
The Impact of Variability on Soft Real-Time System Scheduling

Abstract

Soft real-time systems sometimes operate under un-
certain and unpredictable environmental conditions which
makes event arrival times unreliable and variable. Input to
such systems also change from time to time making event
processing times variable. Due to such variations, tradi-
tional techniques using worst case times to estimate system
performance deviate far from actual expected behavior. It
would be more accurate to analyze such systems by con-
sidering the variance present in the system. More realistic
performance prediction will help in decision making while
deploying a system on to given hardware.

This paper presents a Method of Stages based Analysis
of soft Real Time systems (MoSART). MoSART takes into
account variance in both the arrival and execution time
and can model the performance of different scheduling al-
gorithms. Sensitivity analysis, experimental validation, and
the discovery of state dependent algorithms that outperform
popular algorithms are demonstrated using MoSART. The
results bring up several insights such as variability causes
deadline miss, no algorithm is uniformly optimal and choice
of scheduling algorithm becomes more important for higher
utilization systems. In one scenario, a state dependant algo-
rithm devised using MoSART and optimization techniques
gives around 8% and 21% less deadline miss than Earliest
Deadline First and Rate Monotonic respectively.

1 Introduction
Soft real time systems such as live audio-video or wire-

less sensor networks are becoming increasingly popular in
our society. With the advent of cyber-physical systems, this
trend will increase. Such systems can tolerate some number
of deadline misses and still provide some value as long as
deadline misses are within an acceptable bound. These sys-
tems typically function in an uncertain environment where
the underlying infrastructure, such as wireless communica-
tion, is unpredictable. This causes data exchange between
distributed entities of the system to be somewhat unpre-
dictable, which in turn causes inter-arrival times of events
to be variable. Because input to such systems (e.g., events
captured by a sensor or frame sizes of audio/video signals)
are variable, the processing time of each event may vary
across non-trivial ranges.

When such a system is deployed onto a given set of hard-

ware, the goal is to keep the deadline misses at a minimum
while achieving other goals such as good response time and
optimized resource utilization. Therefore, in light of such
variability, it is helpful to develop techniques that can en-
able an administrator to analyze a particular deployment in
terms of deadline misses, response times, and resource uti-
lization. Such a technique can also help in understanding
key system insights as also help design better scheduling
algorithms.

This paper presents a formal technique of modeling and
analyzing soft real time systems. The method of stages is
used to model the variability and uncertainty present in ar-
rival and execution times of all tasks in the system. This
technique, Method of Stages based Analysis of soft Real
Time systems (MoSART), models a soft real time system
and estimates the deadline misses and other important met-
rics such as response time, throughput, and resource utiliza-
tions for each task. Such a technique is useful to predict
various system parameters given a particular deployment of
the tasks onto a set of nodes.

The remainder of this paper is organized as follows: Sec-
tion 2 illustrates the effect of variability on a representative
system; Section 3 formulates the problem that MoSART
solves; Section 4 presents the modeling approach and ap-
plies the method to rate monotonic, earliest deadline first,
and least laxity; Section 5 illustrates the methodology viaa
complete example; Section 6 illustrates the broader benefits
by providing a sensitivity analysis, experimental validation
and new scheduling algorithms; Section 7 compares related
work in the area of probabilistic analysis of soft real-time
applications; Section 8 discusses limitations; and Section 9
presents concluding remarks.

2 Motivating Example
This section presents two motivating examples which il-

lustrates how variability in task arrival and execution times
can impact system performance. Such variability is a direct
result of the uncertainty/non-determinism present in the en-
vironment in which such systems operate.

A highly loaded system: Consider a highly loaded sys-
tem consisting of two tasks, one which is highly variable
(i.e., Task 2) in its arrival times, while the other task (i.e.,
Task 1) has less variance in its arrival times. Both tasks have
the same average arrival and execution times. Subsequent
arrivals are assumed to impose a deadline for the previous
task arrivals. This system is analyzed and the deadlines met

1

for each task is obtained when each task is given scheduling
priority. The task details are given in Table 1.

Inter-Arrival Time Execution Time
Tasks Mean C.V. Mean C.V. Deadline Met % Deadline Met %

(secs) (secs) Priority Task 1 Priority Task 2
Task 1 10.00 0.32 6.0 0.32 86.91 44.60
Task 2 10.00 1.00 6.0 0.32 27.66 55.83
Total 57.28 50.22

Table 1. A highly loaded system
Although the tasks are identical except in their second mo-
ment (i.e., coefficient of variation (CV) = standard devia-
tion/mean), giving priority to the less variable Task 1 im-
proves the number of met deadlines by over 14%. This in-
dicates that scheduling based on the variance in the tasks
impacts the number of deadlines met/missed.

A lightly loaded system: Now consider the exact same
set of tasks but with one exception. The mean inter-arrival
time of the tasks is increased to make the system lightly
loaded. As before, the two tasks are identical except for
their second moment. The results are shown in Table 2. In
this case the number of deadlines met is better when pri-
ority is given to the task with higher variance. This result
is opposite to what was seen in the earlier, highly loaded,
system. Though this is a simple example, it clearly in-
dicates that both the variance and the system load should
be considered when making scheduling decisions. Simplis-
tic techniques (e.g., RM, EDF, LL), that only consider the
mean and ignore the variance and the system load, are sub-
optimal. Therefore, it is necessary to develop a technique
capable of modeling the variance in the tasks as well as the
variability in the system load. Such a technique can then
be used to estimate crucial system parameters such as the
deadline miss rate, response time, and resource utilization
of a given system.

Inter-Arrival Time Execution Time
Tasks Mean C.V. Mean C.V. Deadline Met % Deadline Met %

(secs) (secs) Priority Task 1 Priority Task 2
Task 1 30.00 0.32 6.0 0.32 99.96 98.80
Task 2 30.00 1.00 6.0 0.32 77.43 82.03
Total 88.69 90.42

Table 2. A lightly loaded system

3 Problem Formulation
In this paper a real-time system is viewed as a set of

N independent tasks. Each taskTi consists of a series of
job arrivals.Ji,j represents thejth instance of taskTi and
has a deadline that corresponds to the next arrival of the
task, along with an expected execution time. Both the inter-
arrival time and the execution time are variable. and are
considered to be random variables with a probability distri-
bution. It is assumed that the distribution of both is available
from historical data. The problem is to estimate the per-
centage of deadlines being missed/met, the expected task
response time, and the resource utilization when a set of

tasks is assigned to a processor, given a specified schedul-
ing algorithm (e.g., rate monotonic, earliest deadline first,
least laxity).

4 Modeling Approach
This section describes the methodology underlying

MoSART. In its simplest form, the system is viewed as a
single processor (i.e., resource) that is shared by several
tasks. For simplicity, and without loss of generality, it is
assumed that the deadline of a job coincides with the sub-
sequent job arrival from the task, (i.e., each jobJi,j is ex-
pected to finish before the next jobJi,j+1 of taskTi arrives).
This assumption simplifies the presentation here and does
not limit the generality of the modeling methodology. This
assumption is also realistic in many applications (e.g., the
previous weather report is due before new weather data is
downloaded).

4.1 Workload Modeling
Workload modeling consists of three parts: the inter-

arrival time, the deadline, and the execution time. For sim-
plicity reasons, since the deadline is assumed to coincide
with the next arriving task, only the inter-arrival time and
the execution time processes need to be modeled explicitly.

As illustrated in Section 2, its important to model the
variance present in task parameters. Thus both the inter-
arrival time and the execution time of tasks are treated as
random variables with a probability distribution. Phase-
type distributions [8] are used to approximate these distri-
butions. An Erlang distribution using the method of stages
(MOS) is a special form of a phase type distribution which
helps in modeling distributions with a coefficient of vari-
ation (CV, which is the ratio of the mean to the standard
deviation) less than 1. In the case of a distribution having
a CV greater than 1, an analogous technique using a hyper-
exponential method of stages can be used. However, in this
paper, the discussion is restricted to distributions with CVs
less than 1.

The MOS is composed of a series of exponential stages.
Each of the stages has the same mean (λ). The CV is di-
rectly related to the number of stages (k) used. Varying
these two parameters, it is possible to accurately model dis-
tributions whose CVs are less than one. The probability
density function (pdf), mean, variance, and coefficient of
variance (CV) for ak-stage Erlang distribution are given in
the following table.

PDF Mean Variance CV
(kλ)k

(k−1)!
xk−1e−kλx 1

λ

1
k
(1

λ
)2 1

√

(k)

Table 3. Erlang distribution parameters
Whenk is equal to 1, the pdf reduces to that of an expo-

nential distribution, which has a CV of 1. Increasing the

value of k decreases the variance of the distribution. A
larger number of stages increases the granularity and pro-
vides more detailed information on the task’s arrival and
execution but at a cost of increased computation overhead.
If more moments of the arrival and execution distribution
are desired to be matched, a more general phase type distri-
bution could be used, but with added complexity. Other au-
thors [16, 14, 17, 6] demonstrate how various distributions
can be modeled effectively using phase type distributions.

4.2 System Modeling
This section describes the task representation, system

model parameters, resource allocation, task arrivals, task
service, and task deadlines. Together with a specified
scheduling algorithm, a comprehensive modeling frame-
work is provided.

4.2.1 Task Representation

The system workload is viewed as a collection of tasks. Jobs
belonging to a particular task are statistically identicalto
each other, but the jobs of different tasks may have differ-
ent arrival and service (i.e., execution) characteristics. Each
task is modeled by a set of arrival stages and a set of service
stages.

The arrival stages model the time that the next job in a
particular task arrives to the system. Completion of all the
arrival stages indicates an arrival of a new job. The service
stages represent the execution time of a job in a particular
task and completion of the last service stage indicates job
completion. A job will meet its deadline if its service stages
complete before the arrival stages complete.

Figure 1 shows the representation of a particular task
stream. In this example, there are two arrival stages and four

Figure 1. Task Representation

service stages. The arrival stages are statistically identical
to each other. Similarly, the service stages are statistically
identical to each other.

A detailed description and example of the state space
model is developed in subsequent sections. Since each stage
within a particular arrival or service process is statistically
identical, and the time spent in a stage is assumed to be
exponentially distributed, the completion time of each pro-
cess has an Erlang distribution. Therefore, the underlying
state space model is a Markov chain. Specifying the current
stage of each process for each task completely describes the
current system state.

4.2.2 Model Parameters

The state space model depends on the following parameters.
• N - number of workload tasks.
• Ai - number of arrival stages for taski jobs.
• Si - number of service stages for taski jobs.
• µi - execution rate for taski jobs. Thus,1/µi is the

average execution time for a job of taski to complete all of
its service stages. Similarly,1/(Siµi) is the average time
that a job of taski spends at each of its service stages.

• λi - arrival rate for taski jobs. This represents the
rate at which the arrival process for taski completes all its
stages, triggering a new arrival (and signalling a deadline).
Thus,1/λi is the average inter-arrival time between jobs in
taski and1/(Aiλi) is the average time that a job of taski
spends at each of its arrival stages.

• P - number of service resources (e.g., processors)
available for allocation.

• scheduling algorithm - algorithm used to determine
the resource allocation among multiple concurrent tasks.
MoSART assumes that task allocation can change at each
stage boundary. Popular algorithms like Rate Monotonic
(RM), Earliest Deadline First (EDF), Least Laxity First
(LLF), or any new algorithm can be modeled.

4.2.3 State Space Model

This section describes the state space model in the context
of an example system of tasks. It is assumed that the sys-
tem is pre-emptive and that a scheduling decision is made at
every stage completion. Without loss of generality, a single
processor system is assumed. The set of tasks given in Ta-
ble 4 is used. The arrival events of task 1 are modeled using
2 stages while the execution is modeled using 4 stages. This
is because the CV of each event is1/

√

(#ofstages). The
stage values are shown in the CV column in Table 4. Sim-
ilarly, the arrival of task 2 is modeled using 3 stages and
execution with 5 stages. Thus,N = 2, A1 = 2, A2 = 3,
S1 = 4, S2 = 5, andP = 1.

Inter-Arrival Time Execution Time
Tasks Mean(secs) CV Rate Mean(secs) CV Rate

(Jobs/min) (Jobs/min)
Task 1 10.0 0.7(1/

√

(2)) 6.0 4.0 0.5(1/
√

(4)) 15.0
Task 2 15.0 0.57(1/

√

(3)) 4.0 5.0 0.45(1/
√

(5)) 12.0

Table 4. Task Parameters
Figure 2 shows a portion of the underlying state space

model that shows the possible state transitions due to an
arriving task. The arrival process for task 1 has a 2-stage
(i.e., the top series of stages) Erlang distribution with an
arrival rate ofλ1(6.0). Thus, the rate leaving each stage is
2λ1(12.0). Job 2 tasks have a 3-stage (i.e., the third series
of stages) Erlang arrival distribution with an arrival rateof
λ2(4.0). Thus, the rate leaving each stage is3λ2(12.0).

The second and fourth series of stages represents the ex-
ecution process for task 1 and task 2, respectively. The solid

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

State 9

State 10

State 11

2 1

3 2

2
1

2
1

2
1

2
1

2
1

3 2

3 2

3 2

3 2

Task 1 job arrives

Task 1 job arrives

Task 1 job arrives

Task 2 job arrives

Task 2 job arrives

3 2

Figure 2. Task Arrivals

black circles (stages) in Figure 2 represent the currently ac-
tive stages. For instance, in state 1, the arrival processesof
the two tasks are both executing their first stage and no jobs
are executing in the system .

The current stage of each process determines the current
state of the job. Collectively, the state of each task repre-
sents the overall system state. For example,{(1, 1), (2, 0)}
represents the state at state 7. This means the state of the
first task is(1, 1) while that of the second is(2, 0). The first
task arrival process is less than50% complete and execution
is less than25% complete. Similarly second task arrival is
between33.3% and 66.6% complete while the execution
has not started yet. The completion of any stage results in a
change in the system state.

Task Arrival: The arc labels in Figure 2 indicate the
rates at which the various state transitions occur. Initially,
in state 1, neither task has arrived yet and both of the tasks
are in their first stage of arrival. Only the arrival processes
are active and none of the service processes are active. The
arrival process of task 1 can complete its first arrival stage
at rate2λ1, causing the system to move to state 2. Alter-
natively, the arrival process of task 2 can complete its first
arrival stage at rate3λ2, resulting in a transition to state 3.
From state 2, the system can either move to state 4 if the
arrival process of task 1 completes its 2nd stage, or to state
5 if the arrival process of task 2 completes its 1st stage. In
state 4, the arrival process of task 1 has just completed both
its arrival stages, which represents the arrival of a new task 1
task to the system. Consequently, the service process of task
1 becomes active (indicated by the black circle in task 1’s
service process) and the subsequent arrival/deadline process
for task 1 is restarted at stage 1.

Task Completion and Missed Deadlines - A race be-
tween stages:Figure 3 shows another portion of the un-
derlying state space model. In state 2, three transitions are
possible: (1) the arrival/deadline process of task 1 can com-
plete a stage with rate2λ1 which models a missed deadline
due to the arrival of a new task 1 and the system enters state

5, (2) the service process of task 1 can complete a stage
with rate4µ1 and the system enters state 6, or (3) the ar-
rival/deadline process of task 2 can complete a stage with
rate3λ2 and the system enters an unshown state indicated
by the tiny arrow. If transition 1 occurs before 2 or 3, the
task misses a deadline (as shown in the figure). Similarly,
the transition from state 6 to state 11 represents an execu-
tion completion for task 1. This figure also shows the same

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

State 9

State 10

State 11

4µ1

4µ14µ1

4µ1

5µ24µ1 4µ1

5µ2

2

1

3

2

3

2

State 12

2

2 1

2

3 2

2

1
3

2

State 13

State 14

State 15

5µ2

State 16
Task 2

Misses

Deadline

Task 2

Finishes

Task 1

Misses

Deadline

Task 1

Finishes

Task 1

Finishes

Task 1

Finishes

Task 2

Misses

Deadline

Task 2

Finishes

Figure 3. Task Execution/Deadline - EDF

for task 2 (i.e., a met deadline in going from state 1 to 3 and
a missed deadline in going from state 1 to 4).

In state 7, if task 1 completes its final service stage (with
rate4µ1), the service process completes, showing that task
1 met its deadline. In this case, the task’s service process
terminates, but its arrival process continues. Task 2 goes
through similar situations. In state 1, if the arrival process
of task 2 now completes one more stage before the service
process can complete its stage, then a new task 2 will ar-
rive (i.e., state 4) and the previous job of task 2 will miss
its deadline. Again, if the service stage (with rate5µ2)
completes before the arrival stage, the task will successfully
meet its deadline (state 3). The other states and state transi-
tions are similarly understandable.

A job can terminate in two ways, either the last stage of
its arrival completes or the last stage of its execution pro-
cess completes. If the service stages completes first, then
the job meets its deadline. On the other hand, if the arrival
stages completes first, then the job misses its deadline. The
model can therefore be thought of as a horse race. At task
arrival time, two “horses” (i.e., an arrival/deadline horse and
a service horse) begin racing. Each goes at its own pace
and begins running through its successive stages. The first
horse crossing the finish line (i.e., its last stage) wins. If the
service process horse wins, the task successfully meets its
deadline. If the arrival/deadline horse wins, the task misses
its deadline.

Modeling Scheduling Algorithms: The scheduling al-
gorithm modeled in Figure 3 is earliest (expected) deadline
first. In the given set of tasks, the arrival/deadline stages
have the same expected time in both the tasks. The same
is true for the execution stages of each task. This allows
the reader to simply count the number of remaining ar-
rival/deadline stages to determine which task has the earliest
expected deadline.

For example, in state 1, task 1 has 1 remaining arrival
stage until its next arrival/deadline and task 2 has no re-
maining arrival stages until its next arrival/deadline. Thus,
the expected deadline for task 2 is earlier than that of task 1
and for this reason, task 2 is allocated the processor to ex-
ecute. Since task 1 has no allocated resources, the service
process for task 1 cannot proceed. Task 2’s execution can
continue as shown by the transition from state 1 to state 3
with a rate of5µ2. In state 4, however, task 1’s deadline
is 1 stage away, while task 2’s deadline is 2 stages away.
Thus, the processor is given to task 1. When the resource
is allocated to task 1 (task 2), the average service time for
each stage is1/4µ1 (1/5µ2). Note that the arrival/deadline
process for a task always continues to advance regardless of
any allocated resources. The various states and transitions
in the state diagram are self-evident. In state 1, if the arrival
process of task 1 completes a stage with rate2λ1 (i.e., tran-
sitioning to state 2), the expected deadline of task 1 is now
smaller than that of task 2. Task 2 is therefore pre-empted
and the resource is allocated to task 1. In the similar way,
other scheduling algorithms like rate Mmonotonic (RM) or
least laxity first (LLF) can also be modeled. For example, if
RM is modeled, since task 1 has fewer arrival stages, it has
a smaller inter-arrival time, and thus it will always receive
priority. Thus, under RM, in state1, priority will be given
to task 1 instead of to task 2.

5 A Complete Example
This section presents a complete solution to a simple

example to illustrate the modeling methodology. Table 5
presents the task parameters. We deliberately keep the set

Inter-Arrival Time Execution Time
Tasks Mean Rate CV Stages Rate/stage Mean Rate CV Stages Rate/stage

(secs) (jobs/min) (jobs/min) (secs) (jobs/min) (jobs/min)
Task
1

10.0 6.0 0.7 2 12.0 5.0 12.0 0.57 3 36.0

Task
2

6.0 10.0 1.0 1 10.0 2.0 30.0 0.7 2 60.0

Table 5. Task parameters
of parameters simple to illustrate the full solution of the ex-
ample. Section 6 presents results for more complex sets of
tasks.

Table 5 also gives the arrival and execution rate of
each task as well as the rates/stage. The inter-arrival time
for Task 1 jobs is 10 seconds (i.e., an arrival rate of 6
jobs/minute). The arrival/deadline process of Task 1 is mod-
eled as a two stage Erlang process since the CV is0.7 (i.e.,
CV = 0.7 = 1/

√
2 = 1/

√
numberofstages).

Each stage thus has a rate of 12 jobs/minute. Similarly
for task 2, the job arrival rate is 10 jobs/minute and is mod-
eled using a single stage. The job execution rates for Task 1
and Task 2 are similarly derived to be 36 jobs/minute/stage
and 60 jobs/minute/stage, respectively. Figure 4 presents
the complete Markov chain state space for this example.

The earliest deadline first algorithm is used to schedule
jobs in this system, as evident in State 12, where the arrival
process for Task 1 is in its 2nd stage while the Task 2 arrival
process is in its only stage. The estimated arrival time of
task 1 is10/2 = 5 secs, while that of task 2 is 10 secs. The
earliest deadline is expected to be for Task 1, meaning that
it should be scheduled. This is shown by an outgoing arc
from State 12 with rate 36 (Task 1’s rate/stage) to state 17.

Model analysis. Once the complete state space is enu-
merated, the model can be solved analytically to provide
various performance metrics including resource utilization,
the average number of jobs of each task in the system, and
the deadline miss/met ratio of each task. These metrics fol-
low directly from the steady-state probabilities of being in
each system state. is detailed in Appendix??. Once proba-
bilities are computed, the various other system performance
metrics can be derived. The rate at which a task meets its
deadlines is obtained by finding the product of the probabil-
ity of the execution process being in the last stage and the
rate at which the execution process completes a stage. The
sum of this product for all states gives the overall deadlines
met estimation.

Similarly, the rate at which jobs miss their deadlines can
be obtained by considering all states in which an arrival/-
deadline process is executing in its last stage. The missed
deadline job rate can be computed by taking the product of
the probability of finding the system in that state and the
rate at which the arrival/deadline process completes a stage,
and summing across all such states. The missed deadline
job rate for each task is thus given by:

Rd1 = 12× (P7 + P11 + P12 + P16 +

P17 + P20 + P21 + P23 + P24)

Rd2 = 10× (P3 + P5 + P6 + P9 + P10 + P12 +

P14 + P15 + P17 + P18 + P19 +

P20 + P21 + P22 + P23 + P24)

whereRd1 andRd2 are the rates at which the two tasks miss
their deadlines, respectfully.Pi is the steady state probabil-
ity of being in Statei. Similarly, the rate at which the two
tasks meet their deadlines is given by

Rm1 = 36× (P13 + P16 + P21 + P24)

Rm2 = 60× (P6 + P10 + P15 + P19 + P22)

State 16

State 15

State 14

State 13

State 11

State 10

State 12

State 8

State 7

State 6

State 3

State 24

State 23

State 22

State 21

State 20

State 19

State 18

State 17

State 9

12

10

12

12

36

36

12

60
10

12
12

12

10

10

6
0

36

10

6
0

10

12 10

36

1
0

6
0

1
0

12

1
0

2

60

10

1
2

12
12

36

10

10

12

1

36

12

60

10

12

1
0

4 60

10

412

2

36

10

36

9

12

12

60

10

12
10

8

60

12

36

1210

9

51
2

36

10

12
10

State 1

State 2

State 4

State 5

13

36

17

10

12

10 15

1
236

1060

Figure 4. A Simple Example using EDF scheduling

Other performance metrics such as the utilization of the
resource (i.e., processor) can also be obtained easily. For
example, the processor utilization of the system is given by
the sum of the probabilities of the states in which at least
one task is executing. This utilization calculation is equiv-
alent to subtracting the probability that the processor is idle
from one, which is1 − ∑

i P (si|si ∈ So), whereSo is the
set of states in which no tasks are executing. The utilization
of the processor is therefore:

U = 1 − P1 + P2 (1)

The utilization of the processor by each task is calculated
similarly. Table 6 shows the resulting performance metrics.
The data obtained while using the rate monotonic and least

Earliest Deadline First
Tasks Deadline Misses/min Deadlines Met/min Utilization
Task 1 1.97 (33%) 4.03 (67%) 0.39 (39%)
Task 2 3.30 (33%) 6.70 (67%) 0.25 (25%)
Total 5.27 (33%) 10.73 (67%) 0.64 (64%)

Rate Monotonic
Task 1 2.32 (39%) 3.68 (61%) 0.37 (37%)
Task 2 2.66 (26.6%) 7.34 (73.4%) 0.27 (27%)
Total 4.97 (31%) 11.02 (69%) 0.64 (64%)

Least Laxity First
Task 1 1.91 (32%) 4.09 (68%) 0.40 (40%)
Task 2 3.88 (38.8%) 6.12 (61.2%) 0.24 (24%)
Total 5.79 (36%) 10.21 (64%) 0.64 (64%)

Table 6. Example performance metrics

laxity first scheduling algorithms is also included.
The results in Table 6 show that the tasks have a high

percentage of deadline misses, though the utilization of the

processor is not high. The reason for this result is the high
variability of the inter-arrival times and the execution times
for each task in this example. The CV of the arrival and ex-
ecution processes vary between1.0 and0.57. The variation
observed in practice is typically lower. Section 6 presents
an analysis showing how the deadline miss rate of each task
diminishes with a decrease in variability in the arrival and
execution rates.

6 Broader Methodology Benefits
In addition to providing a common framework for uni-

formly comparing a broad spectrum of scheduling algo-
rithms, the modeling methodology offers a convenient way
to analyze the effects of variability with respect to the ar-
rival/deadline process, the execution process, and the sys-
tem load. It gives a platform to (1) conduct comprehen-
sive sensitivity analysis, (2) perform experimental valida-
tion studies, and (3) search for new, optimal scheduling al-
gorithms.

6.1 Sensitivity Analysis

The modeling approach presented in Section 4 is rela-
tively simple to understand, yet powerful enough to explore
a wide range of workload and system parameters. The pa-
rameters are described in Section 4.2.2 and include the num-
ber of tasks, the number of arrival/deadline stages for each
task, the mean arrival/deadline rate for each task, the num-
ber of service stages for each task, the mean service rate for
each task, the number of servers, and the scheduling algo-
rithm. By holding certain parameters constant while vary-
ing others, new insights and rules-of-thumb are possible.

Consider the effect that the workload intensity has on
the percentage of deadline misses under various algorithms
and with various numbers of stages. Workload intensity is
captured by the ratio of the aggregate arrival rate of tasks
to the required service rate of the tasks. In a single server
environment, this intensity is equivalent to the processor’s
utilization. In this sensitivity analysis, three systems are
evaluated: (1) system A with a high utilization of 83%, (2)
system B with a medium utilization of 67%, and (3) system
C with a low utilization of 47%. Two tasks are modeled,
with parameters shown in Table 7. The variability in the

Task 1 Task 2
System Arr. Rate Exec. Rate Arr. Rate Exec. Rate Expected

(jobs/min) (jobs/min) (jobs/min) (jobs/min) Util
A 5 15 6 12 83.34
B 5 30 10 20 66.67
C 5 30 6 20 46.67

Table 7. Task parameters

inter-arrival times and the execution times is captured by
varying the number of stages from 1 (with a high CV = 1) to
8 (with a low CV = 0.35). Three scheduling algorithms (i.e.,
rate monotonic, earliest deadline first, and least laxity first)
are compared. For each set of parameters, the MoSART
technique provides the percentage of missed deadlines. The
results of applying this sensitivity analysis to systems A,B,
and C are shown in Figure 5, 6, and 7.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

D
e
a
d

li
n

e
 M

is
s
 %

EDF

RM
LLF

Figure 5. System with 83% Utilization

The following conclusions can be derived from these fig-
ures:

• Lower variability improves performance. The per-
formance of the system improves as the variability within
the system decreases. As the number of stages increases, the
inter-arrival times and the execution times become more de-
terministic and the deadline miss percentages are reduced.
For systems with a high utilization, the number of missed
deadlines is reduced by a factor of two as the CV decreases
from 1.00 to 0.35 (see figure 5). For systems with low uti-
lization, the effect is even more dramatic, where the number
of missed deadlines is cut by a factor of eight (see figure 7).
Even systems with low utilization (e.g., 47%) can expect

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

%
 D

e
a
d

li
n

e
 M

is
s

EDF

LLF

RM

EDF

RM

LLF

Figure 6. System with 67% Utilization

0

0.05

0.1

0.15

0.2

0.25

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

D
e
a
d

li
n

e
 M

is
s
 %

EDF

RM

LLF

Figure 7. System with 47% Utilization

relatively high deadline miss ratios (e.g., above 20%) if the
arrival and service time variability is high (e.g., CV = 1.0).

• No algorithm is uniformly optimal. A cursory glance
at Figures 5, 6, and 7 indicates that EDF, outperforms LLF,
which outperforms RM. Moreover, this performance differ-
ence widens as the system becomes more deterministic and
more heavily utilized. For instance, in a system with high
utilization and low variance (i.e., the right side of Figure 5),
EDF has more than 10% fewer deadline misses than LLF,
and more than 20% fewer deadline misses than RM. Under
the workload setting in the previous section (e.g., see Ta-
ble 6), however, RM exhibited 6% fewer deadline misses
than EDF and 10% fewer deadline misses than LLF, where
system utilization was 64%. A closer look at Figure 7 re-
veals that the RM line crosses both the EDF and LLF lines
around stage 2. The best algorithm depends on the specific
system parameters. MoSART provides a useful and com-
parative sensitivity analysis given specific system parame-
ters.

• The scheduling algorithm choice is more important
for higher utilized systems. When system utilization is
low (e.g., see Figures 6 and 7), all algorithms perform sim-
ilarly. Figure 5, however, demonstrates a more distinct dif-
ference between the different algorithms when the utiliza-
tion is higher. It is therefore more important to choose the
proper algorithm as the system utilization increases. In sys-

tems with lower utilizations, the choice depends more on
which algorithm is easier to implement. For instance, RM
is normally easier to implement than EDF or LLF.

• Very low utilized systems also miss deadlines.In
hard real-time (i.e., deterministic) systems, the maximum
“schedulable” utilization (i.e., below which all deadlines
will be met) of RM is given byn(21/n − 1) [12], which has
a value of0.83 when the number of tasks n = 2. The sys-
tems in the sensitivity analysis therefore have utilizations
within this bound. Given soft real-time assumptions (i.e.,
arrival and service time variability), all systems miss some
deadlines. As the system becomes more deterministic, the
number of deadline misses approaches0.

• Missed deadlines lower the processor utilization.
The ratio of the arrival rate to the service rate gives the
processor utilization, which is the theoretical maximum uti-
lization assuming all tasks meet their deadlines and none
terminate prematurely for missing their deadlines. As more
deadlines are missed (e.g., as the variability in the arrival
and service processes increases), the actual processor uti-
lization is lower than its theoretical maximum, as shown in
Figure 8. This figure shows the actual processor utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

C
P

U
 U

ti
li

z
a

ti
o

n
 %

Figure 8. Utilization versus Variance

of system B (given in Table 7) as the variability decreases.
This figure shows that the processor utilization approaches
its maximum value of67% as the arrival and service times
become more deterministic.

The primary purpose of this sensitivity analysis is to
demonstrate the effects that variability (i.e., the second mo-
ment as opposed to the first moment) has on system perfor-
mance. Also, MoSART is a uniform modeling methodol-
ogy that can assist in examining system design alternatives
before deployment.

6.2 Experimental Validation

Although MoSART is an analytical technique, it has
been validated experimentally. Benchmarks were con-
structed and executed by emulating multiple periodic tasks
on a real-time kernel. The experiments were performed

on a testbed of nodes and bridges arranged in a variety of
configurations. The server machines used consisted of 2.8
GHz Xeon processors, 1GB of memory, and 40GB hard
disks. Each machine was running Fedora Core with real-
time patches.

A typical experiment is reported here. The experiment
consisted of a scheduler and two tasks. These were imple-
mented as threads within a single process. The scheduler
had the highest priority while the priority for the threads
were modified by the scheduler to implement EDF.

The run-time experimental data is shown in Figure 9
along with the model predictions using the EDF scheduling
algorithm. The results indicate that the modeling method-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

D
e
a
d

li
n

e
 M

is
s
 %

EDF - Model

Actual

EDF _ Model

Actual

Figure 9. Experimental Validation

ology accurately mimics the actual system behavior.

6.3 New Optimal Scheduling Algorithms

The modeling approach presented here not only ana-
lyzes existing scheduling algorithms, but can also be used
to search for new algorithms. The modeling methodology
leads to a state space model, where in any particular state,
the scheduling algorithm dictates which of the competing
tasks receives service from the processor.

For example, if two tasks are competing for the pro-
cessor, under EDF the task with the fewest number of ar-
rival/deadline stages left is assigned the processor, which
may not be optimal. If the first task’s deadline is
imminent—but several service stages have not completed—
the probability that the task will ultimately meet its deadline
may be quite low. In this case, if the processor is allocated
to the first task according to the EDF policy, not only will
it likely miss its deadline, but because the processor wasted
its time on a lost cause, the second task might also miss its
deadline. It would be better to ”sacrifice” the first task to
save the second task. Such a scheduling policy is heavily
state dependent, and depends upon the state (i.e., the vari-
ability of the arrival and services processes, as well as the
overall system load) represented by each of the competing
tasks.

The state space methodology therefore lends itself di-
rectly to searching for new, optimal, scheduling algorithms.
Abstractly, in every state, an unknown probability can be
assigned to how much of the processor is allocated to each
of the competing tasks. In a two-task system, this leads to a
p-vector, with one element per system state. Each schedul-
ing algorithm has a unique p-vector. For example, in Fig-
ure 4, the 24-element p-vector representing EDF is given by
[xx0100110011100110011011], wherex represents a state
where no task is in the system (and, thus, the processor is
not allocated to either task),1 represents a state where the
processor is allocated to Task 1, and0 represents a state
where the processor is allocated to Task 2. Elements in the
p-vector could be any number between 0 and 1, which rep-
resents the fraction of the processor allocated to Task 1. A
p-vector value of 0.5 therefore represents a state where pro-
cessor sharing occurs between the two tasks.

The goal of the scheduling algorithm is to make the best
scheduling decision at each state of the system so that the
given objective is optimized. By finding (or calculating) a
p-vector that optimizes a particular objective function (e.g.,
the minimal number of missed deadlines), and realizing that
each p-vector corresponds to a particular scheduling algo-
rithm, new optimal scheduling algorithms can be discov-
ered.

To demonstrate the finding of such a p-vector, consider
the specific example in Section 5. The Matlab optimiza-
tion toolkit is used to compute an optimal p-vector (i.e., an
optimal algorithm) for the system. This algorithm makes
scheduling choices at each state of the system such that the
total deadline miss percentage is minimized. The deadline
miss percentage for this optimal algorithm is plotted in Fig-
ures 10 and 11.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45)

Stages (C.V.)

D
e

a
d

li
n

e
 M

is
s

 P
e

rc
e

n
t

EDF

LLF

RM

OPT

OPT

EDF

RM

LLF

Figure 10. Optimal Algorithm (93% Util.)

The optimal p-vector algorithm is computed for two sys-
tems, one with system utilization of83% and one with93%.
The optimal algorithm performance is plotted with that of
other popular algorithms.

These figures demonstrate that there exists state depen-
dent scheduling algorithms that outperform EDF, LLF, and
RM. In general, the higher the system utilization—and the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45)

Stages (C.V)

D
e

a
d

lin
e

 M
is

s
 %

EDF

LLF

RM

OPT

RM

LLFOPT EDF

Figure 11. Optimal algorithm (83% Util.)

more deterministic the system—the higher the potential for
improvement by using an optimal state dependent schedul-
ing algorithm. For example, the right side of Figure 10
demonstrates that the optimal algorithm outperforms EDF
by 8.2%, which outperforms LLF by 11.8%, which outper-
forms RM by 3.5%. By examining the p-vectors for the
optimal algorithm, EDF, LLF, and RM, some (but not all)
of the differences can be attributed to the sacrificing of one
task to save the other task. Such investigations for better
state dependent scheduling algorithms is a topic of continu-
ing research.

7 Related Work

This section compares prior work with MoSART. Tia et
al. [15] extendstime demand analysis [9, 12] by substitut-
ing the sums of fixed execution time with convolutions of
probabilistic distributions. This approach allows a proba-
bilistic expression for the response time of each task. Semi-
periodic tasks are considered, where each task is released
regularly but can have varying computation times. Tia et al.
also presents atransform task method that transforms each
task into a periodic task followed by a sporadic task. Burns
et. al. [2] follow a similar approach to PTDA and present
a probabilistic framework for analyzing faults in soft real-
time systems. Cucu and Tovar [3] model the response times
of fixed priority tasks with random variables. They calcu-
late the response time of a job as the sum of response times
of all higher priority tasks and its own response time. Their
approach is limited to fixed priority tasks, and it is also hard
to obtain other system metrics, such as device utilizations.
Luca and Buttazzo [1] implement a bandwidth reservation
strategy to schedule tasks with variations in task parame-
ters. However, they do not handle variations in both arrival
and execution at the same time.

Diaz [4] and Kim [7] present a derivative method for an-
alytical and numerical solutions that calculates the response
time distributions of each task in the system. The method
is more complex when extended to include both fixed pri-
ority and dynamic priority scheduling. It is also hard to

measure other performance measures of the system such
as resource utilization. Manolache [13] presents an ana-
lytic method based on Concurrent Generalised Petri Nets
(CGPN) however the arrival times are assumed determinis-
tic. Florescu [5] models probabilistic arrival and execution
but it is entirely based on simulation. Lehoczky [10, 11] ex-
tends classical queuing theory by including customer tim-
ing requirements into traditional queuing models. The state
variables of such a queuing system are continuous and un-
bounded. Lehoczky solves this problem under the heavy
traffic case where the solution becomes simple.

The MoSART methodology is similar to Lehoczky’s ap-
proach. The main difference is that tasks are modeled using
Erlangian arrival and service times. Instead of a continuous
state space, therefore, a series of exponential stages is used
to model the passage of time in discrete steps. The advan-
tage in this approach is that a wide variety of arrival, ser-
vice, deadline, and scheduling characteristics can be mod-
eled within a uniform framework.

8 Arrival Process Modeling
Accurately modeling the arrival process using a series

of stages approach is challenging. As shown, depending
on the scheduling algorithm, the series of stages is used to
determine task preemption. One could think of this as a
simple way for the scheduler to model time. The arrival
stages predict the arrival instant of the next job. This can be
used effectively by a scheduler. This models an ”progress
estimator” for the arrival of the next job, and is actually pre-
dicting the remaining deadline at each instant of time. For
example, if a large number of stages are left before the next
arrival, the scheduler will estimate the deadline to be far off.
However, if there are only a few stages left, the scheduler
may assume the deadline to be very close. Such informa-
tion can be used by the scheduler to efficiently schedule the
next job. The implementation of an EDF or LLF scheduler
using such estimates would be better than using a simple
constant arrival time.

9 Concluding Remarks
Various soft real time systems such as wireless sensor

networks function under severe, unpredictable, and uncer-
tain environments. Such conditions cause the arrival rates
and processing times of events to be variable. It is im-
portant to model this variability to accurately estimate the
various characteristics within soft real time systems. This
paper presents a novel technique, MoSART, for modeling
and analyzing soft real time systems with variability in the
inter-arrival and execution time of events.

MoSART uses the method of stages to model the inter-
arrival, deadline, and execution times. It also presents anin-
tuitive ”race” between arrival and deadline stages to model
the number of deadlines met or missed for any particular

job. MoSART is used to evaluate common scheduling al-
gorithms, including earliest deadline first, least laxity first,
and rate monotonic, using various sensitivity analysis com-
parisons. MoSART has also been experimentally validated
and can be used to discover improved scheduling algorithms
in a variety of contexts.

A limitation of the proposed technique is state-space ex-
plosion. Moreover, approximations, bounds, and simula-
tions can be directly applied. Addressing such limitations,
applying the methodology to a wider set of system param-
eters, evaluating a richer set of scheduling algorithms, con-
ducting a more extensive experimental validation, and using
the methodology to discover new scheduling algorithms are
promising directions for future research.

References

[1] L. Abeni and G. Buttazzo. QoS guarantee using probabilistic
deadlines. InReal-Time Systems, 1999. Proceedings of the
11th Euromicro Conference on, pages 242–249, 1999.

[2] A. Burns, G. Bernat, and I. Broster. A probabilistic frame-
work for schedulability analysis.Proceedings of the Third
International Embedded Software Conference, EMSOFT,
number LNCS, 2855:1–15, 2003.

[3] L. Cucu and E. Tovar. A framework for the response time
analysis of fixed-priority tasks with stochastic inter-arrival
times.SIGBED Rev., 3(1):7–12, 2006.

[4] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M.
López, S. L. Min, and O. Mirabella. Stochastic analysis of
periodic real-time systems. InRTSS ’02: Proceedings of the
23rd IEEE Real-Time Systems Symposium (RTSS’02), page
289, Washington, DC, USA, 2002. IEEE Computer Society.

[5] O. Florescu, M. de Hoon, J. Voeten, and H. Corporaal. Prob-
abilistic modelling and evaluation of soft real-time embed-
ded systems. InSAMOS, pages 206–215, 2006.

[6] M. Johnson. An empirical study of queueing approxima-
tions based on phase-type distributions.Stochastic Models,
9(4):531–561, 1993.

[7] K. Kim, J. L. Diaz, and J. M. Lopez. An exact stochastic
analysis of priority-driven periodic real-time systems and its
approximations.IEEE Trans. Comput., 54(11):1460–1466,
2005. Member-Lucia Lo Bello and Member-Chang-Gun
Lee and Member-Sang Lyul Min.

[8] G. Latouche and V. Ramaswami.Introduction to Matrix An-
alytic Methods in Stochastic Modeling. Society for Indus-
trial Mathematics, 1999.

[9] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. InRTSS’ 89, pages 166–171, 1989.

[10] J. P. Lehoczky. Real-time queueing theory. InRTSS ’96:
Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium (RTSS ’96), page 186, Washington, DC, USA, 1996.
IEEE Computer Society.

[11] J. P. Lehoczky. Using real-time queueing theory to control
lateness in real-time systems. InSIGMETRICS ’97: Pro-
ceedings of the 1997 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems,
pages 158–168, New York, NY, USA, 1997. ACM.

[12] C. Liu and J. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-time Environment.JACM,
20(1):46–61, Jan. 1973.

[13] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis
of applications with stochastic task execution times.Trans.
on Embedded Computing Sys., 3(4):706–735, 2004.

[14] R. Marie. Calculating equilibrium probabilities for
λ(n)/ck/1/n queues. SIGMETRICS Perform. Eval. Rev.,
9(2):117–125, 1980.

[15] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J. W.-S. Liu. Probabilistic performance guarantee
for real-time tasks with varying computation times. InRTAS
’95: Proceedings of the Real-Time Technology and Applica-
tions Symposium, page 164, Washington, DC, USA, 1995.
IEEE Computer Society.

[16] H. Tijms. Stochastic models: an algorithmic approach. Wi-
ley, 1994.

[17] W. Whitt. Approximating a Point Process by a Renewal
Process, I: Two Basic Methods.Operations Research,
30(1):125–147, 1982.

