process away from the device. Migrating the configuration off
of the device, however, introduces the challenge that the con-
figuration process does not have direct access to the device to
evaluate its configuration. Instead, the device must either send
its entire configuraton along with the request or the provision-
ing server must obtain device configuration information using
the limited information available with a standard provisioning
request. Several ways of addressing this problem are summa-
rized below.

5.1.0.4. Approach 1: Send configuration values with the provi-
sioning request In this approach users select from a number
of application variants for common device types. Again, these
variants are configured for the standard device configuration
and often require further device configuration by the user. With
this approach,the user is sending the device’s configuration
information to the provisioning server. The advantage of this



approach is that nearly any type of configuration information
from the device, including user customizations or context data,
can be provided to the provisioning server. The disadvantage
of the approach, however, is that it relies on error-prone user
input. A device user may not know the requested configuration
values (such as JVM configuration). Context data, such as ticket
number, can be validated to ensure that the user provides correct
values. Device capabilities, however, cannot be validated since
the provisioning server does not have the target device to check
them against.

5.1.0.5. Approach 2: Query a device capabilities database for
configuration values In this approach a device capabilities
database (Womer and Telecom [2006]), such as the Wireless
Universal Resource File (WURFL) (Luca Passani [2007]), is
used to associate device capabilities with the unique UserAgent
header sent with HTTP requests from a device. This approach
has the advantage that the device capabilities that do not vary
across device models can be automatically deduced without
user interaction. Furthermore, the data derived from a device
capabilities database is guaranteed to be correct (assuming it
has been properly produced from device specifications) The
downside to this approach, however, is that it cannot obtain dy-
namic information, such as context data or user customizations.

5.1.0.6. Approach 3: On-demand probing. In this approach
a static device capabilities database is used to deduce most
configuration properties of the device. If, however, values for
infrastructure configuration properties are needed that are not
available in the database, the provisioning server returns a probe
to the device to obtain the missing information. The probe runs
a check on the device and posts the results to the server to obtain
the final variant for the device.

A very simple probe can be a form that is returned to the user
to obtain context data, such as the traveler’s ticket number.
When this data is returned to the server, it can derive cabin
class. A probe may also be a small executable, such as a Java
Midlet, that can determine properties that the user is unlikely
to know, such as JVM configuraton. For example, a probe can
be downloaded that attempts to lookup a Java class by name,
and if it cannot, notifies the server that a particular library is not
present on the requesting device.

The advantage of the on-demand probing approach is that it
minimizes user-provided configuration values while still being
able to incorporate dynamic device configuration information.
A drawback of the approach is that the executable probe will
leave behind a software artifact that the user may need to man-
ually remove later. Despite the possibility of left-over software
artifacts, we chose this approach because it posseses the advan-
tages of both the first two approaches.

In situations where context data and static device data (e.g.,
display size, JVM configuration, etc.) are needed, the on-
demand probing approach can capture context data with a
simple HTML form and device characteristics from a device
capabilities database. In this scenario, the first approach would
require user to provide the device capabilities, which is tedious
and error-prone. The second approach is also insufficient since
it cannot capture context data effectively. The on-demand prob-
ing approach, in contrast, provides a reliable source for device
capabilities and allows the capture of context data.

5.2 Incorporating Resource Constraints for Media

Media (e.g., audio, video, images, etc.) must often be delivered
along with a mobile application. As described in Sections 1
and 3, media consumes a large amount of a devices resources,
particularly storage space. When variant selection takes place,
the overall resources consumed by the features selected for
a variant must not exceed those available on the requesting
device. These types of resource constraints are global feature
selection constraints that are extremely hard to manage manu-
ally since they are combinatorially complex.

In previous work (White et al. [2007a]), we delineated a process
for incorporating global resource constraints into the feature se-
lection process. Our formulation of global resource constraints
has been incorporated into infrastructure-driven product variant
configuration. The formulation of resource constraints in the
CSP produces a large number of variables (resource types X
total features = total variables). Without an MDD approach,
producing this large CSP is extremely tedious and error-prone.
With the MDD approach, the CSP is automatically generated
by the modeling tool.

As part of the initial step of selecting the infrastructure features
corresponding to the configuration of the requesting device, the
provisioning server can also set the upperbounds used by the
CSP constraints limiting resource consumption. For example,
if a Blackberry 8100 phone requests a variant of the train food
service application, as part of the intial infrastructure feature
selection process, the bounds for the remaining storage left on
the phone’s media card can be set in the feature selection CSP.

A major challenge of the on-demand probing approach, how-
ever, as we have shown in (White et al. [2007b]), is that resource
constraints make variant derivation time consuming. Attempt-
ing to optimize the variant with respect to a cost function also
can require significant time. The time consumed by both of
these activities is an exponential function of the number of
unfixed variabilities (un-labeled variables in the CSP).

What we learned through our work with infrastructure-driven
configuration is that the number of unfixed variabilities is
typically low after the application features are filtered by the
constraints on the selected infrastructure features. By carefully
constraining the application features with respect to the infras-
tructure features, therefore, product engineers can usually pro-
duce feature models that can incorporate resource constraints
or optimization and be configured in reasonable time frames.

6. RELATED WORK

Czarnecki et al. (CZARNECKI et al. [2005]) propose the pro-
cess of staged configuration of feature models. In staged config-
uration, multiple parties iteratively eliminate variability to con-
figure a product variant. The idea of infrastructure-driven soft-
ware product configuration is a specialized of generic staged
configuration techniques. In particular, infrastructure-driven
configuration focuses on the specific challenge of creating a
custom crafted product variant for a target host, whereas staged
configuration does not detail the specifics of how a product vari-
ant is configured for a specific target infrastructure. Moreover,
infrastructure-driven product configuration provides an archi-
tecture for performing automated product variant derivation,
whereas staged configuration does not detail an architecture for
automation.



The product configuration automation architecture described in
this paper relies on the mapping from feature selection to a
CSP provided by Benavides et al. (Benavides et al. [2005]).
Our work defines a number of complementary extensions to
the work of Benavides. First, we show how a CSP model can
be used to automate derivation specifically for mobile devices.
Second, we present infrastructure-driven product variant con-
figuration, which solves the key challenges of determining what
CSP variables to constrain when searching for a variant that
conforms to a device. Finally, we present challenges and so-
lutions specific to mobile devices that related to migrating the
source of the configuration CSP’s input data to a remote device.

7. CONCLUDING REMARKS

Due to the resources limitations, mobile applications must be
carefully crafted to fit the unique capabilities of each device.
The large number of different mobile devices and the significant
variability between device models makes it hard to create a
single application variant that can function correctly across all
devices. Even within a single device model, there can be a
significant amount of variability, as shown in Section 3. Appli-
cation variants are often delivered to devices in a manner that
requires users to perform some level of device configuration to
allow the application to function correctly.

By combining a mobile application product-line, a constraint
solver, and the infrastructure-driven product variant configu-
ration technique presented in Section 5, mobile applications
can be customized for each target device. Infrastructure-driven
product variant configuration uses an infrastructure feature
model and an application feature model to capture the affect
of device capabilities on application features. This dual model
approach allows an automated product derivation engine to
select features in the infrastructure model corresponding to the
target device and derive an application variant that is configured
correctly for the device. This approach application configu-
ration can alleviates tedious and error-prone end user device
configuration.

A key challenge of using an infrastructure-driven configuration
approach for mobile devices is that the configuration process
is separated in time and space from the device, which con-
tains the data needed to configure the infrastructure feature
models. Methods are therefore needed to either migrate the
required device configuration information to the configuration
engine or to statically deduce the device’s configuration from
its model. Since both approaches have drawbacks we present
a third approach in Section 5.1, called on-demand probing that
is a hybrid of the static deduction and configuration sending
models. On-demand probing solves some challenges of migrat-
ing device configuration information to a provisioning server
but introduces other challenges, such as residual probe software
artifacts that consume resources on the user devices and must be
manually removed by users. In future work, we plan to evaluate
different probing techniques to determine ways of avoiding
residual software artifacts while still reducing user interaction.

REFERENCES

V. Alves, I. Cardim, H. Vital, P. Sampaio, A. Damasceno,
P. Borba, and G. Ramalho. Comparative Analysis of Porting
Strategies in J2ME Games. Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Con-
ference on, pages 123–132, 2005.

M. Anastasopoulos. Software Product Lines for Pervasive
Computing. IESE-Report No. 044.04/E version, 1, 2005.

Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlu-
gin: feature modeling plug-in for Eclipse. In eclipse ’04:
Proceedings of the 2004 OOPSLA workshop on eclipse
technology eXchange, pages 67–72, New York, NY, USA,
2004. ACM Press. doi: http://doi.acm.org/10.1145/1066129.
1066143.

D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models. 17th Conference on Advanced
Information Systems Engineering (CAiSEŠ05, Proceedings),
LNCS, 3520:491–503, 2005.

Paul Clements and Linda Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, 2002.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configura-
tion through specialization and multi-level configuration of
feature models. Software Process Improvement and Practice,
10(2):143–169, 2005.

K. CZARNECKI, S. HELSEN, and U. EISENECKER. Staged
configuration using feature models. Lecture notes in com-
puter science, 10:266–283, 2005.

K.C. Kang et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Carnegie Mellon University, Software
Engineering Institute, 1990.

T. Lemlouma and N. Layaida. Context-aware Adaptation for
Mobile Devices. Mobile Data Management, 2004. Proceed-
ings. 2004 IEEE International Conference on, pages 106–
111, 2004.

Andrea Trasatti Luca Passani. Wireless Universal Resource
File, http://wurfl.sourceforge.net/, 2007.

M. Mannion. Using First-order Logic for Product Line Model
Validation. Proceedings of the Second International Confer-
ence on Software Product Lines, 2379:176–187, 2002.

M. Mannion and J. Camara. Theorem Proving for Product Line
Model Verification. Fifth International Workshop on Product
Family Engineering, PFE-5, Siena, pages 4–6, 2003.

D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, and
K. Schmid. GoPhone-A Software Product Line in the Mobile
Phone Domain. IESE-Report No, 25, 2004.

D. Sabin and R. Weigel. Product configuration frameworks-
a survey. Intelligent Systems and Their Applications, IEEE
[see also IEEE Intelligent Systems], 13(4):42–49, 1998.

T. van der Storm. Variability and Component Composition.
Springer, 2004.

Jules White, Krzysztof Czarnecki, Douglas C. Schmidt, Gun-
ther Lenz, Christoph Wienands, Egon Wuchner, and Ludger
Fiege. Automated model-based configuration of enterprise
java applications. In EDOC 2007, 2007a.

Jules White, Andrey Nechypurenko, Egon Wuchner, and Dou-
glas C. Schmidt. Optimizing and Automating Product-Line
Variant Selection for Mobile Devices. In 11th International
Software Product Line Conference, September 2007b.

M. Womer and F. Telecom. Device Description Landscape,
2006.

W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid. Reengi-
neering a PC-based system into the mobile device product
line. Software Evolution, 2003. Proceedings. Sixth Interna-
tional Workshop on Principles of, pages 149–160, 2003.


