
Automated Diagnosis of Feature Model Configurations

J. White∗,a, D. Benavidesb, D.C. Schmidta, P. Trinidadb, B. Doughertya, A. Ruiz-Cortesb

aDept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37204, USA
bDept. of Computer Languages and Systems University of Seville, Avda. de la Reina Mercedes, s/n B-41012 Seville,

Spain

Abstract

Software product-lines (SPLs) are software platforms that can be readily reconfigured for different
project requirements. A key part of an SPL is a model that captures the rules for reconfiguring
the software. SPLs commonly use feature models to capture SPL configuration rules. Each SPL
configuration is represented as a selection of features from the feature model. Invalid SPL configurations
can be created due to feature conflicts introduced via staged or parallel configuration or changes to
the constraints in a feature model. When invalid configurations are created, a method is needed to
automate the diagnosis of the errors and repair the feature selections.

This paper provides two contributions to research on automated configuration of SPLs. First, it
shows how configurations and feature models can be transformed into constraint satisfaction problems
to automatically diagnose errors and repair invalid feature selections. Second, it presents empirical
results from diagnosing configuration errors in feature models ranging in size from 100 to 5,000 features.
The results of our experiments show that our CSP-based diagnostic technique can scale up to models
with thousands of features.

Key words: software product-lines, configuration, diagnosis, constraint satisfiaction, optimization

1. Introduction

Background and challenges. Software
product-lines (SPLs) are software platforms that
can be reconfigured for different requirement
sets (Clements and Northrop, 2002). SPLs are
designed to facilitate the reuse of software as-
sets across multiple projects and amortize devel-
opment cost. For example, in the automotive
domain, an SPL can be created that allows a
car’s software to provide Anti-lock Braking Sys-
tem (ABS) capabilities or simply standard brak-
ing, thus allowing it to be used in cars aimed at

∗Corresponding author
Email addresses: jules@dre.vanderbilt.edu (J.

White), benavides@us.es (D. Benavides),
schmidt@dre.vanderbilt.edu (D.C. Schmidt),
ptrinidad@us.es (P. Trinidad),
briand@dre.vanderbilt.edu (B. Dougherty),
aruiz@us.es (A. Ruiz-Cortes)

different price points. Each configuration of an
SPL is called a variant.

A core component of an SPL is a model of the
points of variability within the software architec-
ture. These variability points determine how the
software can be reconfigured to meet new require-
ment sets. Points of variability are typically not
independent of one another, however, and thus an
explicit set of rules must be developed to dictate
legal combinations of configuration settings e.g., a
car cannot have both ABS and standard braking
software controllers.

Feature modeling (Kang et al., 1998) is a tech-
nique for documenting the points of variability in
an SPL, how the points of variability affect one
another, and what constitutes a complete config-
uration of the SPL. A feature model leverages fea-
tures as the abstraction for documenting config-
uration rules. Each feature represents an incre-

Preprint submitted to Software and Systems January 29, 2010

ment in product functionality. A feature model
can capture different types of variability, ranging
from ranging from requirements variability to im-
plementation variability (Metzger et al., 2007).

Unique configurations of an SPL are captured
as selections of features from a feature model.
SPL variants can be specified as a selection or
configuration of features. Feature models of SPLs
are arranged in a tree-like structure where each
successively deeper level in the tree corresponds
to a more fine-grained configuration option for
the product-line variant, as shown by the feature
model in Figure 1. The parent-child and cross-
tree relationships capture the constraints that
must be adhered to when selecting a group of fea-
tures for a variant.

Existing SPL research has focused on ensur-
ing that features chosen from feature models are
correct and consistent with the SPL and vari-
ant requirements. For example, boolean cir-
cuit satisfiability techniques (Mannion, 2002) and
Constraint Satisfaction Problems (CSPs) (Be-
navides et al., 2005; White et al., 2007) have
been used to automate the derivation of a fea-
ture set that meets a requirement set. Numer-
ous tools have also been developed, such as Big
Lever Software Gears (Buhrdorf et al., 2003),
Pure::variants (Beuche, 2003), FeAture Model
Analyser (FAMA) (Benavides et al., 2007), and
the Feature Model Plug-in (Czarnecki et al.,
2005a), to support the construction of feature
models and correct selection of feature configu-
rations.

Although SPL developers are equipped with
a number of tools and techniques, configuration
problems may occur due to human errors, such
as miscommunication between engineers, or other
factors, such as requirement changes. For exam-
ple, configurations of large feature models may be
produced using staged configuration (Czarnecki
et al., 2004, 2005b), where features are iteratively
selected by a group of participants. At each stage,
one participant chooses features before passing
the partial configuration on to the participant in
the next stage. In these staged configuration pro-
cesses, a participant may select a feature that con-
flicts with a critical feature needed by a partici-

pant in a later stage. Due to the complexity of
feature model constraints it may be hard to forsee
these conflicts. It is also hard to debug a config-
uration to figure out how to change decisions in
previous stages to make the critical feature se-
lectable (Batory et al., 2006).

In many cases—particularly when SPLs are
produced from supply-chains—the configuration
decisions of multiple developers working in par-
allel must be integrated. Since developers may
work in different departments, organizations, or
geographic locations where they are not in con-
tinuous direct communication or have conflicting
goals, configurations may be produced with con-
flicting feature selections. For example, hardware
developers of one subcontractor for an automobile
may desire a lower cost set of Electronic Control
Units (ECUs) that cannot support the embed-
ded controller code features needed by the soft-
ware developers of another subcontractor. Even
though the two teams may share the same toolset,
because the tools cannot prevent errors in a dis-
tributed environment where the teams are not in
continuous direct communication, conflicts may
arise. Methods are therefore needed to (1) evalu-
ate and debug conflicts between participants and
(2) recommend modifications to the participants
feature selections to make them compatible.

A further challenge to maintaining error free
SPL configurations is that external influences
(such as supply-chain disruption, changes in mar-
ket demand, or safety regulations) may change
over time and thus invalidate previously correct
configurations. For example, if a new government
regulation is passed that mandates higher emis-
sions standards, it may necessitate changing exist-
ing software configurations. A critical question is
thus often determining the lowest cost method of
updating existing software configurations to meet
the new external regulations and requirements,
which is a process termed software configuration
evolution.

Although prior research has shown how to iden-
tify flawed configurations (Batory, 2005; Man-
nion, 2002), conventional debugging mechanisms
cannot pinpoint configuration errors and identi-
fying corrective actions. More specifically, tech-

2

niques are needed that can take an arbitrary
flawed configuration and produce the minimal set
of feature selections and deselections to bring the
configuration to a state that satisfies all of the
feature model rules. This paper focuses on ad-
dressing these gaps in existing research. The so-
lutions that the paper presents to these gaps are
described in Section 2.

Solution overview and contributions. Our
approach to debugging feature model configu-
rations and automating configuration evolution
transforms an invalid feature model configu-
ration into a Constraint Satisfaction Problem
(CSP) (Van Hentenryck, 1989) and then uses
a constraint solver to derive the minimal set
of feature selection modifications that will bring
the configuration to a valid state. We call this
constraint-based diagnostic approach the Con-
figuration Understanding and REmedy (CURE).
This paper shows how CURE provides the follow-
ing contributions to work on debugging errors in
feature model configurations:

1. We provide a CSP-based diagnostic tech-
nique that can pinpoint conflicts and con-
straint violations in feature models

2. We provide a simplified diagnostic CSP that
is not as flexible as the full diagnostic CSP
but reduces diagnosis time

3. We show how CURE can remedy a config-
uration error by automatically deriving the
minimal set of features to select and deselect

4. We provide mechanisms for using CURE to
mediate conflicting configuration participant
feature selection desires via cost optimization
techniques

5. We show how CURE allows stakeholders to
debug a configuration error or conflict from
different viewpoints

6. We show how CURE can be used to automate
feature selection evolution

7. We provide empirical results showing that
CURE’s scalability can support industrial
SPL feature models containing over 5,000
features.

8. We present empirical results showing the im-
provement in solving time that the simplified
CSP provides

Our prior work on automated feature configu-
ration (Trinidad et al., 2007) focused on detect-
ing the most common types of errors in the con-
straints of a feature model, such as void features,
using pre-defined configurations. In further re-
search (White et al., 2008), we developed new
techniques for diagnosing the configurations of
feature models rather than the feature model it-
self. In this paper, we also investigate feature
expansion planning techniques and adapting to
supply-chain disruption in the context of feature
models. Furthermore, the prior work did not ac-
count for how manual configuration decisions that
led to the inability of satisfying project require-
ments were handled. Batory et al. (Batory et al.,
2006) have described this is an important chal-
lenge in the field automated software product-line
configuration. In this work, we address this gap
in our prior work by showing how automated re-
mediation can be performed to eliminate config-
uration conflicts that arise from human error or
concurrent configuration processes.

This paper extends our previous work on auto-
mated diagnosis of product-line configuration er-
rors (White et al., 2008) in three ways. First,
we provide a new methodology for applying our
CURE diagnosis technique to automating the evo-
lution of feature model configurations, which al-
lows SPL configurations to evolved automatically
over time to meet changing external requirement
sets. Second, we have significantly expanded the
discussion of CURE’s relationship with related
work on SPL configuration.

Third, in some scenarios, developers may desire
to tradeoff diagnosis flexibility for improved solv-
ing performance. For example, developers may
wish to eliminate diagnostic capabilities that they
do not use in exchange for faster diagnostics for
large feature models. We provide a new simplified
diagnostic CSP formulation that can significantly
reduce solving time for large feature models and
present new empirical results demonstrating the
improvement in solving time provided by the new
CSP formulation. For all the techniques proposed
in this paper, we make the implicit assumption
that the constraints in the feature model itself
are correct. The process described by Trinidad

3

et al. (Trinidad et al., 2007) can be used to deter-
mine if the feature model is error free and suitable
for the techniques described in this paper.

Paper organization. The remainder of the
paper is organized as follows: Section 2 presents
the CURE CSP-based technique for diagnosing
configuration errors and conflicts; Section 3 de-
scribes CURE CSP modifications that can be
made to decrease solving time; Section 4 shows
how CURE can be used to perform conflict media-
tion, multi-viewpoint debugging, and staged con-
figuration debugging; Section 5 shows how CURE
can be used to automate software feature configu-
ration evolution decisions; Section 6 presents em-
pirical results demonstrating the ability of CURE
to scale to feature models with thousands of fea-
tures; Section 7 compares CURE with related
research; and Section 8 presents concluding re-
marks.

2. Configuration Error Diagnosis with

CURE

Configuration Understanding and REmedy
(CURE) is a constraint-based technique for di-
agnosing errors and mediating conflicts in feature
model configurations. Developers can use CURE
to identify the minimal set of features needed to
select or deselect to transform an invalid input
configuration into a valid configuration. More-
over, depending on the input provided to CURE,
a flawed configuration can be debugged from dif-
ferent viewpoints or conflicts between multiple
stakeholder decisions in a configuration process
can be mediated.

The key component of CURE is the applica-
tion of a CSP-based error diagnostic technique.
In prior work, Benavides et al. (Benavides et al.,
2005) have shown how feature models can be
transformed into CSPs to automate feature se-
lection with a constraint solver (Jaffar and Ma-
her, 1994). Trinidad et al. (Trinidad et al., 2007)
subsequently described how to extend this CSP
technique to identify full mandatory features, void
features, and dead feature models using Reiter’s
theory of diagnosis (Reiter, 1987). This section
presents an alternative CSP diagnostic model, not

related to Reiter’s theory of diagnosis, for deriv-
ing the minimum set of features that should be
selected or deselected to eliminate a conflict in a
feature configuration.

CURE can diagnose feature models that use
standard feature modeling notations, such as re-
quired features, XOR groups, and optional fea-
tures. It is possible to also encode cardinality
groups into the diagnostic CSPs used by CURE,
but we do not cover this in the paper. Feature
quality attributes can also be taken into account
in the diagnostic process, and we discuss cost-
based quality attributes in Section 4.2.

2.1. Background: Feature Models and Configura-
tions as CSPs

A CSP is a set of variables and a set of con-
straints over those variables. For example, A +
B ≤ 3 is a CSP involving the integer variables A

and B. A constraint solver finds a valid labeling
(set of variable values) that simultaneously satis-
fies all constraints in the CSP. A valid labeling of
the CSP would be (A = 1, B = 2).

To build a CSP to model a feature model config-
uration problem, we construct a set of variables,
F , representing the features in the feature model.
Each configuration of the feature model is a set
of values for these variables, where a value of 1
indicates the feature is present in the configura-
tion and a value of 0 indicates it is not present.
More formally, a configuration is a labeling of F ,
such that for each variable fi ∈ F , fi = 1 in-
dicates that the ith feature in the feature model
is selected in the configuration. Correspondingly,
fi = 0 implies that the feature is not selected.

Given an arbitrary configuration of a feature
model as a labeling of the F variables, devel-
opers need the ability to ensure the correctness
of the configuration with respect to the feature
model rules. To achieve this constraint checking
ability, each variable fi is associated with one or
more constraints corresponding to the configura-
tion rules in the feature model. For example, if fj

is a required subfeature of fi, then the CSP would
contain the constraint: fi = 1 ⇔ fj = 1.

Configuration rules from the feature model are
captured in the constraint set C. For any given

4

feature model configuration described by a label-
ing of F , the correctness of the configuration can
be determined by seeing if the labeling satisfies
all constraints in C. More detailed descriptions
of the steps for transforming a feature model to a
CSP appear in (Benavides et al., 2005).

2.2. Configuration Diagnostic CSP

This section describes CURE’s diagnostic CSP.
First, we introduce the diagnostic recommenda-
tion variables that CURE uses to indicate which
features should be selected or deselected to fix a
configuration. Next, we describe how the diagno-
sis of a flawed configuration is modeled as a CSP
using these variables. Finally, we explain how the
constraints on the diagnostic variables produce a
correct diagnosis of an invalid configuration.

2.2.1. Diagnostic Recommendation Variables

As a motivating example, we use a feature
model for an automobile. Figure 1 shows a
simple feature model for an automobile. As-
sume that an invalid configuration with the
features Automobile, Brake Control Software,
Non-ABS Controller, Brake ECU, and 1 Mbit/s

CAN Bus has been created.

Figure 1: Simple Feature Model for an Automobile

To diagnosis this flawed configuration, develop-
ers need a list of features that should be selected
or deselected to make the invalid configuration a
valid configuration. CURE takes an invalid con-
figuration and a set of constraints describing a
feature model as input and produces a valid con-
figuration along with the features to select and
deselect to reach the valid output configuration
from the input configuration.

The invalid input configuration is provided to
CURE as a set of labeled variables, O. In turn,

CURE produces an output configuration as a set
of labeled variables F , that describe a valid config-
uration that can be reached by modifying the in-
put configuration O. Since the goal is to produce
a valid output configuration, the feature model
constraints are input into CURE as constraints
on the output variables F . That is, the feature
model constraints define the rules that the correct
output configuration must conform to. Finally,
CURE also outputs the features that should be
selected, S, and deselected, D, to modify the in-
valid input configuration, O, to match the valid
output configuration, F .

The overall diagnostic process for CURE is
shown in Figure 2.

Figure 2: Diagnostic Technique Architecture for CURE

In Step 1 of Figure 2, the rules of the feature
model and the invalid configuration are trans-
formed into a CSP. For example, o1 = 1 because
the Automobile feature is selected in the invalid
input configuration. In Step 2, the solver derives
a labeling of the diagnostic CSP. Step 3 takes the
output of the CSP labeling and transforms it into
a series of recommendations of features to select
or deselect to turn the invalid configuration into
a valid configuration. Finally, in Step 4, the rec-
ommendations are applied to the invalid configu-

5

ration to create a valid configuration where each
variable fi equals 1 if the corresponding feature
is selected in the new and valid output configu-
ration. For example, f7 = 1 means that the 250
Kbit/s CAN Bus is selected in the new valid con-
figuration.

The variables, oi ∈ O, are used to input the
current invalid configuration of the feature model
into CURE. If the ith feature is currently selected
in the invalid configuration, oi = 1. If the feature
is not selected, oi = 0. An SPL engineer pro-
vides these values to CURE as the input for the
algorithm.

To enable the constraint solver to recommend
features to select and deselect, two sets of out-
put recommendation variables, S and D, are in-
troduced to capture the features that need to be
selected and deselected, respectively, to reach a
valid configuration. For example, a value of 1
for variable si ∈ S indicates that the ith feature
should be added as a selected feature to the in-
valid input configuration captured in O. Simi-
larly, di = 1 implies that the feature ith should no
longer be a selected feature in the invalid input
configuration.

The other output of CURE is the actual feature
selection that will be reached by applying the rec-
ommended feature selection changes to the invalid
input configuration. The variables, fi ∈ F , spec-
ify the new feature selection that is reached by
applying the S and D recommendations to the
variables in O. That is, the F variables contain
the new feature selection that CURE recommends
the SPL engineers should use in place of the in-
valid configuration. Table 1 lists the complete
set of diagnostic variables that would be used by
CURE for the feature model in Figure 1.

2.2.2. Diagnostic CSP Constraints

To diagnose the CSP, we want to find an alter-
nate but valid configuration of the feature model
and suggest a series of changes to the invalid in-
put configuration to reach the valid configuration.
A valid output configuration is a labeling of the
variables in F (a configuration) such that all of

Variables

Variable Ex-
planations

fi ∈ F : feature variables for the
valid configuration that will be
output by CURE;
oi ∈ O: the features selected in
the invalid input configuration;
si ∈ S: features to select to reach
the valid configuration;
di ∈ D: features to deselect to
reach the valid configuration

Inputs

Current
Config.

o1 = 1, o2 = 1, o3 = 0, o4 =
1, o5 = 1, o6 = 1, o7 = 0

Feature f1 = 1 ⇔ (f2 = 1),
Model f1 = 1 ⇔ (f5 = 1),
Rules: f2 = 1 ⇒ (f3 = 1) ⊕ (f4 = 1),

f5 = 1 ⇒ (f6 = 1) ⊕ (f7 = 1),
(f6 = 1) ∨ (f7 = 1) ⇒ (f5 = 1),
(f3 = 1) ∨ (f4 = 1) ⇒ (f2 = 1),
f3 = 1 ⇒ (f6 = 1),
f4 = 1 ⇒ (f7 = 1)

Diagnostic ∀fi ∈ F

Rules: {
(fi = 1) ⇒ (oi = 1 ⊕ si = 1)∧

(di = 0)
(fi = 0) ⇒ (oi = 0 ⊕ di = 1)∧

(si = 0)
}

Outputs

Features to
Select:

s1 = 0, s2 = 0, s3 = 0, s4 =
0, s5 = 0, s6 = 0, s7 = 1

Features to
Deselect:

d1 = 0, d2 = 0, d3 = 0, d4 =
0, d5 = 0, d6 = 1 , d7 = 0

New Valid
Conf.:

f1 = 1, f2 = 1, f3 = 0, f4 =
1, f5 = 1, f6 = 0, f7 = 1

Table 1: Diagnostic CSP Construction

the feature model constraints are satisfied. For
each variable fi, the value should be 1 if the fea-
ture is present in the new valid configuration that
will be transitioned to. If a feature is not in the
output configuration, fi should equal 0.

We always require f1 = 1 to ensure that the
root feature is always selected in the output con-
figuration. For void feature models, it will be im-

6

possible for the root feature to be selected in the
output configuration and there will be no valid
solution. In these cases, the solver will respond
that no solution was found. CURE could also be
used to detect void feature models but it would
be more appropriate to use a technique designed
for this purpose (Trinidad et al., 2007).

Once a valid labeling of F is found, the goal
is to determine how to modify the labeling of O

to match the valid feature selection denoted by
the labeling of F . First, a constraint must be
introduced to model when a feature in the in-
valid input configuration needs to be deselected
to reach the correct output configuration. If the
ithfeature is included in the invalid input config-
uration (oi = 1), but is not in the output con-
figuration (fi = 0), we want the solver to recom-
mend that it be deselected (di = 1). For every
feature, we introduce the following constraint to
determine if the ith feature in O needs to be des-
elected1:

(fi = 0) ⇒ (oi = 0 ⊕ di = 1) ∧ (si = 0)

If fi is not selected in the output configuration
(fi = 0), then either the feature was also not se-
lected in the invalid input configuration (oi = 0),
or the feature needs to be deselected (di = 1).
Furthermore, if a feature is not needed in the out-
put configuration (fi = 0) then clearly it should
not be a recommended selection (si = 0).

The solver must also recommend features to se-
lect. If the ith feature is selected in the output
configuration fi = 1, and not selected in the in-
valid input configuration (oi = 0), then it needs
to be selected (si = 1). For each feature, we in-
troduce the constraint:

(fi = 1) ⇒ (oi = 1 ⊕ si = 1) ∧ (di = 0)

If a feature is needed by the output configuration
(fi = 1), then either the feature was present in
the invalid configuration (oi = 1) or the feature
was not present in the invalid configuration and
needs to be selected (si = 1). Clearly, a feature
should not be deselected if fi = 1 and thus di = 0.

1The symbol ”⊕” denotes exclusive or

The state of each feature, oi, in the invalid in-
put configuration is compared against the correct
state of the feature, fi, in the output feature con-
figuration. The behavior of each comparison can
fall into four cases:

1. A feature is selected and does not need

to be deselected. If the ith feature is in
the invalid input configuration (oi = 1), and
also in the output configuration (fi = 1), no
changes need be made to it (si = 0, di = 0)

2. A feature is selected and needs to be

deselected. If the ith feature is in the in-
valid input configuration (oi = 1) but not in
the output configuration (fi = 0), it must be
deselected (di = 1)

3. A feature is not selected and does not

need to be selected. If the ith feature is
not in the invalid input configuration (oi = 0)
and is also not needed in the output config-
uration (fi = 0) it should remain unchanged
(si = 0, di = 0)

4. A feature is not selected and needs to

be selected. If the ith feature is not selected
in the invalid input configuration (oi = 0) but
is present in the output configuration (fi =
1), it must be selected (si = 1)

2.3. Optimal Diagnosis Method

The next step in the CURE diagnosis process
is to use the solver to label the variables and pro-
duce a series of recommendations. For any given
configuration with a conflict, there may be mul-
tiple possible ways to eliminate the problem. We
must therefore tell the solver how to select which
of the (many) possible corrective solutions to sug-
gest to developers.

The most basic suggestion selection criteria de-
velopers can use to guide the solver’s diagnosis
is to tell it to minimize the number of changes
to make to the current configuration, i.e., prefer
suggestions that require changing as few things
as possible in the invalid input configuration. To
implement this approach, we solve for a CSP la-
beling that minimizes:

n∑

0

si +
n∑

0

di

7

which is the total number of changes that the solu-
tion requires the developer to make. By minizing
this sum we therefore minimize the total number
of required changes.

Each labeling of the diagnostic CSP will pro-
duce two sets of features corresponding to the fea-
tures that should be selected (S) and deselected
(D) to reach the new valid configuration. Devel-
opers can ask the solver to cycle through the dif-
ferent potential labelings of the diagnostic CSP
to evaluate potential remedies. Moreover, each
new labeling (new diagnosis) causes the solver
to backtrack and create new values for F , which
allows developers to evaluate not only the sug-
gested modifications but the configuration that
the remedy will produce. Another way to further
refine the guidance for the diagnosis is to con-
strain the new state captured in the labeling of
F . This technique is utilized by the extensions in
Sections 4.1 and 4.2.

Table 1 shows a complete set of inputs and
output suggestions for diagnosing the automotive
software example from Section 2.2.1. If there are
multiple labelings of the CSP, initially only one
will be returned. After the first solution has been
found, however, the solver can much more effi-
ciently cycle through the other equally ranked sets
of corrective suggestions.

3. CURE Performance Enhancements

This section describes a number of CSP modifi-
cations that can be used to decrease the diagnostic
time of CURE.

3.1. Simplified CSP Formulation

To improve the diagnosis speed of the process,
the diagnostic CSP can be modified to include
fewer variables, which decreases the flexibility of
the types diagnostic constraints and goals that
can be utilized, but increases performance. As
part of the diagnosis process, the solver must cal-
culate values for the D and S variables, which
determine which features to select and deselect.
The process of determining whether to select or
deselect a feature can easily be performed in code
outside of the solver. For example, after the solver

has determined the closest valid configuration,
Java code can be used to compare it to the invalid
configuration and recommend which features to
select or deselect via a simple difference of the
oi and fi variables. Moving these variables out of
the diagnostic CSP can improve performance, but
eliminates the ability to define constraints or gaols
based on the selection and deselection of features.

To simplify the CURE CSP, the D and S vari-
ables can be replaced with a single set of vari-
ables, N , noting the feature selections that differ
between the invalid and closest valid configura-
tion. The N variables do not indicate whether to
select or deselect a feature, but merely that its se-
lection state differs in the two configurations. In
the simplified CSP formulation, for each feature
in the feature model, a corresponding ni variable
is created. Each variable ni ∈ N can have value
zero or one. Moreover,

(ni = 1) ⇒ (oi 6= fi)

, i.e., ni will only have value 1 if the selection state
of the corresponding feature differs in the invalid
and closest valid configurations.

Removing the S and D variables has an impact
on the expressiveness of the function that can be
used to define what constitutes the closest valid
configuration. For example, if we define the opti-
mization goal, G, as the function:

G =
n∑

0

si +
n∑

0

2di

the solver can be instructed to preference selecting
rather than deselecting features to fix the config-
uration. That is, the solver will attempt to select
new features wherever possible rather than des-
elect features that are already in the configura-
tion. Likewise, the function tells the solver that
adding 3 features is more expensive than dese-
lecting 1. Developers can therefore exercise fine-
grained control over the weighting of the selection
and deselection of features when diagnosing an in-
valid configuration.

By removing the D and S variables, the simpli-
fied CSP formulation eliminates the ability to put

8

weights on the relative importance of feature se-
lection and deselection in the diagnosis. As shown
by the results in Section 6.5, this tradeoff can yield
a significant improvement in diagnosis speed. The
simplified CSP formulation is preferable, there-
fore, unless fine-grained weighting of feature se-
lection and deselection is needed.

3.2. Bounding Diagnostic Method

Due to time constraints, it may not be pos-
sible to find the optimal number of changes for
extremely large feature models. In these cases, a
more scalable approach is to attempt to find any
suggestion that requires fewer than K changes or
with a cost less than K. Rather than directly ask-
ing for an optimal answer, we add the constraint:

n∑

i=1

si + di ≤ K

to the CSP and ask the solver for any solution.

The sum of all variables si ∈ S and di ∈ D

represents the total number of feature selections
and deselections that need to be made to reach
the new valid configuration. The sum of both of
these sets is thus the total number of modifica-
tions that must be made to the original invalid
configuration. The new constraint, ensures that
the solver only accepts diagnosis solutions that re-
quire the developer to make K or fewer changes
to the invalid solution.

The solver is asked for any answer that meets
the new constraints. In return, the solver will pro-
vide a solution that is not necessarily optimal, but
which fits our tolerance for change. If no solution
is found, we can increment K by a factor and rein-
voke the solver or reassess our requirements. The
results in Section 6.4 show that it is significantly
faster to search for a bounded solution rather than
an optimal solution.

If the solver cannot find a diagnosis that makes
fewer than K modifications, it will state that
there is no valid solution that fits a K change
budget.

4. Applying CURE to Industrial Feature

Configuration Diagnostic Problems

4.1. Debugging from Different Viewpoints

The feature labeled as the source of an error in
a feature model configuration may vary depend-
ing on the viewpoint used to debug it. For exam-
ple, if a configuration in the feature model shown
in Figure 1 is created to include both Non-ABS
Controller and 1 Mbit/s CAN Bus, either feature
can be viewed as the feature that is the source of
the error.

If we debug the configuration from the view-
point that software features trump ECU hardware
decisions, then the 1 Mbit/s CAN Bus feature is
the error. If we assume that ECU decisions pre-
cede software features, however, then the Non-
ABS Controller feature is the error. A feature
model may therefore require debugging from mul-
tiple viewpoints since diagnosing the feature that
causes an error in a feature model depends on the
viewpoint used to debug it.

CURE can be provided with aditional con-
straints to allow for viewpoint-based diagnostics.
Each viewpoint represents a set of features that
the solver should avoid suggesting to add or re-
move from the current configuration. For exam-
ple, using the automobile scenario shown in Fig-
ure 1, the solver can debug the problem from the
point of view that hardware decisions trump soft-
ware features by telling the solver not to suggest
selecting or deselecting any hardware features.

Debugging from a viewpoint in CURE works by
pre-assigning values for a subset of the variables
in F and O. For example, to force the feature fi

currently in the configuration to remain unaltered
by the diagnosis, the values fi = 1 and oi = 1 are
provided to the solver. Since (fi = 1) ⇒ (oi =
1 ⊕ si = 1) ∧ (di = 0), pre-assigning these values
will force the solver to label si = 0 and di = 0.

To debug from a given point of view, for each
feature fv, in that viewpoint, we first add the con-
straints, fv = 1, ov = 1, sv = 0, and dv = 0.The
solver then derives a diagnosis that recommends
alterations to other features in the configuration
and maintains the state of each feature fv.

9

4.2. Cost Optimal Conflict Resolution

Conflicts can occur when multiple stakehold-
ers in a configuration process pull the solution in
different directions. Debugging tools are there-
fore needed to mediate the conflict in a cost con-
scious manner. For example, when a car’s soft-
ware configuration is incompatible with the legacy
ECU configuration, it is (probably) cheaper to
change the software configuration than to change
the ECU configuration and the assembly process
of the car. The solver should therefore try to min-
imize the overall cost of the changes.

We can extend the CSP model to perform cost-
based feature selection and deselection optimiza-
tion. First, we extend the CURE model to asso-
ciate a cost variable, bi ∈ B, with each feature in
the feature model. Each cost variable represents
how expensive (or conversely how beneficial) it is
for the solver to recommend the state of that fea-
ture be changed. Before each invocation of the de-
bugger, the stakeholders provide these cost vari-
ables to guide the solver in its recommendations
of features to select or deselect.

Next, we construct the superset of the features
that the various stakeholders desire, as shown in
Figure 3. The superset represents the ideal, al-
though incorrect, configuration that the stake-
holders would like to have. The goal is to find
a way to reach a correct configuration from this
superset of features that involves the lowest to-
tal cost for changes. The superset is input to the
solver as values for the variables in O.

Finally, we alter our original optimization goal
so that the solver will attempt to minimize (or
maximize) the cost of the features it suggests se-
lecting or deselecting. We define a global cost
variable G and let G capture the sum of the costs
of the changes that the solver suggests, as follows:

G =
n∑

i=1

(di ∗ bi) + (si ∗ bi)

G is thus equal to the sum of the costs of all fea-
tures that the solver either recommends to select
or deselect. Rather than instructing the solver to
minimize the sum of S ∪D, we ask it to minimize
or maximize G.

The result of the labeling is a series of changes
needed to reach a valid configuration that opti-
mally integrates the desires and decisions of the
various stakeholders. Of course, one particular
stakeholder may incur more cost than another in
the interest of reaching a globally better solution.
Further constraints, such as limiting the maxi-
mum difference between the cost incurred by any
two stakeholders, could also be added. The medi-
ation process can be tuned to provide numerous
types of behavior by providing different optimiza-
tion goals.

4.3. Staged Configuration Conflict Resolution

Another type of conflict can occur in staged
configuration (Czarnecki et al., 2004). Staged
configuration is a configuration process where de-
velopers iteratively select features to reduce the
variability in a feature model until a variant is
constructed. The need for staged configuration
has been demonstrated (Czarnecki et al., 2004,
2005b) in the context of software supply chains
for embedded automotive software. In the first
stage, software vendors provide software compo-
nents that can be provided in different config-
urations to actuate brakes, control infotainment
systems, etc. In the second stage, hardware ven-
dors that the software runs on must provide ECUs
with the correct features and configuration to sup-
port the software components selected in the first
stage.

The challenge with staged configuration is that
feature selection decisions made at some point in
time T may conflict with decisions that a stake-
holder desires to make at a point in time T ′ > T .
For example, it is possible for software vendors to
choose a set of software component features for
which there are no valid ECU configurations in
the second configuration stage. Identifying the
fewest number of configuration modifications to
remedy the error is hard because there can be
significant distance between T and T ′.

Pre-assigning values for variables in F and O

can also be used to debug staged configuration
errors. With staged configuration errors, at some
point in time T ′, developers need to select a fea-
ture that is in conflict with one or more fea-

10

Figure 3: Constructing the Feature Selection Superset for Conflict Mediation

tures selected at time T < T ′. To debug this
type of conflict, developers pre-assign the desired
(but currently unselectable) feature at time T ′ the
value of 1 for its oi and fi variables. Developers
can also pre-assign values for one or more other
features decisions from previous stages of the con-
figuration that must not be altered. The solver is
then invoked to find a configuration that includes
the desired feature at T ′ and minimizes the num-
ber of changes to feature configuration decisions
that were made at all points in time T < T ′.

5. Using CURE for Software Configuration

Evolution

Software feature configuration evolution is a
critical part of SPL management that involves
modifying an existing software configuration to
meet new requirements. Although building a vari-
ant for a new requirement set is a standard fea-
ture model configuration problem, it can not al-
ways be performed without taking into considera-
tion existing configurations. For example, if a key
supply-chain vendor for an automobile goes out of
business, automotive manufacturers must account
for the configuration of existing model year cars
when determining how to produce new configu-
rations that eliminate the parts produced by the
defunct vendor. Simply producing new configu-
rations with no regard for the existing manufac-
turing, procurement, and other processes invest-
ments would be costly and error-prone.

The goal of feature configuration evolution is
to transform a current configuration A that sat-
isfies a requirement set R into a new configura-

tion A′ that satisfies an evolved requirement set
R′. Moreover, because there may be a substantial
existing investment in A, a goal of the evolution
process is to find A′, such that it minimizes or
maximizes a function, ∆(A, A′). For example, de-
velopers may wish to choose evolution paths that
require adding as little additional cost to A as
possible and thus ∆(A, A′) computes the differ-
ence in cost between the legacy and evolved con-
figurations.

A key difference between configuration diagno-
sis and configuration evolution is that both A and
A′ are valid feature model configurations. Config-
uration diagnosis takes an invalid configuration
O and finds a valid configuration F that is as
close as possible. Although CURE was originally
developed for diagnosing errors in configurations,
this section shows that it can also be applied to
software configuration evolution problems where
the goal is to find A′ while optimizing a function
∆(A, A′). This section also presents methods for
using CURE to evolve feature model configura-
tions to handle a number of SPL scenarios (such
as supply-chain disruption and feature expansion)
that necessitate configuration evolution.

5.1. Supply-chain Disruption

The features that are present in an SPL’s fea-
ture model are dependent on an organization’s
ability to procure specific sets of software and
hardware components. For example, the produc-
tion of an automobile may depend on vendors
providing the ECU and associated software for a
high-end infotainment system. If any vendors go
out of business, decide to no longer produce one

11

of the requisite parts, or cannot produce sufficient
quantities of a part, SPL developers must deter-
mine how to evolve the automobile’s configuration
to eliminate the unavailable part.

When a part becomes unavailable, developers
first need to determine which existing features or
combinations of features in the feature model are
no longer viable selections due to the unavailable
parts. In a simple scenario, a single feature may
no longer be available. For example, in the feature
model shown in Figure 5, if the ECU required
for the Advanced Infotainment feature becomes
unavailable, this feature will be invalid in a feature
selection.

In more complicated situations, alternative
parts may be available from other vendors, but
these new parts may have different requirements
than the old parts. For example, in the scenario
depicted in Figure 4 the ECU used for an au-
tomobile’s infotainment system becomes unavail-
able and an alternative ECU must be used. The

Figure 5: Supply-chain Disruption Leading to Feature Un-
availability

new ECU has more substantial peak power re-
quirements, however, which requires adding a new
relationship to the feature model. When supply-
chain disruption occurs, developers must deter-
mine cost-effective ways of evolving legacy config-
urations to meet the new requirements.

CURE can be used to automate the process of
fixing configurations that have become invalid due

to supply-chain disruptions. CURE’s automated
diagnosis abilities allow developers to analyze evo-
lution alternatives that optimize specific proper-
ties, such as cost. The key to CURE’s ability
to automate evolution is that the legacy software
configuration, A, can be modeled by the invalid
configuration O and the target evolved configu-
ration, A′, can be modeled as the closest valid
configuration F .

Cure’s goal function, G, which is typically a
function of O and F , can also be used to model
∆(A, A′) by defining ∆(A, A′) in terms of the O,
F , S, and D variables. Thus, we model the evo-
lution process as:

C = Feature Model Constraints

O = A

F = A′

G = ∆(A, A′)

R = C

R′ = C ∧ Additional CSP Constraints

For example, the Advanced Infotainment feature,
f5, in Figure 5 is no longer a valid feature selec-
tion because a required ECU is not available. To
automate the evolution of each configuration that
has this feature selected, CURE can be used to
derive the closest valid configuration for which:

R′ = C ∧ (f5 = 0)

That is, find a feature model configuration which
satisfies the feature model constraints, C, and also
does not include f5 in the feature selection f5 = 0.
Moreover, designers can use the cost coefficients
introduced in Section 4.2 to represent the rela-
tive prices of different evolution options and use
CURE to perform cost optimal evolution automa-
tion by making G calculate the difference in cost
between the legacy and evolved configuration.

The more complex evolution scenario outlined
in Figure 4 can also be automated with CURE. In
this case, developers need to evolve any configu-
rations that include both the Advanced Infotain-
ment and 50W features. Using CURE, develop-
ers add the following additional constraint to the

12

Figure 4: Supply-chain Disruption Leading to Feature Model Rule Changes

diagnostic CSP:

R′ = C ∧ ((f5 = 1) ⇒ (f10 = 1))

This additional constraint forces the CSP solver
to ensure that any evolved configurations that it
suggests adhere to the new feature model rule.
Again, developers can apply cost coefficients or
constraints requiring that Advanced Infotainment
be selected in evolved configurations (f5 = 1).

5.2. Feature Expansion Planning

Another important evolution problem that
should have automation support is planning fea-
ture expansion. Feature expansion planning is de-
termining how to incorporate new features to sat-
isfy new requirements, such as changing market
demands, into existing configurations. For exam-
ple, automotive designers may want to incorpo-
rate automated parking assistance into the next
year’s model of a car. As with supply-chain dis-
ruption, developers cannot simply ignore the ex-
isting configuration of the current year’s model.
Instead, developers need to determine the mini-
mal or lowest cost set of modifications that can
be applied to the current configuration to enable
the newly required features.

To automate feature expansion planning with
CURE, the following new requirement set

R′ = C ∧ (∀fi ∈ New, fi = 1)

is produced that requires that each desired new
feature, fi ∈ New, is selected, i.e., the fi variable
for each desired feature, regardless if it is optional,

required, or alternative, must have value 1, mean-
ing that the feature is selected. If there are hard
requirements on feature selections that can not be
altered, these are also encoded into R′ as:

R′ = C∧(∀fi ∈ New, fi = 1)∧(Hard Requirements)

For example,

R′ = C ∧ (f8 = 1) ∧ (s2 = 0 ∧ d2 = 0)

finds a configuration in Figure 5 that adds the
Rear Infotainment feature without modifying the
Forward Infotainment feature. The constraint
(f8 = 1) requires that the Rear Infotainment fea-
ture be selected by the CSP solver and the con-
straint (s2 = 0 ∧ d2 = 0) ensures that no changes
are recommended for the Forward Infotainment
feature. As with previous examples, cost coeffi-
cients and the goal function G can be defined to
preference the lowest cost evolved configuration.

6. Runtime Evaluation with Randomized

Models

Effective automated diagnostic methods should
scale to handle feature models of production sys-
tems. This section presents empirical results
from experiments we performed to evaluate the
scalability of CURE. We compare the scalability
of both CURE’s optimal and bounding methods
from Sections 2.3 and 3.2. Although we assume
that the technique is exponential in time complex-
ity, the experiments are designed to demonstrate
that the technique is still scalable enough to sup-
port industrial feature models with 5,000 features.

13

6.1. Experimental Platform

To perform our experiments, we used the im-
plementation of CURE provided by the Model
Intelligence libraries from the Eclipse Founda-
tion’s Generic Eclipse Modeling System (GEMS)
project (eclipse.org/gmt/gems). Internally,
the GEMS Model Intelligence implementation
of CURE uses the Java Choco Constraint
Solver (http://choco.sourceforge.net) to de-
rive labelings of the diagnostic CSP. The experi-
ments were performed on a computer with an In-
tel Core DUO 2.4GHZ CPU, 2 gigabytes of mem-
ory, Windows XP, and a version 1.6 Java Virtual
Machine (JVM). The JVM was run in client mode
using a heap size of 40 megabytes (-Xms40m)
and a maximum memory size of 256 megabytes
(-Xmx256m).

A challenging aspect of scalability analysis is
that CSP-based techniques can vary in solving
time based on individual problem characteristics.
In theory, CSP’s have exponential worst-case time
complexity, but are often much faster in practice.
To evaluate CURE it was therefore necessary to
apply it to as many models as possible. The key
challenge with this approach is that hundreds or
thousands of real feature models are not readily
available and manually constructing them is im-
practical.

To provide the large numbers of feature mod-
els needed for our experiments we built a fea-
ture model generator that randomly creates fea-
ture models with the desired branching and con-
straint characteristics. We also imbued the gen-
erator with the capability to generate feature se-
lections from a feature model and probabilisti-
cally insert a bounded number of errors/conflicts
into the configuration. The feature model gener-
ator and code for these experiments is available
in open-source form from (code.google.com/p/
ascent-design-studio).

From our preliminary feasibility experiments,
we observed that the branching factor of the tree
had little effect on the algorithm’s solving time.
We also compared diagnosis time using models
with 0%, 10%, and 50% cross-tree constraints and
observed that each increment in the percentage of
cross-tree constraints improved performance. For

example, with the optimal method and 1,000 fea-
ture models, the average diagnosis time gradually
decreased from 47 seconds with 0% cross-tree con-
straints to 36 seconds with 50% cross-tree con-
straints. The key indicator of the solving com-
plexity was the number of XOR- or cardinality-
based feature groups in a model.2

Our tests limited the branching factor to at
most five subfeatures per feature. We also set
the probability of XOR- or cardinality-based fea-
ture groups being generated to 1/3 at each fea-
ture with children. We chose 1/3 since most fea-
ture models we have encountered contain more re-
quired and optional relationships than XOR- and
cardinality-based feature groups. The total num-
ber of cross-tree constraints was set at 10%. We
also eliminated all diagnosis results from void fea-
ture models, since void feature models produced
faster diagnostic times and would have skewed the
results towards smaller solving times.

To generate feature selections with errors, we
used a probability of 1/50 that any particular fea-
ture would be configured incorrectly. For each
model, we bounded the total errors at 5. In our
initial experiments, the solving time was not af-
fected by the number of errors in a given fea-
ture model. Again, the prevalence of XOR- or
cardinality-based feature groups was the key de-
terminer of solving time.

6.2. Experiment 1: Bounding Method Scalability

Hypothesis. We hypothesized that CURE’s
CSP-based diagnostic technique could be used to
diagnose configurations with 1,000s of features
when the bounding method was employed.

Experiment design. To test the diagnos-
tic capabilities of the bounding method, we gen-
erated large numbers of feature models and a
flawed configuration for each model. The CURE
bounded diagnostic method was used to diagnose
each of the flawed configurations. The speed of
the bounding technique allowed us to test 2,000
feature models at each data point (2,000 different

2XOR and cardinality-based feature groups are features
that require the set of their selected children to satisfy a
cardinality constraint (the constraint is 1..1 for XOR).

14

variations of each size feature model) and test the
bounding method’s scalability for feature models
up to 500 features.

With models above 500 features, we had to re-
duce the number of samples at each size to 200
models due to time constraints. Although these
samples are small, they demonstrate the general
performance of our technique. Moreover, the re-
sults of our experiments with feature models up
to 500 features were nearly identical with sample
sizes between 100 and 2,000 models.

Analysis of results. Figure 6 shows the time
required to diagnose feature models ranging in
size from 50 to 500 features using the bounded
method. The figure captures the worst and aver-

Figure 6: Diagnosis Time for Both Methods for Large Fea-
ture Models

age solving time in the experiments. As seen from
the results, our technique could diagnose models
with 500 features in an average of ≈300ms.

The upper bound used for this experiment was
a maximum of 10% feature selection changes.
When the feature bound was too tight for the
diagnosis (i.e., more were needed to reach a cor-
rect state) the solver quickly declared there was
no valid solution. We therefore discarded all in-
stances where the bound was too tight to avoid
skewing the results towards shorter solving times.

Figure 6 shows the results of testing the solving
time of the bounding method on feature models
ranging in size from 500 to 5,000 features. Models
of this size were sufficient to demonstrate scalabil-
ity for common production systems. The results
show that for a 5,000 feature model, the average
diagnosis time was ≈ 50 seconds.

Another key variable we tested was how the
tightness of the bound on the maximum num-

ber of feature changes affected the solving time
of the technique. We took a set of 200 feature
models and applied varying bounds to see how
the bound tightness affected solution time. Fig-
ure 7 shows that tighter bounds produced faster
solution times. These results indicate that tighter

Figure 7: 500 Feature Diagnosis Time with Bounding
Method and Varying Bounds

bounds allow the solver to discard infeasible solu-
tions quickly and thus arrive at a solution faster.

6.3. Experiment 2: Optimal Method Scalability

Hypothesis. We hypothesized that the op-
timal CURE diagnostic method could also scale
to feature models with 1,000s of features. We ex-
pected that the diagnostic time would be substan-
tially longer than with the bounding method.

Experiment design. We tested the scalabil-
ity of the optimal diagnosis method using 2,000
samples below 500 features and 200 samples for
all larger models. For each feature model, an in-
valid configuration was generated and diagnosed
with CURE. We tracked the best, average, and
worst diagnosis time for each size model.

Analysis of results. Figure 6 shows the re-
sults from feature models up to 500 features. At
500 features, the optimal method required an av-
erage of ∼1.5 seconds to produce a diagnosis. Fig-
ure 6 also shows the tests from larger models rang-
ing in size up to 5,000 features. For a model with
5,000 features, the solver required an average of
∼3 minutes per diagnosis.

6.4. Comparative Analysis of Bounding and Op-
timal Methods

Finally, we compared the scalability and qual-
ity of results produced with the two methods.
Figure 6 shows the bounding method performs

15

and scales significantly better than the optimal
method. For feature models of up to 1,000 fea-
tures, however, both techniques take less than
5 seconds and the optimal method is the bet-
ter choice. This result raises the question of how
much of a tradeoff in solution quality for speed is
made when the bounding method is used over the
optimal method for larger models.

The bound that is chosen determines the qual-
ity of the solution that is produced by the solver.
The optimality of a diagnosis given by the bound-
ing method is the number of changes suggested by
the bounding method, Bounded(S ∪ D), divided
by the optimal number of changes, Opt(S ∪ D),

which yields Bounded(S∪D)
Opt(S∪D)

. Since the bounding

method uses the constraint (S ∪ D) ≤ K to en-
sure that at most K changes are suggested, we
can state the worst case optimality of the bounded
method as K

Opt(S∪D)
. The closer our bound, K, is

to the true optimal number of changes to make,
the better the diagnosis.

Since tighter bounds produce faster solving
times and better results, debuggers should start
with very small bounds and iteratively increase
them upward as needed. One approach is to layer
an adaptive algorithm on top of the diagnosis al-
gorithm to move the bound by varying amounts
each time the bound proves too tight. Another
approach is to employ binary search to home in
on the ideal bound. We will investigate both tech-
niques in our future work.

6.5. Experiment 3: Simplified CSP Formulation

Hypothesis. We hypothesized that the sim-
plified CSP formulation would provide a constant
reduction in solving time compared to the stan-
dard complex CSP formulation.

Experiment design. We performed experi-
ments to compare the diagnosis speed of the stan-
dard complex CSP formulation against the simpli-
fied CSP formulation, as described in Section 3.1.
We used our feature model generation and con-
figuration infrastructure to produce feature mod-
els and flawed configurations of varying sizes and
then diagnosed them with both techniques. The
results in this section present the differences in
diagnosis times that we observed. We generated

and solved feature models ranging in size from 500
to 5,000 features. For each size feature model, we
solved 20 instances and tracked the average solv-
ing time of the two CSP formulations.

Analysis of results. The results are shown in
Figure 8. The results in this figure show the sim-

Figure 8: Comparison of Diagnosis Times for the Complex
and Simplified CSP Formulations on Feature Models with
500 to 5,000 Features

plified CSP technique had a much faster average
diagnosis time. For example, with 5,000 features,
the simplified CSP formulation had an average
diagnosis time of less than half of the standard
complex CSP formulation.

We took the data shown in Figure 8 and ana-
lyzed it to calculate the percentage of reduction
in average solving time provided by the simpli-
fied CSP formulation over the complex formula-
tion. Figure 9 shows the results of this analysis.
For smaller feature models with 500 features, the

Figure 9: Simplified CSP Formulation Reduction in Diag-
nosis Time Versus Feature Model Size

simplified technique provided a 25% reduction in
diagnostic time. As the size of the feature models
grew, moreover, the percentage of reduction in di-
agnosis time did not remain constant but grew as
a function of the size of the feature models. For

16

example, at 2,000 features, the simplified formu-
lation provided a roughly 43% decrease in average
solving time. At 5,000 features, the simplified for-
mulation provided a roughly 64% decrease in av-
erage solving time.

The results indicate that for small feature mod-
els, the simplified technique can provide a modest
improvement in the overall average diagnosis time
across a number of feature models. The improve-
ment comes at a reduction in the expressiveness of
the goal functions that can be created. For large
feature models, however, the simplified CSP for-
mulation provides a significant decrease in average
solving time. Moreover, the results indicate that
the improvement provided by the simplified CSP
formulation is proportional to the size of the fea-
ture model, i.e., the simplified CSP formulation
saves the most time on the most time-consuming
models to diagnose.

6.6. Debugging Scenarios
Staged configuration and viewpoint debugging

(Sections 4.3& 4.1) are special cases of the tech-
nique where the solver is not allowed to modify
the selection state of one or more features (i.e.,
the viewpoint or the feature at time T ′). Both
these special cases of debugging actually reduce
the search space by fixing values for one or more
of the CSP variables. For example, performing
staged configuration debugging (which fixes the
value for one CSP variable on a model with 1,000
features) reduced the optimal method’s average
solving time by ≈ 2.5 seconds and the bounding
method by ≈ .1 seconds.

Cost-based conflict mediation (Section 4.2)
performs identically to the standard diagnosis
technique. Cost-based mediation merely intro-
duces a series of coefficients, bi ⊂ B into the
optimization goal. These coefficients do not in-
crease solving time. Moreover, initiating the di-
agnosis method with the superset of the configu-
ration participants’ desired feature selections also
did not impact performance.

7. Related Work

This section compares our work on CURE with
related research projects in the areas of auto-

mated configuration, autonomic healing, and con-
figuration quality evaluation.

7.1. Constraint Relaxation and Explanation

Junker (Junker, 2004) has investigated the no-
tion of preferred explanations in the context
of explaining conflicts in over-constrained CSPs.
Junker’s work uses a series of user-provided pref-
erences, described as a partial ordering of the con-
straints, to help compute a set of constraints to
relax to make the CSP tractable. CURE is similar
to this work in that it uses user-provided informa-
tion to produce relaxations of the CSP that bet-
ter fit with the goals of the user. CURE, however,
allows developers to specify preferences in terms
of the delta, such as the change in cost, between
the invalid configuration and the new configura-
tion that is derived. Junker’s work does not pro-
vide the ability to specify constraint preferences
in terms of the difference between an input and
output feature model. Junker’s research also does
not specify how these techniques can be applied
to feature model configuration. CURE, however,
provides concrete methods for applying constraint
relaxation to staged configuration, configuration
conflict resolution, and other critical feature mod-
eling topics.

Other constraint relaxation and explanation
techniques, such as those developed by Garcia
et al. (de la Banda et al., 2003), include meth-
ods for finding a minimal set of unsatisfiable con-
straints. Garcia’s concept of minimality searches
for the minimal number of constraints. This con-
cept of minimality is valid for some diagnosis cases
but not for cost-based diagnostics. This work is
somewhat similar to CURE’s ability to find the
minimal set of changes that can be applied to a
configuration to reach a new and valid configura-
tion. Finding a minimal set of unsatisfiable con-
straints, however, is not specific to feature mod-
eling and does not provide mechanisms for per-
forming cost-based feature diagnostics or other
important industrial feature modeling analyses,
such as staged configuration debugging. Also, as
with with Junker’s techniques and constraint re-
laxation in general, Garcia’s diagnosis techniques
only propose ways of retracting configuration de-

17

cisions and not ways of both adding and remov-
ing configuration decisions as CURE does. Fur-
thermore, as with other techniques, this approach
does not provide the ability to define preferences
on the diagnostics that are related to the changes
that must be made to the original configuration.

Another series of constraint explanation ap-
proaches are based on forms of truth mainte-
nance (Hagg et al., 2006). These approaches
record a justification with each constraint that is
added to the CSP. When a conflict occurs, users
must retract their justifications, which causes all
of their associated constraints to be removed, un-
til a satisfiable CSP is reached. CURE allows de-
velopers to specify feature selections that can and
cannot be changed, which is similar to choosing
which justifications to remove. At the same time,
CURE allows developers to specify diagnosis pref-
erences that are a function of the delta between
the input configuration and output configuration.
Truth maintenance systems do not provide this
capability, which is crucial for performing opti-
mal cost-based conflict resolution, staged config-
uration debugging, and software feature evolution
analysis.

7.2. Automated Configuration

In prior work, Trinidad et al. (Trinidad et al.,
2007) showed how feature models can be trans-
formed into diagnosis CSPs and used to identify
full mandatory features, void features, and dead
feature models. Developers can use this diagnos-
tic capability to identify feature models that do
not accurately describe their products and to un-
derstand why not. The technique we described
in this paper builds on this idea of using a CSP
for automated diagnosis. Whereas Trinidad et al.
focus on diagnosing feature models that do not
describe their products, we build an alternate di-
agnosis model to identify conflicts in feature con-
figurations. Moreover, we provide specific recom-
mendations as to the minimal set of features that
can be selected or deselected to eliminate the er-
ror.

Debugging techniques for feature models were
investigated by Batory et al. in Batory (2005).
Their techniques focus on translating feature

models into propositional logic and using SAT
solvers to automate configuration and verify cor-
rectness of configurations. In general, their work
touches on debugging feature models rather than
individual configurations. Our approach focuses
on another dimension of debugging, the ability to
pinpoint errors in individual configurations and
to specify the minimal set of feature selections
and deselections to remove the error. Moreover,
propositional logic-based approaches do not typ-
ically provide maximization or minimization of
numeric formulas as primitive functions provided
by the solver. Since, CURE uses a CSP-based
approach, minimization/maximization diagnosis
functionality is built-in.

For example, developers may want to determine
the cheapest way of correcting a flawed feature
selection, where the definition of cost is defined
by a complex numerical formula. To perform
this type of cost-based correction of invalid fea-
ture selections requires the use of numerical max-
imization/minimization functions. SAT solvers
are geared towards boolean logic and not numer-
ical optimization.

Pure::variants (Beuche, 2003), Feature Model-
ing Plugin (FMP) (Czarnecki et al., 2005a), FeA-
ture Model Analyser (FAMA) (Benavides et al.,
2007), and Big Lever Software Gears (Buhrdorf
et al., 2003) are tools developed to help devel-
opers create correct configurations of SPL fea-
ture models. These tools enforce constraints on
modelers as the features are selected. None of
these tools, however, addresses cases where fea-
ture models with incorrect configurations are cre-
ated and require debugging. The technique de-
scribed in this paper provides this missing capa-
bility. These tools and our approach are comple-
mentary since the tools help to ensure that cor-
rect configurations are created and our technique
diagnoses incorrect configurations that are built.

Propositional logic has been used to repre-
sent software product lines by Mannion Mannion
(2002). These techniques are useful for represent-
ing product line models, but do nothing to cor-
rect flawed feature models. Moreover, they do
not take intelligent conflict resolution into con-
sideration. CURE differs in that it can be used

18

to diagnose and remedy existing, invalid feature
selections. The two approaches are complemen-
tary, Mannion’s techniques can flag flawed con-
figurations and CURE can be used to repair the
configuration flaws.

7.3. Autonomic Healing

Dudley et al. (2004) present systems that can
autonomically identify and repair system prob-
lems. In the event that a system fails, these
self-healing solutions are capable of determining
the element or elements that are responsible for
the failure. Once the nature of a failure is de-
termined, a replacement element is automatically
chosen from a set of potential replacement ele-
ments, thus allowing the system to recover. Like
CURE, this technique is corrective and capable of
taking an invalid system configuration, discover-
ing the element or elements that make the config-
uration invalid, and replacing them with elements
autonomically to create a valid system. Unlike
CURE, however, this technique does not make
use of feature models and is subject to runtime
constraints, making it hard to use for SPLs or
diagnosis optimization.

7.4. Configuration Quality Evaluation

Other techniques provide mechanisms for rea-
soning about feature model configurations when
the exact non-functional properties of each fea-
ture are not known. Zhang et al. (2003) introduce
Bayesian Belief Networks, which predict the im-
pact of feature selection on quality attributes by
considering the effects of choosing similar variants
on the quality of past projects. Jarzabek et al.
(2006) present a goal-oriented analysis that places
emphasis on the satisfaction of quality attribute
during feature selection. These techniques explore
a different area of configuration than CURE, the
are focused on finding configurations when there
is uncertainty about the effects of configuration
decisions. In contrast, CURE examines existing
configurations, in which the ramifications of se-
lecting a particular feature are already known.

Other modeling approaches, such as COVA-
MOF (Sinnema et al., 2004) and QRF (Niemelä
and Immonen, 2007), examine the ramifications

of feature selection on the overall quality of the
system. CURE also examines the effect of select-
ing a feature on the overall quality of the system.
Unlike CURE, however, these techniques do not
examine how to correct flawed system configura-
tions. CURE is a configuration diagnosis method
and not a configuration methodology.

The use of various quality attributes to assess
potential system configurations have been investi-
gated. For example, Immonen (Immonen, 2005).
introduces a tool for the prediction of availability
and reliability for a system configuration. Olu-
mofin et al. (Olumofin and Misic, 2005) provides a
method that examines the availability, reliability,
performance, and modifiability of potential sys-
tem configurations. Like CURE, these quality at-
tributes are used to determine which feature to
select at each point of variability. Unlike CURE,
however, these methods are used in the design
phase to construct an initial system configuration,
whereas CURE is used to correct flawed feature
selections.

Etxeberria and Sagardui (2008) present a man-
ual technique for using domain-relevant quality
attributes to evaluate variants in product line ar-
chitectures. An additional quality feature tree can
be added as a branch to extended feature models.
These quality features have a predefined qualita-
tive and quantitative impact on the overall sys-
tem if selected. Feature selection can therefore
determine the overall quality of a system configu-
ration and assure that the system possesses nec-
essary functionality. Again, CURE is a corrective
technique for restoring validity to flawed feature
selections, whereas the method in Etxeberria and
Sagardui (2008) is used during the design phase
to determine valid initial configurations.

8. Concluding Remarks

Production SPLs rely on large feature models
that make it hard to always produce correct con-
figurations. When errors due occur, the lack of
configuration debugging tools forces developers to
manually pinpoint errors in configurations that
can span thousands of features. Moreover, due
to the size of many feature models and other fac-

19

tors (such as supply-chains), SPL configuration
may be performed in stages or in parallel (Batory
et al., 2006). In these situations, the feature se-
lections of individual developers can conflict and
introduce errors in feature models that are even
more challenging to identify and correct.

Another challenge of using an SPL is main-
taining configurations over time. For example,
an SPL that encompasses components obtained
through a supply-chain may have features that be-
come unavailable due to vendors exiting the mar-
ket or discontinuing support. In these scenarios,
developers need a way of automating the evolu-
tion of existing configurations to new and correct
feature selections that take these changes into ac-
count.

This paper introduced a technique called Con-
figuration Understanding and REmedy (CURE)
that transforms invalid configurations into CSPs
and automates (1) the diagnosis of invalid configu-
rations and (2) the evolution of existing configura-
tions to meet changing requirement sets. CURE
derives the closest valid configuration to an ex-
isting configuration that meets a new set of re-
quirements. Moreover, developers can customize
CURE to provide optimal cost-based error and
evolution diagnostics.

CURE’s CSP-based diagnosis model is extensi-
ble and can be modified to perform conflict media-
tion, run faster by using a simplified CSP formu-
lation, or debug from different viewpoints. Our
empirical results show CURE can scale to produc-
tion feature models with 5,000 features and still
provide a diagnosis in between 45 seconds and 4
minutes. These time bounds should be sufficient
for the design-time use of this algorithm in many
production SPLs.

The following are lessons learned from our ef-
forts with CURE thus far:

• Simplifying the diagnostic CSP can

yield substantial improvements in diag-

nosis time. A simplified version of CURE’s
CSP can be used to provide significant im-
provements in solving speed with a limited
reduction in diagnostic flexibility. The re-
duced flexibility does not allow developers to

place limits on only feature selection or dese-
lection. If developers do not need to precisely
pinpoint one type of change, the simplified
diagnostic CSP should be used.

• CURE can scale to 1,000s of fea-

tures. We learned from our experiments
with CURE that it can diagnose models with
roughly 5,000 features. The results from
techniques, such as bounding or CSP simplifi-
cation, indicate that potential to scale CURE
up to larger feature model sizes. The tech-
niques improve CURE’s speed by reducing
the number of variables that are present in
the CSP and placing a precise bound on the
search space.

• It is hard to predict CURE’s diagnosis

time. CURE’s diagnosis time is dependent
on the structure of the constraints in the fea-
ture model. For some models, CURE pro-
vides very fast diagnosis. In future work, we
plan to investigate heuristic diagnostic tech-
niques that can speed CURE’s diagnosis time
for models it does not perform well on.

• A good K bound for CURE is hard to

ascertain. The optimality of the diagno-
sis provided by the bounding method is de-
termined by how close K is set to the true
minimum number of features that need to be
changed to reach a valid state. Setting an
accurate bound for K is not easy. In fu-
ture work, we plan to investigate different
methods of honing the boundary used in the
bounding method.

• Configuration evolution problems can

be modeled as configuration diagnosis

problems. Although configuration evolu-
tion problems do not necessarily start with
an invalid feature selection, we learned that
CURE’s diagnosis techniques can still be ap-
plied successfully to them. When a fea-
ture model’s constraints are changed or a
configuration’s feature selection needs to be
modified, CURE can be used to automati-
cally modify legacy configurations by model-

20

ing them as invalid configurations. Automat-
ing configuration evolution can provide cost
optimal modification planning, which is hard
to achieve with manual evolution techniques.

The CURE diagnosis technique has been
implemented as part of the ASCENT De-
sign Studio Intelligence project and is available
in open-source format from code.google.com/

p/ascent-design-studio and www.isa.us.es/

fama.

9. Acknowledgements

We would like to thank Jose Galindo for his
hard work implementing CURE in FAMA.

References

Batory, D., 2005. Feature Models, Grammars, and Prepo-
sitional Formulas. Software Product Lines: 9th Interna-
tional Conference, SPLC 2005, Rennes, France, Septem-
ber 26-29, 2005: Proceedings.

Batory, D., Benavides, D., Ruiz-Cortés, A., 2006. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM December.

Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés,
A., 2007. FAMA: Tooling a framework for the auto-
mated analysis of feature models. In: Proceeding of the
First International Workshop on Variability Modelling
of Software-intensive Systems (VAMOS).

Benavides, D., Trinidad, P., Ruiz-Cortés, A., 2005. Au-
tomated Reasoning on Feature Models. 17th Confer-
ence on Advanced Information Systems Engineering
(CAiSE05, Proceedings), LNCS 3520, 491–503.

Beuche, D., 2003. Variant Management with
Pure:: variants. Tech. rep., Pure-Systems GmbH,
http://www.pure-systems.com.

Buhrdorf, R., Churchett, D., Krueger, C., November 2003.
Salion’s Experience with a Reactive Software Product
Line Approach. In: Proceedings of the 5th International
Workshop on Product Family Engineering. Siena, Italy.

Clements, P., Northrop, L., 2002. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston.

Czarnecki, K., Antkiewicz, M., Kim, C., Lau, S., Piet-
roszek, K., October 2005a. In: FMP and FMP2RSM:
Eclipse Plug-ins for Modeling Features Using Model
Templates. ACM Press New York, NY, USA, pp. 200–
201.

Czarnecki, K., Helsen, S., Eisenecker, U., 2004. Staged
Configuration Using Feature Models. Software Prod-
uct Lines: Third International Conference, SPLC 2004,
Boston, MA, USA, August 30-September 2, 2004: Pro-
ceedings.

Czarnecki, K., Helsen, S., Eisenecker, U., 2005b. Staged
configuration through specialization and multi-level
configuration of feature models. Software Process Im-
provement and Practice 10 (2), 143–169.

de la Banda, M. J. G., Stuckey, P. J., Wazny, J., 2003.
Finding all minimal unsatisfiable subsets. In: PPDP.
ACM, pp. 32–43.

Dudley, G., Joshi, N., Ogle, D., Subramanian, B., Topol,
B., 2004. Autonomic Self-Healing Systems in a Cross-
Product IT Environment. Proceedings of the Interna-
tional Conference on Autonomic Computing, 312–313.

Etxeberria, L., Sagardui, G., 2008. Variability Driven
Quality Evaluation in Software Product Lines. In: Soft-
ware Product Line Conference, 2008. SPLC’08. 12th In-
ternational. pp. 243–252.

Hagg, A., Junker, U., O’Sullivan, B., August 2006. A sur-
vey of explanation techniques for configurators. In: Pro-
ceedings of ECAI-2006 Workshop on Configuration.

Immonen, A., 2005. A method for predicting reliability and
availability at the architectural level. Research Issues in
Software Product-Lines-Engineering and Management,
T. Käkölä and JC Dueñas, Editors.

Jaffar, J., Maher, M., 1994. Constraint Logic Program-
ming: A Survey. Journal of Logic Programming 19 (20),
503–581.

Jarzabek, S., Yang, B., Yoeun, S., 2006. Addressing qual-
ity attributes in domain analysis for product lines. In:
Software, IEE Proceedings-. Vol. 153. pp. 61–73.

Junker, U., 2004. Quickxplain: Preferred explanations and
relaxations for over-constrained problems. AAAI Press
/ The MIT Press, pp. 167–172.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., Huh,
M., January 1998. FORM: A Feature-Oriented Reuse
Method with Domain-specific Reference Architectures.
Annals of Software Engineering 5 (0), 143–168.

Mannion, M., 2002. Using first-order logic for product line
model validation. Proceedings of the Second Interna-
tional Conference on Software Product Lines 2379, 176–
187.

Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y.,
Saval, G., 2007. Disambiguating the documentation of
variability in software product lines: A separation of
concerns, formalization and automated analysis. In: Re-
quirements Engineering Conference, 2007. RE ’07. 15th
IEEE International. pp. 243–253.

Niemelä, E., Immonen, A., 2007. Capturing quality re-
quirements of product family architecture. Information
and Software Technology 49 (11-12), 1107–1120.

Olumofin, F., Misic, V., 2005. Extending the ATAM Ar-
chitecture Evaluation to Product Line Architectures. In:
IEEE/IFIP Working Conference on Software Architec-
ture, WICSA.

Reiter, R., 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32 (1), 57–95.

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2004. CO-
VAMOF: A Framework for Modeling Variability in Soft-

21

ware Product Families. LECTURE NOTES IN COM-
PUTER SCIENCE, 197–213.

Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A.,
Toro, M., 2007. Automated error analysis for the ag-
ilization of feature modeling. Journal of Systems and
Software, in press.

Van Hentenryck, P., 1989. Constraint Satisfaction in Logic
Programming. MIT Press Cambridge, MA, USA.

White, J., Czarnecki, K., Schmidt, D. C., Lenz, G., Wien-
ands, C., Wuchner, E., Fiege, L., October 2007. Au-
tomated Model-based Configuration of Enterprise Java
Applications. In: The Enterprise Computing Confer-
ence, EDOC. Annapolis, Maryland USA.

White, J., Schmidt, D. C., Benavides, D., Trinidad, P.,
Ruiz-Cortez, A., Sep. 2008. Automated Diagnosis of
Product-line Configuration Errors in Feature Models.
In: Proceedings of the Software Product Lines Confer-
ence (SPLC). Limerick, Ireland.

Zhang, H., Jarzabek, S., Yang, B., 2003. Quality Pre-
diction and Assessment for Product Lines. LECTURE
NOTES IN COMPUTER SCIENCE, 681–695.

22

