
Distributed Continuous Quality Assurance: The Skoll Project

Adam Porter, Cemal Yilmaz
Computer Science Department

University of Maryland, College Park�
aporter,cyilmaz � @cs.umd.edu

Douglas C. Schmidt
Electrical Engineering

& Computer Science Department
Vanderbilt University�

schmidt, bala � @dre.vanderbilt.edu

Abstract
Quality assurance (QA) tasks, such as testing, profiling, and perfor-
mance evaluation, have historically been done in-house on developer-
generated workloads and regression suites. Since this approach is
inadequate for many systems, tools and processes are being de-
veloped to improve software quality by increasing user participa-
tion in the QA process. A limitation of these approaches is that
they focus on isolated mechanisms, but not on the coordination and
control policies and tools needed to make the global QA process
efficient, effective, and scalable. To address these issues, we have
initiated the Skoll project, which is developing and validating novel
software QA processes and tools that leverage the extensive com-
puting resources of worldwide user communities in a distributed,
continuous manner to significantly and rapidly improve software
quality.

1. INTRODUCTION
Software testing and profiling plays a key role in software quality

assurance (QA). These tasks have often been performed in-house
by developers, on developer platforms, using developer-generated
input workloads. One benefit of in-house QA is that programs can
be analyzed at a fine level of detail since QA teams have exten-
sive knowledge of, and unrestricted access to, the software. The
shortcomings of in-house QA efforts, however, are well-known and
severe, including (1) increased QA cost and schedule and (2) mis-
leading results when the test-cases and input workload differs from
actual test-cases and workloads or when the developer systems and
execution environments differ from fielded systems.

In-house QA processes are particularly ineffective for performance-
intensive software, such as that found in (1) high-performance com-
puting systems (e.g., those that support scientific visualization, dis-
tributed database servers, and financial transaction processing), (2)
distributed real-time and embedded systems that monitor and con-
trol real-world artifacts (e.g., avionics mission- and flight-control
software, supervisory control and data acquisition (SCADA) sys-
tems, and automotive braking systems), and (3) the operating sys-
tems, middleware, and language processing tools that support high-
performance computing systems and distributed real-time and em-
bedded systems. Software for these types of performance-intensive
systems is increasingly subject to the following trends:

� Demand for user-specific customization. Since performance-
intensive software pushes the limits of technology, it must
be optimized for particular run-time contexts and application
requirements. General-purpose, one-size-fits-all software so-
lutions often have unacceptable performance.� Severe cost and time-to-market pressures. Global compe-
tition and market deregulation are shrinking budgets for the

development and QA of software in-house, particularly the
operating system and middleware infrastructure. Moreover,
performance-intensive users are often unable or less will-
ing to pay for specialized proprietary infrastructure software.
The net effect is that fewer resources are available to devote
to infrastructure software development and QA activities.� Distributed and evolution-oriented development processes.
Today’s global IT economy and n-tier architectures often in-
volve developers distributed across geographical locations,
time zones, and even business organizations. The goal of
distributed development is to reduce cycle time by having
developers work simultaneously, with minimal direct inter-
developer coordination. Such development processes can
increase churn rates in the software base, which in turn in-
creases the need to detect, diagnose, and fix faulty changes
quickly. The same situation occurs in evolution-oriented pro-
cesses, where many small increments are routinely added to
the base system.

As these trends accelerate, they present many challenges to de-
velopers of performance-intensive systems. A particularly vex-
ing trend is the explosion of the software configuration space. To
support customizations demanded by users, performance-intensive
software must run on many hardware and OS platforms and typi-
cally have many options to configure the system at compile- and/or
run-time. For example, performance-intensive middleware, such as
web servers (e.g., Apache), object request brokers (e.g., TAO), and
databases (e.g., Oracle) have dozen or hundreds of options. While
this flexibility promotes customization, it creates many potential
system configurations, each of which may need extensive QA to
validate.

When increasing configuration space is coupled with shrinking
software development resources, it becomes infeasible to handle all
QA in-house. For instance, developers may not have access to all
the hardware, OS, and compiler platforms on which their software
will run. Due to time-to-market driven environments, therefore,
developers must often release their software in configurations that
have not been subjected to extensive QA. Moreover, the combina-
tion of an enormous configuration space and severe development
constraints mean that developers must make design and optimiza-
tion decisions without precise knowledge of their consequences in
fielded systems.
Solution approach: distributed continuous QA. The trends and
associated challenges discussed above have yielded an environment
in which the software systems tested and profiled by in-house de-
velopers and QA teams often differ substantially from the systems
run by users. To address these challenges, we have begun a long-
term, multi-site collaborative research project called Skoll.1 This
1Skoll is a Scandinavian myth that explains the sunrise and sunset



paper describes

� Skoll’s distributed continuous QA process that leverages the
extensive computing resources of worldwide user commu-
nities in order to improve software qualities and provide to
greater insight into the behavior and performance of fielded
systems, and� Skoll’s tools and services, including its model-driven intelli-
gent steering agent that controls and automates the QA pro-
cess across large configuration spaces on a wide range of
platforms.

2. RELATED WORK
QA tasks have traditionally been performed in-house. For the

reasons described in Section 1, however, in-house QA is increas-
ingly being augmented with in-the-field techniques [3, 1, 4, 2]. Ex-
amples range from manual and reactive techniques (such as dis-
tributing software with prepackaged installation tests and encour-
aging end-users to report errors when they run into problems) to
automated and proactive techniques (such as online crash report-
ing and auto-build scoreboard systems used in many open-source
projects).

Although the existing distributed QA efforts and tools help to
improve the quality and performance of software, they have signif-
icant limitations. For example, since users decide (often by default)
what features they will test, some configurations are tested multiple
times, whereas others are never tested at all. Moreover, these ap-
proaches do not automatically adapt to or learn from the test results
obtained by other users. The result is an opaque, inefficient, and ad
hoc QA process.

To address these shortcomings, the Skoll project is developing
and empirically evaluating a process, methods, and tools for around-
the-world, around-the-clock QA that (1) works with highly config-
urable software systems, (2) uses intelligent steering mechanisms
to efficiently leverage end-users resources in a QA process that
adapts based on the analysis of previous results received from other
sites, and (3) minimizes user effort through the judicious use of au-
tomated tools. We discuss these capabilities in the next section.

3. THE STRUCTURE AND FUNCTIONAL-
ITY OF SKOLL

As outlined in Section 1, the Skoll project is a long-term, multi-
site collaborative research effort that is developing processes, meth-
ods, and tools to enable:

� Substantial amounts of QA to be performed at fielded
sites using fielded resources, i.e., rather than performing
QA tasks solely in-house, Skoll pushes many of them to user
sites. This approach provides developers and testers more
effective access to user computing resources and provides
visibility into the actual usage patterns and environment in
which the fielded systems run.� Iterative improvement of the quality of performance-intensive
software. Skoll provides a control layer over the distributed
QA process using models of the configuration space, the re-
sults of previous QA tasks, and navigation strategies that
combine the two. This control layer determines which QA
task to run next and on which part of the configuration space
to run it. As the process executes, problems may be uncov-
ered (and fixed) in the software, the models, and the naviga-
tion strategy.

cycles around the world.

� Reduced human effort via judicious application of au-
tomation. Skoll also uses the models developed in the pre-
vious step to help automate the role of human release man-
agers, who monitor the stability of software repositories man-
ually to ensure problems are fixed rapidly. In addition, Skoll
uses automated web tools to minimize user effort and re-
source commitments, as well as ensure the security of user
computing sites.

The approach we are taking to achieve these goals is based on a
distributed continuous QA process, in which software quality and
performance is iteratively and opportunistically improved around-
the-clock in multiple geographically distributed locations. The Skoll
project envisions distributed continuous QA via a geographically
decentralized computing pool made up of thousands of machines
provided by users, developers, and companies around the world.

The resources in the Skoll computing pool are scheduled and
coordinated carefully via data-driven feedback. This adaptation is
based on analysis of QA results from earlier testing tasks carried
out in other locations, i.e., Skoll follows the sun around the world
and adapts its QA process continuously.

3.1 The Skoll Client/Server Architecture
To perform the distributed continuous QA process, Skoll uses a

client/server architecture. Figure 1 illustrates the roles and com-
ponents in this architecture, focusing primarily on the Skoll server
and its interactions with various types of users. Figure 2 then shows
the components in Skoll clients.

Figure 1: Components in Skoll Client/Server Architecture

User clients register with the Skoll server registration manager
via a web-based registration form. Users characterize their client
platforms (e.g., the operating system, compiler, and hardware plat-
form) from lists provided by the registration form. This information
is stored in a database on the server and used by the Skoll intelli-
gent steering agent (ISA). As described further in Section 3.2, the
ISA automatically selects and then generates valid job configura-
tions, which consists of the code artifacts, configuration parame-
ters, build instructions, and QA tasks (e.g., regression/performance
tests) associated with a software project. A job configuration also
contains registration-specific information tailored for a particular
client platform, along with the locations of the CVS server where
the code artifacts actually reside.

After a registration form has been submitted and stored by the
Skoll server, the server registration manager returns a unique ID
and configuration template to the Skoll client. The template can
be modified by end users who wish to restrict or specify what job
configurations they will accept from the Skoll server. The Skoll



Figure 2: Skoll Client Architecture

client’s architecture is shown in Figure 2. The Skoll client period-
ically requests job configurations from the server via HTTP POST
requests. The server responds with a job configuration that has
been customized by the server’s intelligent steering agent in accor-
dance with (1) the characteristics of the client platform, and (2) its
knowledge of the valid configurations space and the results of pre-
vious QA tasks. The server maintains this information using the
techniques described in Section 3.2.

The CVS client component is responsible for downloading soft-
ware from the CVS repository. The information required to per-
form this task, such as the version and module name (CVS termi-
nology) of the software, are sent in the job configuration. The client
configuration manager component prepares the software by creat-
ing and/or customizing the appropriate header files. The instruc-
tions from the server provide mapping information between each
parameter and the header file in which the parameter must be de-
fined. The client build manager component builds the software by
using the compiler specified at the registration time. The client test
suite manager component is responsible for locating and executing
the tests in the test suite.

For each job configuration, the Skoll client records all of its ac-
tivities into a log file accessible from the Skoll server. Each log file
consists of multiple sections, where each section corresponds to an
operation performed by the client, such as CVS check out, build,
and execute QA tasks. As the builds and tests complete, the client
log files are sent to the Skoll server, which uses the server QA pro-
cess results acquisition manager shown in Figure 1 to parse the log
files and store them into a database.

Since the Skoll architecture is designed to support a user commu-
nity with heterogeneous software infrastructures, developers must
be able to examine the results without concern for platform com-
patibility and local software installation. We therefore employ web-
based scoreboards that use XML to display the build and test results
for job configurations. The server scoreboard manager provides a
web-based scoreboard retrieval form to developers through which
they can browse a scoreboard for a particular job configuration.

3.2 The Intelligent Steering Agent
Portions of the Skoll architecture described above are similar to

those used by other distributed QA systems described in Section 2.
A distinguishing feature of Skoll, however, is its use of an intelli-
gent steering agent (ISA) to control the process. The ISA controls
the process by deciding which configurations, in which order, to
give to each incoming Skoll client request.

As QA tasks are carried out, their results are returned to the Skoll
server and made available to the ISA. The ISA can therefore learn
from past results, using that knowledge when generating new con-
figurations.
The configuration model The most basic element of ISA approach
is a formal model of the system’s configuration space. Each soft-
ware system controlled by Skoll has a set of configurable options,
each with a small, discrete number of settings. Each option value

must be set before the system executes. Creating a job configura-
tion, therefore, involves mapping each option to one of its allowable
settings.

Since the configuration options may take many values, the con-
figuration space can be quite large. Not all possible configurations
are valid, however. We define which configurations are valid by
imposing inter-option constraints on values of options.
Planning internals. Given Skoll’s formal configuration model, we
can cast the configuration generation problem as a planning prob-
lem. Given an initial state, a goal state, a set of operators, and a set
of objects, the ISA planner returns a set of actions (or commands)
with ordering constraints to achieve the goal. In Skoll, the initial
state is the default job configuration of the software. The goal state
is a description of the desired configuration, partly specified by the
end user. The operators encode all the constraints, including knowl-
edge of past test executions. The resulting plan is the configuration
(i.e., the mapping of options to their settings).

We modified the Skoll planner so that, it can iteratively gener-
ate all acceptable plans, unlike typical planning systems that usu-
ally generate a single plan for a given set of constraints. Since
the ISA generates multiple plans, we also added “navigation strate-
gies,” which are algorithms that allow us to schedule or prioritze
among a set of multiple acceptable plans. This capability is useful
in Skoll to cover a set of configurations, yet only proceed one step
at a time in response to Skoll client requests. These algorithms also
allow Skoll to add new information derived from previous QA task
results to the planning process.
Planner output. The Skoll client requests a job configuration from
a Skoll server. The Skoll server then queries its databases and (if
provided by the user) a configuration template to determine which
configuration option settings are fixed for that user and which must
be set by the ISA. This information is packaged as a planning goal
and sent to the ISA to be solved. Using this goal, the ISA planner
generates a plan that is processed by the Skoll server, which ulti-
mately returns all instructions necessary for running the QA task
on the user’s platform. These instructions are called the job config-
uration.

3.3 Skoll in Action
At a high level, the Skoll process is carried out as shown in Fig-

ure 3 and described below:

1. Developers create the configuration model and navigation
strategies. The ISA configuration model editor then automat-
ically translates the model into planning operators and stores
them in an ISA database. Developers also create the client
kit.

2. A user submits a request to download the software via the
registration process described earlier. The user then receives
the Skoll client software and a configuration template. If
users wish to temporarily change configuration settings or
constrain specific options they do so by modifying the con-
figuration template.

3. The Skoll client periodically requests a job configuration from
a Skoll server.

4. In response to a client request, the Skoll server queries its
databases and the user-provided configuration template to
determine which configuration option settings are fixed for
that user and which must be set by the ISA. It then pack-
ages this information as a planning goal and queries the ISA.
The ISA generates a plan and returns it to the Skoll server.
Finally, the Skoll server creates the job configuration and re-
turns it to the Skoll client.

5. The Skoll client invokes the job configuration and returns the



Figure 3: Process View

results to the Skoll server.
6. The Skoll server examines these results and updates the ISA

operators to reflect them.
7. Periodically and when prompted by developers the Skoll server

prepares a virtual scoreboard, which depicts all known test
failures and their details. It also performs statistical analysis
of the failing options and prepares visualizations that help de-
velopers quickly identify large subspaces in which tests have
failed.

4. FEASIBILITY STUDIES AND FUTURE
WORK

To demonstrate the benefits of Skoll, we are evaluating its im-
pact via experiments on the ACE [5, 6] and TAO [7] open-source
projects. ACE+TAO are production quality performance-intensive
middleware consisting of well over one million lines of C++ code
and regression tests contained in � 4,500 files. Hundreds of devel-
oped around the world have worked on ACE+TAO for more than
a decade, providing us with an ideal test-bed for our distributed
continuous QA tools and processes.

The results are providing valuable insight into the benefits and
limitations of the current Skoll processes. Skoll can iteratively
model complex configuration spaces and use this information to
perform complex testing processes, find test failures corresponding
to real bugs and help developers localize the root causes of certain
test failures.

Our future work is focusing on refining our hypotheses, study
designs, analysis methods, and tools – repeating and enhancing ex-
periments as necessary. We ultimately plan to involve a broad seg-
ment of the ACE+TAO open-source user community in over fifty
countries worldwide to establish a large-scale distributed continu-
ous QA test-bed.

5. REFERENCES

[1] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed
software using software tomography. In Proceedings of the
2002 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 2–9. ACM
Press, 2002.

[2] B. Liblit, A. Aiken, and A. X. Zheng. Distributed program
sampling. In Proceedings of PLDI’03, San Diego, California,
June 2003.

[3] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma
system: continuous evolution of software after deployment. In
Proceedings of the international symposium on Software
testing and analysis, pages 65–69. ACM Press, 2002.

[4] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proceedings of the 21st international
conference on Software engineering, pages 277–284. IEEE
Computer Society Press, 1999.

[5] D. C. Schmidt and S. D. Huston. C++ Network Programming,
Volume 1: Mastering Complexity with ACE and Patterns.
Addison-Wesley, Boston, 2002.

[6] D. C. Schmidt and S. D. Huston. C++ Network Programming,
Volume 2: Systematic Reuse with ACE and Frameworks.
Addison-Wesley, Reading, Massachusetts, 2002.

[7] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design and
Performance of Real-Time Object Request Brokers. Computer
Communications, 21(4):294–324, Apr. 1998.


