
1

ASCENT: An Algorithmic Technique for
Designing Hardware and Software in Tandem

Jules White, Brian Doughtery, and Douglas C. Schmidt
Vanderbilt University, EECS Department, Nashville, TN, USA

Email:{jules, briand, schmidt}@dre.vanderbilt.edu

✦

Abstract —Search-based software engineering is an emerging
paradigm that uses automated search algorithms to help designers
iteratively find solutions to complicated design problems. For example,
when designing a climate monitoring satellite, designers may want
to use the minimal amount of computing hardware to reduce weight
and cost, while supporting the image processing algorithms running
onboard. A key problem in these situations is that the hardware
and software design are locked in a tightly-coupled cost-constrained
producer/consumer relationship that makes it hard to find a good
hardware/software design configuration. Search-based software
engineering can be used to apply algorithmic techniques to automate
the search for hardware/software designs that maximize the image
processing accuracy while respecting cost constraints.

This paper provides the following contributions to research on search-
based software engineering: (1) we show how a cost-constrained
producer/consumer problem can be modeled as a set of two multidi-
mensional multiple-choice knapsack problems (MMKPs), (2) we present
a polynomial-time search-based software engineering technique, called
the Allocation-baSed Configuration Exploration Technique (ASCENT),
for finding near optimal hardware/software co-design solutions, and (3)
we present empirical results showing that ASCENT’s solutions average
over 95% of the optimal solution’s value.

1 INTRODUCTION

Current trends and challenges. Increasing levels of program-
ming abstraction, middleware, and other software advance-
ments have expanded the scale and complexity of software
systems that we can develop. At the same time, the ballooning
scale and complexity have created a problem where systems
are becoming so large that their design and development
can no longer be optimized manually. Current large-scale
systems can contain an exponential number of potential design
configurations and vast numbers of constraints ranging from
security to performance requirements. Systems of this scale
and complexity—coupled with the increasing importance of
non-functional characteristics [8] (such as end-to-end response
time)—are making software design processes increasingly
expensive [22].

Search-based software engineering [17, 16] is an emerging
discipline that aims to decrease the cost of optimizing system
design by using algorithmic search techniques, such as genetic
algorithms or simulated annealing, to automate the design
search. In this paradigm, rather than performing the search
manually, designers iteratively produce a design by using a

search technique to find designs that optimize a specific system
quality while adhering to design constraints. Each time a
new design is produced, designers can use the knowledge
they have gleaned from the new design solution to craft
more precise constraints to guide the next design search.
Search-based software engineering has been applied to the
design of a number of software engineering aspects, ranging
from generating test data [27] to project management and
staffing [5, 3] to software security [9].

Open Problem. A common theme in domains where
search-based software engineering is applied is that the design
solution space is so large and tightly constrained that the time
required to find an optimal solution grows at an exponential
rate with the problem size. These vast and constrained solu-
tions spaces make it hard for designers to derive good solutions
manually. One domain with solution spaces that exhibit these
challenging characteristics is hardware/software co-design.

Hardware/software co-design is a process whereby a sys-
tem’s hardware and software are designed at the same-
time in order to produce optimizations that would not be
possible in either hardware or software alone. Traditionally,
hardware/software co-design has focused on determining how
to partition application functionality between hardware and
software. For example, developers can take a time-critical
image processing step in an application and determine whether
to implement it in hardware or software. Typically, there
are limited resources available to implement functionality
in hardware and thus determining which pieces of func-
tionality to implement in hardware versus software becomes
extremely challenging. A number of search-based engineering
techniques, ranging from particle swarm optimization [1, 29]
to genetic algorithms [34, 28, 13] have been used to help
automate this process.

This paper examines another type of hardware/software co-
design problem that is common in the domain of distributed
real-time and embedded (DRE) systems. The problem we
focus on is the need to choose a set of hardware and soft-
ware configuration options that maximizes a specific system
capability subject to constraints on cost and the production
and consumption of resources, such as RAM, by the hardware
and software, respectively. This problem assumes that the
partitioning of functionality between hardware and software

2

is fixed but that there are different configuration options in
the hardware and software that developers must set.

A configuration option is a setting that can be changed in
the hardware or software design, such as the image resolution
used in an image processing algorithm. Selecting a higher
resolution will yield better image processing results but will
in turn require more CPU time. Similarly, the hardware has
multiple configuration options, such as the clock speed of the
processor used. The goal of engineers is to find a series of
settings for these configuration options that maximize a utility
function that describes the quality of the system.

For example, when designing a satellite for monitoring
earth’s magnetosphere [11], the goal may be to maximize
the accuracy of the sensor data processing algorithms on
the satellite without exceeding the development budget and
hardware resources. Ideally, to maximize the capabilitiesof the
system for a given cost, system software and hardware should
be configured in tandem to produce a design with a precise fit
between hardware capabilities and software resource demands.
The more precise the fit, the less budget is expended on excess
hardware resource capacity.

A key problem in these design scenarios is that they
create a complex cost-constrained producer/consumer problem
involving the software and hardware design. The hardware
design determines the resources, such as processing power
and memory, that are available to the software. Likewise, the
hardware consumes a portion of the project budget and thus
reduces resources remaining for the software (assuming a fixed
budget). The software also consumes a portion of the budget
and the resources produced by the hardware configuration. The
perceived value of system comes from the attributes of the
software design,e.g., image processing accuracy in the satellite
example. The intricate dependencies between the hardware and
software’s production and consumption of resources, cost,and
value makes the design solution space so large and complex
that finding an optimal and valid design configuration is hard.

Solution approach → Automated Solution Space Explo-
ration. This paper presents a heuristic search-based software
engineering technique, called theAllocation-baSed Configu-
ration Exploration Technique(ASCENT), for solving cost-
constrained hardware/software producer/consumer co-design
problems. ASCENT models these co-design problems as two
separate knapsack problems [21]. Since knapsack problems are
NP-Hard [10], ASCENT uses heuristics to reduce the solution
space size and iteratively search for near optimal designs by
adjusting the budget allocations to software and hardware.In
addition to outputting the best design found, ASCENT also
generates a data set representing the trends it discovered in
the solution space.

A key attribute of the ASCENT technique is that, in the
process of solving, it generates a large number of optimal
design configurations that present a wide view of the trends
and patterns in a system’s design solution space. This paper
shows how this wide view of trends in the solution space
can be used to iteratively search for near optimal co-design
solutions. Moreover, our empirical results show that ASCENT
produces co-design configurations that average over 95%
optimal for problems with more than 7 points of variability

in each of the hardware and software design spaces.
Paper organization. The remainder of this paper is or-

ganized as follows: Section 2 presents a motivating example
of a satellite hardware/software co-design problem; Section 3
discusses the challenges of solving software/-hardware co-
design problems in the context of this motivating exam-
ple; Section 4 describes the ASCENT heuristic algorithm;
Section 5 analyzes empirical results from experiments we
performed with ASCENT; Section 6 compares ASCENT with
related work; and Section 7 presents concluding remarks and
lessons learned from our work with ASCENT.

2 MOTIVATING EXAMPLE

This section presents a satellite design example to motivate the
need to expand search-based software engineering techniques
to encompass cost-constrained hardware/software producer/-
consumer co-design problems. Designing satellites, such as
the satellite for NASA’s Magnetospheric Multiscale (MMS)
mission [11], requires carefully balancing hardware/software
design subject to tight budgets. Figure 1 shows a satellite with
a number of possible variations in software and hardware
design. For example, the software design has a point of

Fig. 1. Software/Hardware Design Variability in a Satellite

variability where a designer can select the resolution of the
images that are processed. Processing higher resolution images
improves the accuracy but requires more RAM and CPU
cycles.

Another point of variability in the software design is the
image processing algorithms that can be used to identify
characteristics of the images captured by the satellite’s cam-
eras. The algorithms each provide a distinct level of accuracy,
while also consuming different quantities of RAM and CPU
cycles. The underlying hardware has a number of points of
variability that can be used to increase or decrease the RAM
and CPU power to support the resource demands of different

3

image processing configurations. Each configuration option,
such as the chosen algorithm or RAM value, has a cost
associated with it that subtracts from the overall budget. A
key design question for the satellite is:what set of hardware
and software choices will fit a given budget and maximize
the image processing accuracy. For example, will an image
processing algorithm that consumes more memory but requires
less CPU resources or an algorithm that requires buying a more
expensive processor and less RAM better fit the budget?

Many similar design problems involving the allocation
of resources subject to a series of design constraints have
been modeled asMultidimensional Multiple-Choice Knapsack
Problems(MMKPs) [20, 23, 2]. A standard knapsack prob-
lem [21] is defined by a set of items with varying sizes and
values. The goal is to find the set of items that fits into a
fixed sized knapsack and that simultaneously maximizes the
value of the items in the knapsack. An MMKP problem is a
variation on a standard knapsack problem where the items are
divided into sets and at most one item from each set may be
placed into the knapsack.

Figure 2 shows an example MMKP problem where two
sets contain items of different sizes and values. At most

Fig. 2. An Example MMKP Problem

one of the items A,B, and C can be put into the knapsack.
Likewise, only one of the items D, E, and F can be put
into the knapsack. The goal is to find the combination of
two items, where one item is chosen from each set, that fits
into the knapsack and maximizes the overall value. A number
of resource related problems have been modeled as MMKP
problems where the sets are the points of variability in the
design, the items are the options for each point of variability,
and the knapsack/item sizes are the resources consumed by
different design options [23, 7, 2].

The software and hardware design problems are hard to
solve individually. Each design problem consists of a number
of design variability points that can be implemented by ex-
actly one design option, such as a specific image processing
algorithm. Each design option has an associated resource con-
sumption, such as cost, and value associated with it. Moreover,
the design options cannot be arbitrarily chosen because there
is a limited amount of each resource available to consume.

It is apparent that the description of the software design
problem directly parallels the definition of an MMKP problem.
An MMKP set can be created for each point of variability
(e.g., Image Resolution and Algorithm). Each set can then
be populated with the options for its corresponding point of

variability (e.g., High, Medium, Low for Image Resolution).
The items each have a size (cost) associated with them and
there is a limited size knapsack (budget) that the items can
fit into. Clearly, just selecting the optimal set of software
features subject to a maximum budget is an instance of the
NP-Hard [10] MMKP problem.

For the overall satellite design problem, we must contend
with not one but two individual knapsack problems. One
problem models the software design and the second problem
models the hardware design. The first of the two MMKP
problems for the satellite design is its software MMKP
problem. The hardware design options are modeled in a
separate MMKP problem with each set containing the potential
hardware options. An example mapping of the software and
hardware design problems to MMKP problems is shown in
Figure 1.

We call this combined two problem MMKP model aMMKP
co-design problem. With this MMKP co-design model of the
satellite, a design is reached by choosing one item from each
set (e.g., an Image Resolution, Algorithm, RAM value, and
CPU) for each problem. The correctness of the design can
be validated by ensuring that exactly one item is chosen
from each set and that the items fit into their respective
software and hardware knapsacks. This definition, however,
is still not sufficient to model the cost-constrained hardware/-
software producer/consumer co-design problem since we have
not accounted for the constraint on the total size of the two
knapsacks or the production and consumption of resources by
hardware and software.

A correct solution must also uphold the constraint that the
items chosen for the solution to the software MMKP problem
do not consume more resources, such as RAM, than are
produced by the items selected for the solution to the hardware
MMKP problem. Moreover, the cost of the entire selection of
items must be less than the total development budget. We know
that solving the individual MMKP problems for the optimal
hardware and software design is NP-Hard but we must also
determine how hard solving the combined co-design problem
is.

In this simple satellite example, there are 192 possible
satellite configurations to consider, allowing for exhaustive
search to be used. For real industrial scale examples, however,
there are a significantly larger number of possibilities which
makes it infeasible to use an exhaustive search technique. For
example, a system with design choices that can be modeled
using 64 MMKP sets, each with 2 items, will have264

possible configurations. For systems of this scale, manual
solving methods are clearly not feasible, which motivates the
need for a search-based software engineering technique.

2.1 MMKP Co-design Complexity
Below, we show that MMKP co-design problems are NP-Hard
and in need of a search-based software engineering technique.
We are not aware of any approximation techniques for solving
MMKP co-design problems in polynomial time. This lack of
approximation algorithms—coupled with the poor scalability
of exact solving techniques—hinders DRE system designers’s
abilities to optimize software and hardware in tandem.

4

To show that MMKP co-design problems are NP-Hard, we
must build a formal definition of them. We can define an
MMKP co-design problem,CoP , as an 8-tuple:

CoP =< Pr, Co, S1, S2, S, R, Uc(x, k), Up(x, k) >

where:
• Pr is the producer MMKP problem (e.g., the hardware

choices).
• Co is the consumer MMKP problem (e.g., the software

choices).
• S1 is the size of the producer,Pr, knapsack.
• S2 is the size of the consumer,Co, knapsack.
• R is the set of resource types (e.g., RAM, CPU, etc.)

that can be produced and consumed byPr and Co,
respectively.

• S is the total allowed combined size of the two knapsacks
for Pr andCo (e.g., total budget).

• Uc(x, k) is a function which calculates the amount of
the resourcek ⊂ R consumed by an itemx ⊂ Co (e.g.,
RAM consumed).

• Up(x, k) is a function which calculates the amount of the
the resourcek ⊂ R produced by an itemx ⊂ Pr (e.g.,
RAM provided).

Let a solution to the MMKP co-design problem be defined
as a 2-tuple,< p, c >, wherep ⊂ Pr is the set of items
chosen from the producer MMKP problem andc ⊂ Co is
the set of items chosen from the consumer MMKP problem.
A visualization of a solution tuple is shown in Figure 3. We

Fig. 3. Structure of an MMKP Co-design Problem

define the value of the solution as the sum of the values of
the elements in the consumer solution:

V =

j∑

0

valueof(cj)

wherej is the total number of items inc, cj is the jth item
in c, andvalueof() is a function that returns the value of an
item in the consumer soution.

We require thatp and c are valid solutions toPr andCo,
respectively. Forp and c to be valid, exactly one item from
each set inPr and Co must have been chosen. Moreover,
the items must fit into the knapsacks forPr and Co. This

constraint corresponds to Rule (2) in Figure 3 that each
solution must fit into the budget for its respective knapsack.

The MMKP co-design problem adds two additional con-
straints on the solutionsp andc. First, we require that the items
in c do not consume more of any resource than is produced
by the items inp:

(∀k ⊂ R),

j∑

0

Uc(cj , k) ≤
l∑

0

Up(pl, k)

wherej is the total number of items inc, cj is thejth item in
c, l is the total number of items inp, andpj is the jth item
in p. Visually, this means that the consumer solution can fit
into the producer solution’s resources as shown in Rule (1) in
Figure 3.

The second constraint onc andp is an interesting twist on
traditional MMKP problems. For a MMKP co-design problem,
we do not know the exact sizes,S1, S2, of each knapsack. Part
of the problem is determining the sizes as well as the items for
each knapsack. Since we are bound by a total overall budget,
we must ensure that the sizes of the knapsacks do not exceed
this budget:

S1 + S2 ≤ S

This constraint on the overall budget corresponds to Rule (3)
in Figure 3.

To demonstrate that solving for an exact answer to the
MMKP problem is NP-Hard, we will show that we can reduce
any instance of the NP-completeknapsack decision problem
to an instance of the MMKP co-design problem. The knapsack
decision problem asks if there is a combination of items
with value at leastV that can fit into the knapsack without
exceeding a cost constraint.

A knapsack problem can easily be converted to a MMKP
problem as described by Akbar et al. [2]. For each item, a set is
created containing the item and the∅ item. The∅ item has no
value and does not take up any space. Using this approach, a
knapsack decision problem,Kdp, can be converted to a MMKP
decision problem,Mdp, where we ask if there is a selection
of items from the sets that has value at leastV .

To reduce the decision problem to an MMKP co-design
problem, we can use the MMKP decision problem as the
consumer knapsack (Co = Mdp), set the producer knapsack to
an MMKP problem with a single item with zero weight and
value (∅), and let our set of produced and consumed resources,
R, be empty,R = ∅. Next, we can let the total knapsack
size budget be the size of the decision problem’s knapsack,
S = sizeof(Mdp).

The co-design solution, which is the maximization of the
consumer knapsack solution value, will also be the optimal
answer for the decision problem,Mdp. We have thus setup the
co-design problem so that it is solving for a maximal answer
to Mdp without any additional producer/consumer constraints
or knapsack size considerations. Since any instance of the
NP-complete knapsack decision problem can be reduced to
an MMKP co-design problem, the MMKP co-design problem
must be NP-Hard.

5

3 CHALLENGES OF MMKP CO-DESIGN
PROBLEMS

This section describes the two main challenges to building
an approximation algorithm to solve MMKP co-design prob-
lems. We discuss the challenges that make it infeasible to
directly apply existing MMKP algorithms to MMKP co-design
problems. The first challenge is that determining how to set
the budget allocations of the software and hardware is not
straightforward since it involves figuring out the precise size
of the software and hardware knapsacks where the hardware
knapsack produces sufficient resources to support the optimal
software knapsack solution (which itself is unknown). The
second challenge is that the tight-coupling between producer
and consumer MMKP problems makes them hard to solve
individually, thus motivating the need for a heuristic to de-
couple them.

3.1 Challenge 1: Undefined Producer/Consumer
Knapsack Sizes

One challenge of the MMKP co-design problem is that the
individual knapsack size budget for each of the MMKP
problems is not predetermined,i.e., we do not know how much
of the budget should be allocated to software versus hardware,
as shown in Figure 4. The only constraint is that the sum of the

Fig. 4. Undefined Knapsack Sizes

budgets must be less than or equal to an overall total budget.
Every pair of budget values for hardware and software results
in two new unique MMKP problems. Even minor transfers
of capital from one problem budget to the other can therefore
completely alter the solution of the problem, resulting in anew
maximum value. Existing MMKP techniques assume that the
exact desired size of the knapsack is known.

There is currently no information to aid designers in deter-
mining the allocation of the budgets. As a result, many design-
ers may choose the allocation arbitrarily without realizing the
profound impact it may have. For example, a budget allocation
of 75% software and 25% software may result in a solution
that, while valid, provides far less value and costs considerably
more than a solution with a budget allocation of 74% and 26%
percent.

There is, however, useful information in the solution space
that can be determined by solving instances of the problem

with unique sequential divisions of the total budget. Typically,
designers would choose a budget with little information on
the ramifications of a potential budget choice. By sampling
the solution space at a number of distinct budget allocations,
the algorithm can show designers the best solution that it can
produce at each budget allocation. The information produced,
may not show the actual best budget allocations to choose,
but should help designers to make better budget allocation
choices than blindly choosing a budget allocation with no
information at all. A key challenge is figuring out how to
sample the solution space and present the results to designers.
In Section 4.4 we discuss ASCENT’s solution to this problem
and in Section 5 we present empirical data showing how
ASCENT allows designers to sample design spaces for a
number of MMKP co-design problems.

3.2 Challenge 2: Tight-coupling Between the
Producer/Consumer

Another key issue to contend with is how to rank the solutions
to the producer MMKP problem. Per the definition of an
MMKP co-design problem from Section 2.1, the producer
solution does not directly impart any value to the overall
solution. The producer’s benefit to a solution is its ability
to make a good consumer solution viable. MMKP solvers
must have a way of ranking solutions and items. The problem,
however, is that the value of a producer solution or item cannot
be calculated in isolation.

A consumer solution must already exist to calculate the
value of a particular producer solution. For example, whether
or not 1,024 kilobytes of memory are beneficial to the overall
solution can only be ascertained by seeing if 1,024 kilobytes of
memory are needed by the consumer solution. If the consumer
solution does not need this much memory, then the memory
produced by the item is not helpful. If the consumer solutionis
RAM starved, the item is desperately needed. A visualization
of the problem is shown in Figure 5.

Fig. 5. Producer/Consumer MMKP Tight-coupling

The inability to rank producer solutions in isolation of
consumer solutions is problematic because it creates a chicken
and the egg problem. A valid consumer solution cannot be
chosen if we do not know what resources are available
for it to consume. At the same time, we cannot rank the
value of producer solutions without a consumer solution as
a context. This tight-coupling between the producer/consumer
is a challenging problem. We discuss the heuristic ASCENT
uses to solve this problem in Section 4.3.

6

4 THE ASCENT A LGORITHM

This section presents our polynomial-time approximation algo-
rithm, called theAllocation-baSed Configuration ExploratioN
Technique(ASCENT), for solving MMKP co-design prob-
lems. The pseudo-code for the ASCENT algorithm is shown
in Figure 6 and explained throughout this section.

4.1 ASCENT Algorithm Overview

A MMKP co-design problem,CoP , as defined as an 8-tuple:

CoP =< Pr, Co, S1, S2, S, R, Uc(x, k), Up(x, k) >

The ASCENT algorithm solves for a series of potential
solutions toCoP using an iterative heuristic algorithm. The
input to the algorithm is the problem definitionCoP and a
step size increment,D, which is discussed in Section 4.2. The
ASCENT algorithm then proceeds as shown in Figure 6

4.2 Producer/Consumer Knapsack Sizing

The first issue to contend with when solving an MMKP
co-design problem is Challenge 2 from Section 3.1, which
involves determining how to allocate sizes to the individual
knapsacks. ASCENT addresses this problem by dividing the
overall knapsack size budget into increments of sizeD. The
size increment is a parameter provided by the user. ASCENT
then iteratively increases the consumer’s budget allocation
(knapsack size) from 0% of the total budget to 100% of the
total budget in steps of sizeD. The incremental expansion of
the producer’s budget can be seen in thefor loop in step 1
of Figure 6 and the setting of values for ofS1, S2 in step 2.

For example, if there is a total size budget of 100 and
increments of size 10, ASCENT firsts assign 0 to the consumer
and 100 to the producer, 10 and 90, 80 and 20, and so forth
until 100% of the budget is assigned to the consumer. The
allocation process is shown in Figure 7. ASCENT includes
both the 0%,100% and 100%,0% budget allocations to handle
cases where the optimal configuration includes producer or
consumer items with zero cost.

In some systems, such as enterprise application servers, a
system’s CPU load may become saturated. In these instances,
understanding how the system degrades in an over utilized
scenario is important. Since we are focused on hard real-time
and embedded systems, we do not handle scenarios where
the CPU is overloaded. Instead, we assume that the resources
of the system are fixed and that 100% utilization cannot be
exceeded.

4.3 Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizes
for the two knapsacks. In each iteration, ASCENT must solve
the coupling problem presented in Section 3.2, which is: how
do we rank producer solutions without a consumer solution.
After the coupling is loosened, ASCENT can solve for a highly
valued solution that fits the given knapsack size restrictions.

To break the tight-coupling between producer and consumer
ordering, ASCENT employs a special heuristic. Once the

Inputs:

CoP = < Pr, Co, S1, S2, S, R, Uc(x, k), Up(x, k) >
D = stepsize

Algorithm:
1) For int i = 0 to ⌊S/D⌋, set S1 = i ∗ D and S2 =

S − S1

2) For each set of values forS1 andS2:

2.1) Solve for a solution,tc, to Co, givenS2

2.2) Calculate a resource consumption heuristic
V r(k) for the resource inr ∈ R:

V r(r) =

∑|tc|
j=0 Uc(tcj , k)

∑|R|
j=0

∑|tc|
k=0 Uc(tcj , k)

2.3) Solve for a solution,p, to Pr that maximizes the
sum of the values of the items selected for the
knapsack,

∑|p|
k=0 V alue(pk), where the value of

the kth item is calculated as:

V alue(pk) =

|R|∑

j=0

V r(rj) ∗ Up(pk, rj)

2.4) For each resourcesrj ∈ R, calculate the amount
of that resource,P (r), produced by the items in
p:

P (r) = Up(p0, rj)+Up(p1, rj) . . . Up(p|p|−1, rj)

2.5) Create a new multidimensional knapsack prob-
lem,Cmo, from Co, such that the maximum size
of each dimension of the new knapsack is defined
by the vector:

Sm2 = (S2, r0, r1, . . . r|R|−1)

2.6) Solve for a solution,c, to Cmo and add a solution
tuple < p, c > to the list of candidate solutions,
lc, for CoP

3) Sort the potential solutions,lc, of CoP and output
both the highest valued solution and the list of other
potential solutions

Fig. 6. The ASCENT Algorithm

Fig. 7. Iteratively Allocating Budget to the Consumer
Knapsack

7

knapsack size allocations are fixed, ASCENT solves for a
maximal consumer solution that only considers the current
size constraint of its knapsack and not produced/consumed
resources. This process is shown in step 2.1 of Figure 6.

The process of solving the consumer knapsackCo, in Step
2.1, uses an arbitrary MMKP approximation algorithm to find
a solution that only considers the consumer’s budget. This
approach is similar to asking “what would the best possible
solution look like if there were unlimited produced/consumed
resources.” Once ASCENT has this idealized consumer solu-
tion, it calculates a heuristic for assigning a value to producer
solutions.

ASCENT leverages a commonly used type of metric from
prior work on MMKPs to assign values for ranking potential
solutions [2, 26, 30]. The heuristic that ASCENT uses to as-
sign value to producer items is:how valuable are the resources
of a producer item to the idealized consumer solution. This
heuristic is calculated as a set of values for theVr variables in
Step 2.2 of Figure 6. We calculate the value of a resource as the
amount of the resource consumed by the idealized consumer
solution divided by the sum of the total resources consumed
by the solution. In Step 2.3 of Figure 6, the resource ratios
(Vr values) are known and each item in the producer MMKP
problem is assigned a value by multiplying each of its provided
resource values by the corresponding ratio and summing the
results.

4.4 Solving the Individual MMKP Problems

Once sizes have been set for each knapsack and the valuation
heuristic has been applied to the producer MMKP problem,
existing MMKP solving approaches can be applied. First, the
producer MMKP problem, with its new item values, is solved
for an optimal solution, as shown in Step 2.3 of Figure 6.
In Step 2.5, a new consumer MMKP problem is created with
constraints reflecting the maximum available amount of each
resource produced by the solution from the producer MMKP
problem. The consumer MMKP problem is then solved for an
solution in Step 2.6. The producer and consumer solutions are
then combined into the 2-tuple,< p, c > and saved.

In each iteration, ASCENT assigns sizes to the producer
and consumer knapsacks and the solving process is repeated.
A collection of the 2-tuple solutions is compiled during
the process. The output of ASCENT, returned in Step 3 of
Figure 6, is both the 2-tuple with the greatest value and the
collection of 2-tuples.

The reason that the 2-tuples are saved and returned as part
of the output is that they provide valuable information on the
trends in the solution space of the co-design problem. Each 2-
tuple contains a high-valued solution to the co-design problem
at a particular ratio of knapsack sizes. This data can be usedto
graph and visualize how the overall solution value changes as a
function of the ratio of knapsack sizes. As shown in Section 5,
this information can be used to ascertain a number of useful
solution space characteristics, such as determining how much
it costs to increase the value of a specific system property to
a given level or finding the design with the highest value per
unit of cost.

4.5 Algorithmic Complexity

The overall algorithmic complexity of ASCENT can be broken
down as follows:

1) there areT iterations of ASCENT
2) in each iteration there are 3 invocations to an MMKP

approximation algorithm
3) in each iteration, values of at mostn producer items

must be updated.

This breakdown yields an algorithmic complexity of O(T (n+
MMKP)), where MMKP is the algorithmic complexity of
the chosen MMKP algorithm. With M-HEU (one of the most
accurate MMKP approximation algorithms [2]) the algorith-
mic complexity is O(mn2(l − 1)2), wherem is the number
of resource types,n is the number of sets, andl is maximum
items per set. Our experiments in Section 5 usedT = 100 and
found that it provided excellent results. With our experimental
setup that used M-HEU, the overall algorithmic complexity
was therefore O(100(mn2(l − 1)2 + n)).

5 ANALYSIS OF EMPIRICAL RESULTS

This section presents empirical data we obtained from exper-
iments using ASCENT to solve MMKP co-design problems.
The empirical results demonstrate that ASCENT produces
solutions that are often near the maximum value that can
be achieved while not exceeding resource constraints. The
results also show that ASCENT can not only provide near
optimal designs for the co-design problems, such as the
satellite example, but also scale to the large problem sizesof
production DRE systems. Moreover, we show that the data sets
generated by ASCENT—which contain high valued solutions
at each budget allocation—can be used to perform a number
of important search-based software engineering studies onthe
co-design solution space.

These results are applicable to systems that have hard real-
time timing constraints and resource consumption characteris-
tics. In particular, resources, such as CPU utilization, must
have fixed limits. Moreover, the calculations are based on
static worst-case bounds on resource consumption that must
be known at design time. The results do not apply to systems
where design decisions need to be based on dynamically
changing resource consumption profiles.

Our experiments were designed to compare ASCENT
against other competing configuration approaches based on
CLP, Genetic algorithms, and Particle Swarm Optimization
(PSO) algorithms. Our experiments were designed to test
the key properties of MMKP co-configuration problems that
affect configuration optimality and scalability. In particular, the
experiments test scalability and optimality in terms of thetotal
number of configuration options and settings, which determine
how large the configuration solution space is. The larger the
configuration space is, the more difficult it is to produce a good
configuration in a reasonable amount of time. The results show
that ASCENT produces solutions with superior optimality. At
the same time, ASCENT runs roughly 10 times faster than
either the Genetic or PSO algorithms.

8

Each experiment used a total of 100 budget iterations
(T = 100). We also used the M-HEU MMKP approxima-
tion algorithm as our MMKP solver. All experiments were
conducted on an Apple MacBook Pro with a 2.4 GHz Intel
Core 2 Duo processor, 2 gigabyes of RAM, running OS X
version 10.4.11, and a 1.5 Java Virtual Machine (JVM) run in
client mode. The JVM was launched with a maximum heap
size of 64mb (-Xmx=64m).

We chose the M-HEU algorithm since it is straight-forward
to implement and provided good results in our initial ex-
periments. Many other excellent MMKP heuristic algorithms
are available that may produce better results at the expense
of increased solving time and implementation complexity.
ASCENT does not require the use of any specific MMKP
algorithm, such as M-HEU, and thus designers can choose
alternate MMKP heuristic algorithms if they prefer.

5.1 MMKP Co-design Problem Generation

A key capability needed for the experiments was the ability to
randomly generate MMKP co-design problems for test data.
For each problem, we also needed to calculate how good AS-
CENT’s solution was as a percentage of the optimal solution:
valueof(ASCENTSolution)
valueof(OptimalSolution) . For small problems with less than

7 sets per MMKP problem, we were able to use a constraint
logic programming (CLP) [32] technique built on top of
the Java Choco constraint solver (choco-solver.net) to
derive the optimal solution.

For larger scale problems the CLP technique was simply
not feasible,e.g., solutions might take years to find. For
larger problems, we developed a technique that randomly
generated MMKP co-design problems with a few carefully
crafted constraints so we knew the exact optimal answer.
Others [2] have used this general approach, though with a
different problem generation technique.

Ideally, we would prefer to generate completely random
problems to test ASCENT. We are confident in the validity
of this technique, however, for two reasons: (1) the trends we
observed from smaller problems with truly random data were
identical to those we saw in the data obtained from solving the
generated problems and (2) the generated problems randomly
placed the optimal items and randomly assigned their value
and size so that the problems did not have a structure clearly
amenable to the heuristics used by our MMKP approximation
algorithm.

Our problem generation technique worked by creating two
MMKP problems for which we knew the exact optimal answer.
First, we will discuss how we generated the individual MMKP
problems. LetS be the set of MMKP sets for the problem,~R
be aK-dimensional vector describing the size of the knapsack,
Iij be the jth item of the ith set, size(Iij , k) be the kth

component ofIij ’s size vector ~Szij , andsize(S, k) be thekth

component of the knapsack size vector, the problem generation
technique for each MMKP problem worked as follows:

1) Randomly populate each set,s ⊂ S, with a number of
items

2) Generate a random size,~R, for the knapsack

3) Randomly choose one item,Iopti ⊂ OptItems from
each set to be the optimal item.Iopti is the optimal
item in theith set.

4) Set the sizes of the items inOptItems, so that when
added together they exactly consume all of the space in
the knapsack:

(∀k ⊂ R), (

i∑

0

size(Iopti, k)) = size(S, k)

5) Randomly generate a value,V opti, for the optimal item,
Iopti, in each set

6) Randomly generate a value delta variable,Vd <
min(V opti), where min(V opti) is the optimal item
with the smallest value

7) Randomly set the size and values of the remaining non-
optimal items in the sets so that either:

• The item has a greater value than the optimal item
in its set. In this case, each component of the
item’s size vector, is greater than the correspond-
ing component in the optimal item’s size vector:
(∀k ⊂ R), size(Iopti, k) < size(Iij, k)

• The item has a smaller value than the optimal item’s
value minusVd, valueof(Iij) < V opti − Vd. This
constraint will be important in the next step. In this
case, each component of the item’s size vector is
randomly generated.

At this point, we have a very random MMKP problem. What
we have to do is further constrain the problem so that we
can guarantee the items inOptItems are truly the optimal
selection of items. LetMaxVi be the item with the highest
value in the ith set. We further constrain the problem as
follows:

For each itemMaxVi, we reset the values of the items (if
needed) to ensure that the sum of the differences between the
max valued items in each set and the optimal item are less
thanVd:

i∑

0

(MaxVi − V opti) < Vd

A visualization of this constraint is shown in Figure 8.

Fig. 8. A Visualization of Vd

This new valuation of the items guarantees that the items in
OptItems are the optimal items. We can prove this property
by showing that if it does not hold, there is a contradiction.
Assume that there is some set of items,Ibetter, that fit into
the knapsack and have a higher value. LetV bi be the value

9

of the better item to choose than the optimal item in theith
set. The sum of the values of the better items from each set
must have a higher value than the optimal items.

The itemsIbi ⊂ Ibetter must fit into the knapsack. We
designed the problem so that the optimal items exactly fit
into the knapsack and that any item with a higher value than
an optimal item is also bigger. This design implies that at
least one of the items inIbetter is smaller and thus also
has a smaller value,V small, than the optimal item in its set
(or Ibetter wouldn’t fit). If there areQ sets in the MMKP
problem, this implies that at mostQ−1 items inIbetter have
a larger value than the optimal item in their set, and thus:

V optQ +

Q−1∑

0

V opti < V small +

Q−1∑

0

V bi

We explicitly revalued the items so that:

i∑

0

(MaxVi − V opti) < Vd

By subtracting the
∑Q−1

0 V opti from both sides, we get:

V optQ < V small +

Q−1∑

0

(V bi − V opti)

the inequality will still hold if we substituteVd in for∑Q−1
0 (V bi − V opti), becauseVd is larger:

V optQ < V small + Vd

V optQ − Vd < V small

which is a contradicton of the rule that we enforced for smaller
items:valueof(Iij) < V opti − Vd

This problem generation technique creates MMKP problems
with some important properties. First, the optimal item in each
set will have a random number of larger and smaller valued
items (or none) in its set. This property guarantees that a
greedy strategy will not necessarily do well on the problems.

Moreover, the optimal item may not have the best ratio of
value/size. For example, an item valued slightly smaller than
the optimal item may consume significantly less space because
its size was randomly generated. Many MMKP approximation
algorithms use the value/size heuristic to choose items. Since
there is no guarantee on how good the value/size of the
optimal item is, MMKP approximation algorithms will not
automatically do well on these problems.

To create an MMKP co-design problem where we know the
optimal answer, we generate a single MMKP problem with a
known optimal answer and split it into two MMKP problems
to create the producer and consumer MMKP problems. To
split the problem, two new MMKP problems are created. One
MMKP problem receivesE of the sets from the original
problem and the other problem receives the remaining sets.
The total knapsack size for each problem is set to exactly the
size required by the optimal items from its sets to fit. The sum
of the two knapsack sizes will equal the original knapsack size.
Since the overall knapsack size budget does not change, the
original optimal items remain the overall optimal solution.

Next, we generate a set of produced/consumed resource val-
ues for the two MMKP problems. For the consumer problem,
we randomly assign each item an amount of each produced
resourcek ⊂ R that the item consumes. LetTotalC(k) be the
total amount of the resourcek needed by the optimal consumer
solution andV opt(p) be the optimal value for the producer
MMKP problem. We take the consumer problem and calculate
a resource production ratio,Rp(k), where

Rp(k) =
TotalC(k)

V opt(p)

For each item,Iij , in the producer problem, we assign it
a production value for the resourcek of: Produced(k) =
Rp(k) ∗ valueof(Iij).

The optimal items have the highest feasible total value based
on the given budget and the sum of their values times the
resource production ratios exactly equals the needed valueof
each resourcek:

TotalC(k) =
TotalC(k)

V opt(p)
∗

i∑

0

V opti

Any other set of items must have a smaller total value and
consequently not provide sufficient resources for the optimal
set of consumer items. To complete the co-design problem,
we set the total knapsack size budget to the sum of the sizes
of the two individual knapsacks.

5.2 Comparison of ASCENT, a Genetic Algorithm,
and PSO

Experiment 1: Comparing ASCENT’s Optimality Versus
a Genetic Algorithm, and PSO. For our first experiment,
we created semi-random MMKP co-design problems that
we knew the optimal answer to using the technique from
Section 5.1. We generated MMKP co-design problems that
ranged in size from 2 to 30 sets per MMKP. Each set contained
15 items. These experiments yielded solution space sizes
of between154 and 1560 (2 problems with 30 sets of 15
items). For each problem size, we generated and solved 30
problem instances using ASCENT, a genetic algorithm, and a
PSO algorithm. We graphed and compared the optimality and
solving time of the three algorithms.

ASCENT’s function for determining the value of a solu-
tion is domain-specific and typically provided by the system
designer. The approach is the same as PSO and genetic
algorithms where the value of a solution is computed using
a function supplied by the user that is specific to the problem.
In the case of software configuration for DRE systems, the
value function is typically a calculation of the expected cost,
power consumption, or real-time schedulability based on the
software/hardware configuration. In domains, such as the cloud
computing domain, resource utilization prices, such as the
costs of utilizing computing resources on Amazon’s EC2
computing cloud (http://aws.amazon.com/ec2/#pricing) can be
used to produce the valuation function.

Genetic/PSO Design: The Genetic and PSO algorithms
both used a common representation of the problem and penalty
function. The problem was represented as an n-dimensional

10

vector, where the positions in the vector corresponded to the
item that was selected from each set. For example, a problem
with 3 sets per MMKP problem would produce a vector with
6 components. The first 3 components would represent the
items selected from the consumer MMKP problem’s sets. The
second 3 components would represent the items selected from
the producer MMKP problem’s sets.

Each position in the vector was limited to values corre-
sponding to the valid 0-based indices of items in the sets. For
example, a set with 5 items would allow values of 0-4. A value
of 2 would correspond to selecting the3rd item in the set.

The penalty function scored solutions based on 1) if the
solution’s overall value and 2) whether or not the solution
was correct. If a solution was not valid, the score of the
solution was set to 0 - (resource overconsumption). That
is, solutions that did not properly adhere to the budget or
the production and consumption of resources would produce
negative values. Although repair functions can sometimes
provide better results than a penalizing function, repairing
an arbitrary invalid MMKP co-design solution is extremely
complex and a research endeavor in its own right [12].

For the genetic and PSO algorithms, we used population
(total particle) sizes of 20, 200, and 2000 members. We
conducted various experiments to tune the parameters of the
algorithms. For the PSO algorithm, we used a local learning
rate of 2, a global learning rate of 2, and an inertial value of
0.5. For the Genetic algorithm, we mated the top 25% of the
population using a strict cutoff. We also allowed up to 50% of
the population to survive and cross over from one generation
to the next. Finally, we used a mutation probability of 0.05%.
Each algorithm was run for a total of 20 generations/iterations.

Experiment Results with Semi-Random Data: The results
for the first experiment are shown in Figure 9.

Fig. 9. Solution Optimality vs Number of Sets Compared
for ASCENT, a Genetic Algorithm, and a PSO Algorithm

As can be seen from the results, for up to 5 sets per
MMKP problem, the Genetic algorithm with 2000 population
members provided the best results. The Genetic Algorithm
with 2000 population members, required 9,024ms to solve a
problem with 5 sets. ASCENT, in contrast, required 73ms.
When the problems were scaled up to 30 sets per MMKP
problem, ASCENT provided far superior optimality and run
time. ASCENT produced solutions that averaged roughly

99.2% optimal versus the Genetic algorithms 54.9% optimal-
ity. Furthermore, ASCENT solved the problems in an average
of 317ms versus the Genetic algorithms average runtime of
64,212ms.

Experiment Results with Random Data: We also com-
pared the algorithms on a series of problems that were
completely randomly generated. For these problems, we did
not know the true optimal value. We generated 100 problems
with 50 sets per MMKP problem and 15 items per set. This
yielded a solution space size of15100. In order to ensure that
we generated tractable problem instances, we set extremely
loose resource constraints on the problems to create a high
probability that a solution existed.

Figure 10 shows a graph of the solution scores of the
algorithms on these 100 random problems.

Fig. 10. Solution Score for 100 Randomly Generated
Problems

As can be seen from Figure 10, ASCENT produced superior
solution scores across all 100 problem instances. The Genetic
algorithm, which was the second best algorithm, produced
solutions that were at most 90.9% of the value of ASCENT’s
solution and at least 65.8% of the value. The PSO produced
solutions that were at most 43.5% of the value of ASCENT’s
solutions and at least 27.5% of the value. The average solving
time for the Genetic 2000 was 101,453ms. The average solving
time for the PSO 2000 was 55,203ms. The average solving
time for ASCENT was 672ms.

5.3 ASCENT Scalability and Optimality

Experiment 2: Comparing ASCENT scalability to an exact
CLP technique. When designing a satellite it is critical that
designers can gauge the accuracy of their design techniques.
Moreover, designers of a complicated satellite system needto
know how different design techniques scale and which tech-
nique to use for a given problem size. This set of experiments
evalutes these questions for ASCENT and a constraint logic
programming (CLP) co-design technique.

Although CLP solvers can find optimal solutions to MMKP
co-design problems they have exponential time complexity.
For large-scale co-design problems (such as designing a com-
plicated climate monitoring satellite) CLP solvers thus quickly
become incapable of finding a solution in a reasonable time

11

frame. We setup an experiment to compare the scalability
of ASCENT to an CLP technique. We randomly generated
a series of problems ranging in size from 1 to 7 sets per
hardware and software MMKP problem. Each set had 10
items. We tracked and compared the solving time for ASCENT
and the CLP technique as the number of sets grew. Figure 11
presents the results from the experiment. As shown by the

Fig. 11. Solving Time for ASCENT vs. CLP

results, ASCENT scales significantly better than an CLP-based
approach.

Experiment 3: Testing ASCENT’s solution optimality.
Clearly, scalability alone is not the only characteristic of a
good approximation algorithm. A good approximation algo-
rithm must also provide very optimal results for large problem
sizes. We created an experiment to test the accuracy of
ASCENT’s solutions. We compared the value of ASCENT’s
answer to the optimal answer,

valueof(ASCENTSolution)

valueof(OptimalSolution)

for 50 different MMKP co-design problem sizes with 3 items
per set. For each size co-design problem, we solved 50
different problem instances and averaged the results.

It is often suggested, due to the Central Limit Theorem [19],
to use a sample size of 30 or larger to produce an approx-
imately normal data distribution [15]. We chose a sample
size of 50 to remain well above this recommended minimum
sample size. The largest problems, with 50 sets per MMKP
problem, would be the equivalent of a satellite with 50 points
of software variability and an additional 50 points of hardware
variability.

For problems with less than 7 sets per MMKP problem, we
compared against the optimal answer produced with an CLP
solver. We chose a low number of items per set to decrease
the time required by the CLP solver and make the experiment
feasible. For problems with more than 7 sets, which could
not be solved in a timely manner with the CLP technique, we
used our co-design problem generation technique presented
in Section 5.1. The problem generation technique allowed
us to create random MMKP co-design problems that we
knew the exact optimal answer for and could compare against
ASCENT’s answer.

Figure 12 shows the results of the experiment to test
ASCENT’s solution value verusus the optimal value over 50
MMKP co-design problem sizes.

With 5 sets, ASCENT produces answers that average 90%
optimal. With 7 sets, the answers average∼95% optimal.

Fig. 12. Solution Optimality vs Number of Sets

Beyond 20 sets, the average optimality is∼98% and continues
to improve. These results are similar to MMKP approximation
algorithms, such as M-HEU, that also improve with increasing
numbers of sets [2]. We also found that increasing the number
of items per set also increased the optimality, which parallels
the results for our solver M-HEU [2].

Experiment 4: Measuring ASCENT’s solution space
snapshot accuracy. As part of the solving process, ASCENT
not only returns the optimal valued solution for a co-design
problem but it also produces a data set to graph the optimal
answer at each budget allocation. For the satellite example,
the graph would show designers the design with the highest
image processing accuracy for each ratio of budget allocation
to software and hardware. We created an experiment to test
how optimal each data point in this graph was.

For this experiment, we generated 100 co-design problems
with less than 7 sets per MMKP problem and compared
ASCENT’s answer at each budget allocation to the optimal
answer derived using an CLP technique (more sets improve
ASCENT’s accuracy). For problems with 7 sets divided into
98 different budget allocations, ASCENT finds the same,
optimal solution as the CLP solver more than 85% of the
time. Figure 13 shows an example that compares the solution
space graph produced by ASCENT to a solution space graph
produced with an CLP technique. The X-axis shows the

Fig. 13. Solution Value vs. Budget Allocation

percentage of the budget allocated to the software (consumer)
MMKP problem. The Y-axis shows the total value of the
MMKP co-design problem solution. The ASCENT solution
space graph closely matches the actual solution space graph
produced with the CLP technique.

12

5.4 Solution Space Snapshot Resolution

Experiment 5: Demonstrating the importance of solution
space snapshot resolution. A complicated challenge of apply-
ing search-based software engineering to hardware/software
co-design problems is that design decisions are rarely as
straightforward as identifying the design configuration that
maximizes a specific property. For example, if one satellite
configuration provides 98% of the accuracy of the most
optimal configuration for 50% less cost, designers are likely to
choose it. If designers have extensive experience in hardware
development, they may favor a solution that is marginally more
expensive but allocates more of the development to hardware,
which they know well. Search-based software engineering
techniques should therefore allow designers to iteratively tease
these desired designs out of the solution space.

ASCENT has a number of capabilities beyond simply
finding the optimal solution for a problem to help designers
find desirable solutions. First, as we describe below, ASCENT
can be adjusted to produce different resolution images of the
solution space by adjusting the granularity of the budget allo-
cation steps (e.g., make a larger number of smaller allocation
changes). ASCENT’s other solution space analysis capabilities
are presented in Section 5.5.

The granularity of the step size greatly impacts the res-
olution or detail that can be seen in the solution space. To
obtain the most accurate and informative solution space image,
a small step size should be used. Figure 14(a) shows a solution
space graph generated through ASCENT using 10 allocation
steps. The X-axis is the percentage of budget allocated to
software, the Y-axis is the total value of the solution. It
appears that any allocation of 30% or more of the budget to
software will produce a satellite with optimal image processing
accuracy.

(a) Low Resolution Solution Space Snapshot

(b) High Resolution Solution Space Snapshot

Fig. 14. A Solution Space Graph at Varying Resolutions

The importance of a small step size is demonstrated in
Figure 14(b), which was produced with 100 allocation steps.
Figure 14(a) suggests that any allocation of greater than
30% for software would result in an optimal satellite design.
Figure 14(b) shows that there are many pitfalls in the 70%
to 99% range that must be avoided. At these precise budget
allocation points, there is not a combination of hardware and
software that will produce a good solution.

5.5 Solution Space Analysis with ASCENT
Although ASCENT’s ability to provide variable resolution
solution space images is important, its greatest value stems
from the variety of questions that can be answered from its
output data. In the following results, we present representative
solution space analyses that can be performed with ASCENT’s
output data.

Design analysis 1: Finding designs that produce budget
surpluses. Designers may wish to know how the resource
slack values, such as how much RAM is unused, with different
satellite designs. Another related question is how much of the
budget will be left-over for designs that provides a specified
minimal level of image processing accuracy. We can use the
same ASCENT output data to graph the budget surplus at a
range of allocation values.

Figure 15 shows the budget surplus from choosing various
designs. The graph has been filtered to adhere to a requirement
that the solution provide a value of at least 1600. Any data
point with a value of less than 1600 has had its surplus set to
0. Looking at the graph, we can see that the cheapest design
that provides a value of at least 1,600 is found with a budget
allocation of 80% software and 20% hardware. This design
has a value of 1,600 and produces budget savings of 37%.
Once the design that produces the biggest surplus is found,
developers use algorithms other than ASCENT to determine
how to best use the excess.

Fig. 15. Budget Surplus vs. Budget Allocation

Design analysis 2: Evaluating design upgrade/-
downgrade cost. In some situations, designers may have a
given solution and want to know how much it will cost or
save to upgrade or downgrade the solution to a different image
processing accuracy. For example, designers may be asked to
provide a range of satellite options for their superiors that show
what level of image processing accuracy they can provide at
a number of price points. Figure 16 depicts another view of
the ASCENT data that shows how cost varies in relation to
the minimum required solution value.

13

This graph shows that 5 cost units can finance a design
with a value up to 900, but a design of a value of 1,000
units will cost at least 124 cost units. This information graph
demonstrates the increased financial burden of requiring a
slightly higher valued design. Alternatively, if the necessary
value of the system is near the left edge of one of these
plateaus, designers can make an informed decision on whether
the increased value justifies the significantly increased cost.

Fig. 16. Cost of Increasing Solution Value

6 RELATED WORK

Search-based software engineering has a large number of
facets ranging from the design of general approximation algo-
rithms to the construction of search-based software engineer-
ing methods for specific problems. This section compares and
contrasts ASCENT to search-based software engineering tech-
niques related to (1) approximation algorithms for solvingsim-
ilar problems to the MMKP co-design problem, (2) methods
for using search-based techniques to solve hardware/software
partitioning problems, (3) methods for using approximation
techniques for solving hardware/software scheduling prob-
lems, and (4) search-based software engineering techniques
for determining project staffing.

Hardware/software co-design. A number of co-design
techniques [6, 25, 31, 1, 29, 34, 28, 13]—that can be viewed
as search-based software engineering techniques—examinethe
problem of partitioning system functionality into hardware and
software. These approaches use a number of search techniques
such as heuristic search techniques [34, 31], PSO [28, 13],
Genetic Algorithms [1, 29], and Clustering Algorithms [6].In
the partitioning problem, a system’s required operations are
grouped into tasks or functions, which are then implementedin
either hardware or software. The goal is to correctly partition
the tasks into hardware and software to meet a predefined
performance goal. Some tasks may operate with higher perfor-
mance if the functionality is placed on the hardware rather than
on software. The performance of the system is thus determined
by the location and placement of tasks in hardware versus
software.

The MMKP co-design problem, which ASCENT focuses
on, is complementary to this research. In particular, these
related approaches do not deal with maximizing a measure
of system value subject to producer/consumer resources and
cost. Similarly, ASCENT does not examine the impact of the
placement of tasks on the hardware and software. Each ap-
proach fills an important, although distinct, role in the search-

based software engineering landscape for hardware/software
co-design.

Another related problem in hardware/software co-design is
the scheduling of hardware/software tasks subject to resource
constraints. This type of co-design problem tries to determine
the optimal ordering of a series of tasks implemented in both
hardware and software. Scheduling with resource constraints
is a challenging problem that has led to the development
of large number of co-design search and design exploration
techniques [18, 24, 14]. This co-design technique is attacking
a different facet of software/-hardware co-design that does
not deal with how to select a software and hardware design
that maximizes system value subject to producer/consumer and
cost constraints. ASCENT, however, focuses directly on this
maximization of system value subject to these constraints.

MMKP approximation. Many problems similar to the
hardware/software co-design problem presented in this paper
have been solved with MMKP techniques. In multimedia
systems, determining the quality settings that maximize the
value of a series of data streams has been modeled as an
MMKP problem [23]. Other usages of MMKP include meta-
scheduling for grid applications [33]. A number of excellent
heuristic approximation algorithms, such as M-HEU [2] and
C-HEU [2], with near optimal results have been devised.

These existing MMKP algorithms and techniques, however,
cannot be directly applied to the MMKP-codesign problem
described in this paper. First, as described in Section 3.1,the
existing techniques assume that there are predefined individual
knapsack sizes, which is not the case in the MMKP co-design
scenario. Second, as described in Section 3.2, producer MMKP
items cannot be valued separately from a consumer MMKP
problem, causing a coupling problem. Existing MMKP ap-
proaches are not designed to handle this type of coupling
problem. In contrast, ASCENT addresses these issues and
provides high-quality solutions to MMKP co-design problems.

Project management and staff allocation. Accurate plan-
ning of large projects are essential to estimate project cost,
determine the formation of employee project teams, and to
assign these teams to tasks in a manner that gives the largest
probability for successful completion. The placement of each
individual employee can change the profile of the entire project
plan, resulting in an exponential number of possible configu-
rations [4]. Moreover, parameters of a project are dynamic and
may change several times before project completion, requiring
that multiple staffing solutions be calculated. This research is
related to MMKP co-design problems in that it deals with two
tightly-coupled activites–the ordering and staffing of project
parts subject to resource constraints. Although the work is
related, it cannot be used to solve MMKP co-design problems.
In contrast, ASCENT is specifically designed for solving
MMKP co-design problems.

7 CONCLUDING REMARKS

Designing hardware and software in tandem to maximize a
system capability can be an NP-hard activity. Search-based
software engineering is a promising approach that can be used
to leverage algorithmic techniques during system co-design.
This paper presented a polynomial-time search-based software

14

engineering technique, calledAllocation-baSed Configuration
Exploration Technique(ASCENT), for finding near optimal
hardware/software co-design solutions.

We showed how ASCENT’s heuristic-based solutions to
hardware/software co-design problems average over 95% opti-
mal when there are more than seven points of variability in the
hardware and software design. Moreover, ASCENT’s output
(which is a data set showing the optimal design configurations
at each ratio of budget allocation to hardware and software)
can be used to search for and answer important software
engineering questions, such as how much more it will cost
for increasing the value of system capability.

An implementation of ASCENT is available from the
ASCENT Design Studio project (http://code.google.
com/p/ascent-design- studio/).
REFERENCES
[1] M. Abdelhalim and S.-D. Habib. Modeling Communication

Cost and Hardware Alternatives in PSO Based HW/SW
Partitioning. InProceedings of the International Conference
on Microelectronics, pages 111–114, Dec. 2007.

[2] M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-dimension Knapsack
Problem. InProceedings of the International Conference on
Computational Science-Part II, pages 659–668.
Springer-Verlag London, UK, 2001.

[3] E. Alba and J. Francisco Chicano. Software Project
Management with GAs.Information Sciences,
177(11):2380–2401, 2007.

[4] G. Antoniol, M. Di Penta, and M. Harman. A Robust
Search-based Approach to Project Management in the
Presence of Abandonment, Rework, Error and Uncertainty. In
Proceedings of the International Symposium on Software
Metrics, pages 172–183, Sept. 2004.

[5] A. Barreto, M. Barros, and C. Werner. Staffing a Software
Project: A Constraint Satisfaction and Optimization-based
Approach.Computers and Operations Research,
35(10):3073–3089, 2008.

[6] E. Barros, C. Universitaria-Recife-PE, W. Rosenstiel,and
X. Xiong. A Method for Partitioning UNITY Language in
Hardware and Software.In Proceedings of EURO-VHDL,
Grenoble, France, Sept. 1994.

[7] P. Chiu, Y. Chen, and K. Lee. A Request Scheduling
Algorithm to Support Flexible Resource Reservations in
Advance.Proceedings of the Canadian Conference on
Electrical and Computer Engineering, Niagara Falls, Ontario,
Canada, May 2004.

[8] L. Chung. Non-Functional Requirements in Software
Engineering. Springer, 2000.

[9] J. Clark and J. Jacob. Protocols are Programs Too: the
Meta-heuristic Search for Security Protocols.Information and
Software Technology, 43(14):891–904, 2001.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. MIT, Cambridge, Massachussetts, 1990.

[11] S. Curtis. The Magnetospheric Multiscale Mission...Resolving
Fundamental Processes in Space Plasmas.NASA STI/Recon
Technical Report N, Dec. 1999.

[12] K. Deb. An Efficient Constraint Handling Method for Genetic
Algorithms. Computer methods in applied mechanics and
engineering, 186(2-4):311–338, 2000.

[13] R. Dick and N. Jha. MOGAC: a Multiobjective Genetic
Algorithm for Hardware-Software Cosynthesis of Distributed
Embedded Systems.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(10):920–935,
1998.

[14] C. Gebotys and M. Elmasry.Optimal VLSI Architectural
Synthesis: Area, Performance and Testability. Kluwer
Academic Publishers Norwell, MA, USA, 1992.

[15] J. Gosling.Introductory Statistics. Pascal Press, Glebe,
Australia, 1995.

[16] M. Harman. The Current State and Future of Search Based
Software Engineering.International Conference on Software
Engineering, Minneapolis, MN, pages 342–357, May 2007.

[17] M. Harman and B. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[18] P.-A. Hsiung, P.-H. Lu, and C.-W. Liu. Energy efficient
co-scheduling in dynamically reconfigurable systems. In
Proceedings of the International Conference on
Hardware/software Codesign and System Synthesis, Salzburg,
Austria, pages 87–92, October 2007.

[19] P. Huber.Robust Statistics. Wiley Series in Probability and
Mathematical Statistics, New York, New York, 1981.

[20] T. Ibaraki, T. Hasegawa, K. Teranaka, and J. Iwase. The
Multiple Choice Knapsack Problem.J. Oper. Res. Soc. Japan,
21:59–94, 1978.

[21] O. Ibarra and C. Kim. Fast Approximation Algorithms forthe
Knapsack and Sum of Subset Problems.Journal of the ACM
(JACM), 22(4):463–468, 1975.

[22] S. E. Institute. Ultra-Large-Scale Systems: SoftwareChallenge
of the Future. Technical report, Carnegie Mellon University,
Pittsburgh, PA, USA, Jun 2006.

[23] M. Islam, M. Akbar, H. Hossain, and E. Manning. Admission
Control of Multimedia Sessions to a Set of Multimedia
Servers Connected by an Enterprise Network. In2005 IEEE
Pacific Rim Conference on Communications, Computers and
signal Processing, 2005. PACRIM, pages 157–160, 2005.

[24] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian.
Design Space Exploration of Real-time Multi-media MPSoCs
with Heterogeneous Scheduling Policies. InProceedings of
the International Conference on Hardware/software Codesign
and System Synthesis, Seoul, Korea, pages 16–21, 2006.

[25] E. Lagnese and D. Thomas. Architectural Partitioning for
System Level Design.International Conference on Design
Automation, pages 62–67, June 1989.

[26] S. Martello and P. Toth. Algorithms for Knapsack Problems.
Surveys in Combinatorial Optimization, 31:213–258, 1987.

[27] P. McMinn. Search-based software test data generation: a
survey. Software Testing, Verification & Reliability,
14(2):105–156, 2004.

[28] D. Saha, R. Mitra, and A. Basu. Hardware software
partitioning using genetic algorithm. InIn Proceedings of the
International Conference on VLSI Desig, Hyderabad, India,
pages 155–160, Jan 1997.

[29] Q. Tong, X. Zou, Q. Zhang, F. Gao, and H. Tong. The
Hardware/Software Partitioning in Embedded System by
Improved Particle Swarm Optimization Algorithm. pages
43–46, Oct. 2008.

[30] Y. Toyoda. A Simplified Algorithm for Obtaining
Approximate Solutions to Zero-one Programming Problems.
Management Science, pages 1417–1427, 1975.

[31] F. Vahid, D. Gajski, and J. Gong. A Binary-constraint Search
Algorithm for Minimizing Hardware During
Hardware/Software Partitioning.In Proceedings of the
Conference on European Design Automation, Grenoble,
France, pages 214–219, Sept. 1994.

[32] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint
satisfaction using constraint logic programming.
Constraint-Based Reasoning, 1994.

[33] D. Vanderster, N. Dimopoulos, and R. Sobie. Metascheduling
multiple resource types using the MMKP. InProceedings of
the 7th IEEE/ACM International Conference on Grid
Computing, Barcelona, Spain, pages 231–237, Sept. 2006.

[34] T. Wiangtong, P. Cheung, and W. Luk. Comparing three
heuristic search methods for functional partitioning in
hardware–software codesign.Design Automation for
Embedded Systems, 6(4):425–449, 2002.

