
Supporting Configuration and Deployment
of Component-based DRE Systems Using

Frameworks, Models, and Aspects
Gan Deng

Department of EECS, Vanderbilt University
2015 Terrace Place, Nashville, TN, 37203 USA

01-615-343-7477
gan.deng@vanderbilt.edu

ABSTRACT
This research focuses on using frameworks, model-driven devel-
opment, and aspect-oriented software development techniques to
address key configuration and deployment concerns of compo-
nent-based distributed real-time and embedded (DRE) systems.
System designers and deployers can use these techniques to con-
figure quality of service (QoS) aspects of their systems and fine-
tune their systems during the design and runtime phases to ensure
their systems meet end-to-end performance requirements.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Software Program Verifica-
tion—Design Tools and Techniques; I.6.5 [Simulation and
Modeling]: Model Development—Modeling Methodologies

General Terms: Design, Experimentation

Keywords: Component Middleware, Deployment and Con-
figuration

1. DESCRIPTION OF PURPOSE
Component middleware helps enhance reuse by separating busi-
ness logic concerns of components from their lifecycle manage-
ment. Conventional component middleware, however, does not
provide separation of QoS concerns (such as component server
threading model, event dispatching priority model) from applica-
tion business logic and lifecycle management, which is a re-
quirement for distributed real-time and embedded (DRE) sys-
tems. Hence it is poorly suited for DRE systems where resources
are constrained and variable over time. In particular, conven-
tional component middleware lacks the capabilities to deploy and
configure applications and middleware resources and services to
provide the desired quality of service (QoS) to meet end-to-end
system performance requirements. Our research addresses this
problem by developing and integrating framework, model-driven
development (MDD), and aspect-oriented software development
(AOSD) techniques to separate QoS concerns and provide high
level tools to weave these concerns into DRE systems and under-
lying middleware.

2. GOAL STATEMENT
The goal of this research is to develop and validate techniques
that can deploy and configure DRE application components and
component middleware to make component-based applications
meet functional and QoS requirements more effectively than

current techniques. In particular, this research explorers novel
algorithms and technologies to (1) allocate the right execution
environment resources so that the entire DRE system can meet
end-to-end real-time QoS requirements, (2) configure, deploy,
and effectively manage lifecycles of publish/subscribe services
used by components at runtime to improve message exchange
performance, and (3) support dynamic component assembly re-
configuration, redeployments, and migrations in the runtime
without incurring noticeable performance degradation.

3. APPROACH
To achieve the goal described in section 2, DRE systems and
middleware must be configured across multiple modularity
boundaries, including multiple middleware layers. To simplify
the problem we employ a layered architecture that combines
middleware framework, models, and aspects. The lowest layer in
this architecture is a reusable middleware framework called
adaptive configuration framework (ACF) that provides highly-
configurable middleware modules, which adaptively allocate
system resources, and deploy and configure middleware services.
The middle layer is an aspect-oriented deployment and configu-
ration engine (DAnCE) that could weave various deployment
and configuration concerns into the DRE systems and component
middleware. The top layer is a domain-specific modeling lan-
guage called the service aspect modeling language (SAML) that
models system resource usages, publish/subscribe service con-
figuration and deployment, as well as rules that determine how
DRE systems migrate to adapt to changing environment. We
describe the functionality of each layer and how they will col-
laborate with each other to effectively address various deploy-
ment and configuration concerns to make DRE systems meet
end-to-end performance requirements.

Frameworks Adaptive Configuration Framework

In our problem domain, to make the component middleware
highly configurable and adaptable to different operating envi-
ronments, we require reflective techniques to provide a greater
degree of configurability and dynamic adaptability for the com-
ponent middleware. The implementation of our novel reflective
techniques is called the adaptive configuration framework
(ACF), which (1) provides an integrated set of domain-specific
structures and functionality based on patterns to improve system
performance, (2) encapsulated and separates different deploy-
ment and configuration concerns of component-based applica-
tions so each concern could be manipulated independently with-
out interfering with others.

The ACF consists of two reusable shared libraries, i.e., resource
allocation library, and service configuration and deployment

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

152

library. The resource allocation library configures component
server resources by setting real-time policies defined in Real-time
CORBA [3]. These server resources are specified via policies
that designate application QoS requests including the number of
containers [1] and their associated policies and the component
server priority model, threading model, buffering model, and
connection model. This module treats all these policies as first-
class objects and allows them to be specified via input parameters
of the exposed interfaces. By doing this, we can apply higher
level system performance analysis and verification tools to en-
sure DRE systems are configured in an optimal manner.

The service configuration and deployment library configures
various publish/subscribe services, such as those defined by
OMG’s Event Service, Real-time Notification Service, and Data
Distribution Service (DDS), as well as the federated event ser-
vices across multiple network domains. These services are used
by many DRE systems and provide different levels of QoS guar-
antees. Our prior work [4] demonstrated that common middle-
ware services can be configured using well-defined and docu-
mented CORBA interfaces and hence the usage patterns of such
middleware services can be formulated. The ACF encapsulates
such usage patterns and provides a reusable library that (1) con-
tains a wrapper façade for the underlying publish/subscribe mid-
dleware services to shield component developers from tedious
and error-prone programming tasks associated with initializing
and configuring these publish/subscribe services, and (2) exposes
interfaces to the external tools to manage the services so service
configuration and deployment processes can be automated.

Aspects An Aspect-oriented Deployment and Configu-
ration Engine

The ACF provides a highly configurable and adaptable architec-
ture and exposes certain interfaces to external tools that allow
component server and middleware services to be configured.
Since these configuration options tend to crosscut multiple modu-
larity boundaries – including different layers of middleware and
multiple stages of the DRE system lifecycle, such as compilation,
deployment, and run-time (re)configuration – the use of aspects
helps to detangle the configuration and customization logic of
middleware from its functionality.

To help DRE system deployers to deploy and configure both the
component middleware and component-based applications, we
designed an aspect-oriented deployment and configuration engine
(DAnCE), which is a meta-programmable-based approach that
allows different deployment and configuration concern aspects,
such as component server resource configuration, middleware
service configuration, and component assembly reconfiguration,
to be specified through metadata. DAnCE uses this metadata as
input to a weaver that automatically inserts these crosscutting
concerns into component middleware and component-based ap-
plications to drive the underlying service configuration frame-
work.

To overcome the memory source constraints of most DRE sys-
tems, DAnCE can dynamically link or unlink necessary ACF
libraries on demand at runtime by using the component configu-
rator design pattern [5].

Models Service Aspect Modeling Language

To simplify the development of component-based DRE systems,
we are developing a high-level model-driven development
(MDD) tool called service aspect modeling language (SAML),
which supports the configuration, deployment, and validation of
component middleware and applications. A key capability sup-
ported by SAML is the definition and implementation of a do-
main-specific modeling language (DSML), which uses concrete
and abstract syntax to describe the concepts, relationships, and
constraints used to express domain entities [3]. In particular,
SAML allows system designers and deployers to (1) model DRE
system resources, (2) specify real-time QoS policies and associ-
ate them with DRE systems, (3) specify publish/subscribe service
behaviors and deployment requirements, and (4) model system
migration rules so component assemblies and component mid-
dleware can be reconfigured and redeployment to adapt to chang-
ing environment. SAML enables visual manipulation of model-
ing elements and performs various types of generative actions,
such as synthesizing XML-based deployment and configuration
descriptors and synthesizing middleware service-specific con-
figuration files.

4. EVALUATION
The contributions of this research include (1) developing an inte-
grated approach that combines the three techniques described
above to address various deployment and configuration concerns,
(2) experimentally evaluate the advantages and disadvantages of
the combined solution to other ad hoc solutions, and (3) discov-
ery of various architectural and behavior patterns embodies in the
integrated approach so other researchers in related research fields
could evaluate and reuse. Finally, the results of this research are
expected to introduce state-of-the-art design methodologies to the
component based software engineering community. Our efforts
are focused on the CORBA Component Model, particularly in
the context of the Component Integrated ACE ORB (CIAO) [2]
Lightweight CCM [1] implementation; however, the proposed
approach can be extended to other component model as well.

5. REFERENCES
[1] Object Management Group: “Lightweight CORBA Compo-
nent Model Revised Submission”, Object Management Group,
Inc. May 2003, realtime/03-05-05
[2] N. Wang, D. Schmidt, A. Gokhale, C. Gill, C. Rodrigues, B.
Natarajan, J. Loyall, and R. Schantz, “QoS-enabled Middle-
ware,” Middleware for Communications, Wiley and Sons, New
York.
[3] A. Ledeczi “The Generic Modeling Environment”, Workshop
on Intelligent Signal Processing, Budapest, Hungary, May 17,
2001.
[4] G. Edwards, G. Deng, D. Schmidt, A. Gokhale, and B. Nata-
rajan, Model-driven Configuration and Deployment of Compo-
nent Middleware Publisher/Subscriber Services, Proceedings of
the 3rd ACM International Conference on Generative Program-
ming and Component Engineering, Vancouver, CA, October
2004.
[5] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2, Wiley & Sons, New York, 2000.

153

