
Model Intelligence: an Approach to Modeling Guidance

Jules White, Douglas C. Schmidt, Andrey Nechypurenko, and Egon Wuchner

Abstract
Model-Driven Engineering (MDE) facilitates building solutions in many enterprise application

domains through its use of domain-specific abstractions and constraints. An important attribute of MDE

approaches is their ability to check a solution for domain-specific requirements, such as security

constraints, that are hard to evaluate using traditional source-code focused development efforts. The

challenge in many enterprise domains, however, is finding a legitimate solution, not merely checking

solution correctness. For these domains, model intelligence that uses domain constraints to guide modelers

is needed. This paper shows how existing constraint specification and checking practices, such as the

Object Constraint Language, can be adapted and leveraged to guide users towards correct solutions using

visual cues.

Keywords: Domain-specific Modeling, Model-Driven Engineering, Constraint Checking, Constraint

Reasoning, Modeling Guidance

1. Introduction

Model-Driven Engineering (MDE) [1] has emerged as a powerful approach to building complex

enterprise systems. MDE allows developers to build solutions using abstractions, such as custom

diagramming languages, tailored to their solution domain. For example, in the domain of deploying

software to servers in a datacenter, developers can manipulate visual diagrams showing how software

components are mapped to individual hosts, as shown in Figure 1.

A major benefit that MDE approaches provide is that custom constraints for each domain can be

captured and embedded into an MDE tool. These domain constraints are properties, such as the memory

demands of a software component on a server, that cannot be easily checked by a compiler or other third-

generation programming language tool. The domain constraints serve as a domain solution compiler that

can significantly improve the confidence in the correctness of a solution. The most widely used constraint

specification language is the Object Constraint Language (OCL) [2].

Figure 1. Deployment Model for a Datacenter

Although MDE can improve solution correctness and catch previously hard to identify errors, in many

domains the major challenge is deriving the correct solution, not checking solution correctness. For

example, when deploying software components to servers in a datacenter, each component can have

numerous functional constraints, such as requiring co-hosting a specific set of other components with it,

and non-functional constraints, such as requiring a firewalled host, that make developing a deployment

model hard. When faced with large enterprise models with 10s, 100s, or 1,000s of model elements and

multiple constraints per element, manual model building and validation approaches do not scale.

Enterprise models can also contain global constraints, such as stipulating that no host’s allocation of

components exceeds its available RAM, which further complicates modeling. Although languages like

OCL can be used to validate a solution, they still do not make finding the correct solution any easier.

Developers must still manually construct models and invoke constraint checking to see if a mistake has

been made.

The following properties of enterprise models make building models challenging:

1. Enterprise models are often large and may contain multiple views, making it hard or infeasible for

modelers to see all the information required to make a complex modeling decision

2. Constraints in enterprise systems often involve functional and non-functional concerns that are

scattered across multiple views or aspects of a model and are hard to solve manually and

3. Enterprise modeling solutions may need to satisfy complex global constraints or provide optimality,

both of which require finding and evaluating a large number of potential solution models.

Current model construction techniques are largely manual processes. The difficulty of understanding an

entire large enterprise model—coupled with the need to find and evaluate a large number of potential

solutions—makes enterprise modeling hard.

To motivate the need for tool support to help modelers deduce solutions to domain constraints, we use

an application for modeling the deployment of software components to servers in a datacenter. Ideally,

when creating a deployment, as a developer clicked on each individual software component to deploy it,

the underlying tool infrastructure could use the domain constraints to derive the viable hosts for the

component. We refer to these mechanisms for guiding modelers towards correct solutions as model

intelligence.

2 Limitations of Current Constraint Checking Approaches

To motivate the challenges of using existing constraint infrastructure, such as OCL, as a guidance

mechanism, we will evaluate a simple constraint for deploying a software component to a server. For each

component, the host that it is deployed to should have the correct OS for which the component is compiled.

This constraint can be captured in OCL as:

context:SoftwareComponent;
inv: self.hostingServer.OS = self.requiredOS;

Figure 2. Model Editing and Constraint Checking

After a SoftwareComponent has been deployed to a server, the above constraint checks that the

host (stored in the hostingServer variable) has the OS required by the component. As shown Figure

2, to utilize the constraint, the modeler first makes a change to the model (Step 1), invokes the constraint

checker (Step 2), and then sees if an error state has been entered (Step 3). The challenge is that the modeler

cannot predict ahead of time if the model is being transitioned to an invalid state. A state is only checked

for errors after control has been transitioned to it.

One way around the inability to check the constraint before the host is committed to the

SoftwareComponent is to use OCL preconditions as guards on transitions. An OCL precondition is an

expression that must hold true before an operation is executed. The chief problem of using OCL

preconditions as guards, however, is that they are designed to specify the correct behavior of an operation

performed by the implementation of the model. Using an OCL precondition as a guard during modeling

requires defining the constraint in terms of the operation performed by the modeling tool and not the model.

For example, the precondition that should be imposed to check for the correct OS is a constraint on an

operation (e.g., creating a connection) performed by the modeling tool, not by the model. To define the

OCL precondition, therefore, developers must define the OCL constraint in terms of the modeling tool’s

definition of the operation, which may not use the same terminology as the model. Moreover, defining the

constraint as a precondition on an operation performed by the modeling tool requires developers to create a

duplicate constraint to check if an existing model state is correct.

Without two constraints—one to check the correctness of the modeling tool action and one to check

the correctness of an already constructed model state—it is impossible to identify operation endpoints and

ensure model consistency. The OCL precondition approach therefore adds complexity by requiring

developers to maintain separate—and not necessarily identical—definitions of the constraint that can

potentially drift out of sync. The precondition approach also couples the constraint to a single modeling

platform since the precondition is defined in terms of the connection operation exposed by the tool, not the

model.

3 Model Intelligence: an Approach to Modeling Guidance

A modeling tool can implement model intelligence, by using constraints to derive valid end states for a

model edit before committing the change to the model. Traditional mechanisms of specifying constraints

associate a constraint with objects (e.g., SoftwareComponents) rather than the relationships between the

objects (e.g., the deployment relationship between a SoftwareComponent and a Server). To determine the

validity of a relationship between two objects, therefore, the relationship must be created and committed to

the model so that constraints on the two objects associated with the relationship can be checked.

The transitions in the state diagram from Figure 1 correspond to the creation of relationships between

objects. To support model intelligence, a tool needs to use domain constraints to check the correctness of

the modification of relationships between objects in a model before the modification is committed to the

model. If constraints are associated with the relationships rather than the objects, a tool can use the

constraints associated with the relationship to deduce valid end states and suggest transitions to a modeler.

3.1 Constraining Relationships

Relationships between objects are edges in the underlying object graph of a model. Each edge has a

source and target object. Using this understanding of relationships, constraints can be created that specify

the correctness of a relationship in terms of properties of the source and target elements. For example, the

deployment of a SoftwareComponent to a Server is represented as a deployment relationship. A constraint

can be applied to a deployment relationship and specified in terms of the properties of the source (e.g., a

SoftwareComponent) and the target (e.g., a Server):

context:Deployment;
inv: source.requiredOS = target.OS;

A key property of associating constraints and specifying them in terms of the source and target of the

relationship is that a constraint can be used to check the correctness of the creation of a relationship before

the relationship is committed to a model. Prior to the creation of a relationship, the proposed source and

target elements can be substituted into the constraint expression and the constraint expression checked for

correctness. If the constraint expression holds true for the proposed source and target elements, the

corresponding relationship can be created in the model.

Section 2 showed that using existing OCL approaches to model intelligence requires maintaining

separate specifications of each constraint. If constraints are associated with relationships and expressed in

terms of the source and targets of a relationship, they can be used to check the validity of a modeling action

before it is committed to the model. Moreover, the same constraint can be used to check existing

relationships between modeling elements, which can not be done with the standard OCL approach.

3.2 Relationship Endpoint Derivation

A model can be viewed as a knowledge base, i.e., the model elements define facts about the solution.

The goal of model intelligence is to run queries against the knowledge base to deduce the valid endpoints

(e.g,, valid hosts for a component) of a relationship that is being created by a modeler. In terms of the state

diagram detailing a model editing scenario shown in Figure 3, the queries derive the valid states to which a

model can transition.

Figure 3. Model Editing Sequence for Model Intelligence

The creation of a relationship begins by modelers selecting a relationship type (e.g., a deployment

relationship) and one endpoint for the new relationship (e.g., a SoftwareComponent). Model

intelligence uses the relationship type to determine the constraints that must hold for the relationship and

then uses the constraints to create queries to search the knowledge base for valid endpoints to create the

relationship, as shown in Step 2 of Figure 3. The valid endpoints determine the valid states to which the

model can transition. As shown in Step 3 of Figure 3, the transitions that lead to these valid states can then

be suggested to modelers as valid ways of completing an in-progress modeling edit.

The creation of a new relationship begins by the modeler selecting a source for the relationship and a

type of relationship to create. Each relationship type has a set of constraints associated with it. Once model

intelligence knows the source object and the OCL constraints on the relationship being modified, a query

can be issued to find valid endpoints to complete the relationship. Using the OS deployment constraint

from Section 2 the query to find endpoints for a deployment relationship would be:

Server.allInstances()->collect(target |
 target.OS = source.OS);

In this example, model intelligence would specify to the OCL engine that the source variable

mapped to the SoftwareComponent that had been set as the source of the deployment relationship. The

query would then return the list of all Servers that had the correct OS for the component. For an arbitrary

relationship, with constraint Constraint, between elements Source and Target of types

SourceType and TargetType, a query can be composed to derive valid endpoints. Assuming that a

relationship has endpoint Source set, a query can be issued to find potential values for Target as

follow:

TargetType->allInstances()->collect(target | Constraint);

where Constraint is a boolean expression over the source and target variables. More generally, the

query can be expressed as: Find all elements of type TargetType where Constraint holds true if the source

is Source.

3.3 Endpoint Derivation Across Multiple Constraint Languages

Although we have only focused on OCL thus far, the generalized query definition from Section 3.2 can

be mapped to other constraint or expression languages, as well. In prior work [4], we implemented model

intelligence using OCL, Prolog, BeanShell, and Groovy. For example, Prolog naturally defines a

knowledge base as a set of facts defined using predicate logic. Queries can be issued over a Prolog

knowledge base by specifying constraints that must be adhered to by the facts returned. Model intelligence

can also be used to derive solutions that are restricted by a group of constraints defined in multiple

heterogeneous languages. An iterative result filtering process can be used to derive endpoints that satisfy

constraints specified in multiple languages, as shown in Figure 4.

Figure 4. Model Intelligence Queries Across Multiple Constraint Languages

Initially, model intelligence issues a query to derive potential solutions that respect the constraint set of

one constraint language. The results of the query are stored in the set R0. For each subsequent query

language Ci, the results of the query that satisfy the language’s constraint set are stored in Ri. For each

constraint language Ci, where i > 0, model intelligence issues a query using a modified version of the query

format defined in Section 3.2: Find all elements of type TargetType where Constraint holds true if the

source is Source and the element is a member of the set Ri-1.

The modified version of the query introduces a new constraint on the solution returned: all elements

returned as a result were a member of the previous result set. A simple mechanism for specifying result sets

is to associate a unique ID with each modeling element and to capture query results as lists of these IDs.

The modified queries can then be defined by checking to ensure that both the constraint set holds and the

ID property of each returned modeling element is contained by the previous result set.

4 Integrating Model Intelligence with the Command Pattern

There are a large number of uses for model intelligence, including automatically performing an

autonomous batch process of model edits and providing visual feedback to modelers. In this section, we

show how model intelligence can be integrated with the Command pattern [3] to provide visual cues to aid

modelers in correctly completing modeling actions. The Command pattern uses an object to encapsulate an

action and its needed data and is used in many graphical modeling frameworks, such as the Eclipse

Graphical Editor Framework [5]. As a modeler edits a model, commands are created and executed on the

model to perform the actions of the modeler.

Figure 5. The Deployment Command Showing Valid Endpoints Derived via Model Intelligence

Modeling platforms provide tools, such as a connection tool, that a modeler uses to manipulate a model.

Each tool is backed by an individual command object, such as a connection command. When a modeler

chooses a tool, an instance of the corresponding command class is created. Subsequent pointing, clicking,

and typing by the user, sets the arguments (e.g., connection endpoints) operated on by the command. When

the arguments of the command are fully specified (e.g., both endpoints of a connection command are set),

the command executes.

Section 3 described the ability to highlight the valid deployment locations for a software component

after a modeler clicked on it to initiate a deployment connection. This functionality can be achieved by

combining model intelligence with a deployment connection command. After the initial argument to the

deployment connection command is set, the command can use model intelligence to query for valid

deployment locations. If there is a single server that can host the component, the command can

autonomously choose it as the deployment location and execute. If there is more than one potential valid

host, each host can be highlighted via a command to help the user select the command’s final argument, as

shown in Figure 5.

Figure 6. A Model Intelligence Batch Process to Assign a Host for Every Component

5 Concluding Remarks

Our experience developing models for enterprise application domains indicates that simply

determining if a model is correct is not always helpful. We have learned that using constraints to verify the

correctness of relationships between objects—rather than just individual object states—allows modeling

tools to guide modelers towards correct solutions by suggesting ways of completing edits. Moreover, batch

processes can be built atop of suggestion mechanisms to allow tools to autonomously complete sets of

modeling actions. For example, a batch process can be created to deploy a large group of software

components, by deriving sets of valid hosts for each component and intelligently selecting a host from each

set, as shown in Figure 6. In other work [4], we have used model intelligence as the basis for creating batch

modeling processes that use constraint solvers to automate large sets of modeling actions and optimally

select endpoints for relationships to satisfy global constraints or optimization goals.

Our implementation of model intelligence for the Eclipse Modeling Framework [6], called GEMS

EMF Intelligence, is an open-source project available from www.eclipse.org/gmt/gems.

References

[1] J. Bézivin. “In Search of a Basic Principle for Model Driven Engineering,” Novatica/Upgrade,

V(2):21—24, (2004).

[2] J.B. Warmer, A.G. Kleppe. The Object Constraint Language: Getting Your Models Ready for MDA,

Addison-Wesley Professional, New York, NY, USA, (2003).

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-oriented

Software, Addison-Wesley, Boston, MA, USA (1995).

[4] J. White, A. Nechypurenko, E. Wuchner, and D.C. Schmidt. “Reducing the Complexity of Designing

and Optimizing Large-scale Systems by Integrating Constraint Solvers with Graphical Modeling Tools,

“Designing Software-Intensive Systems: Methods and Principles, edited by Dr. Pierre F. Tiako,

Langston University, Oklahoma, USA, (2008).

[5] Graphical Editor Framework, www.eclipse.org/gef.

[6] F. Budinsky, S.A. Brodsky, E. Merks. Eclipse Modeling Framework, Pearson Education, Upper Saddle

River, NJ, USA, (2003).

http://www.eclipse.org/gef

	Model Intelligence: an Approach to Modeling Guidance
	Abstract
	1. Introduction
	2 Limitations of Current Constraint Checking Approaches
	3 Model Intelligence: an Approach to Modeling Guidance
	3.1 Constraining Relationships
	3.2 Relationship Endpoint Derivation
	3.3 Endpoint Derivation Across Multiple Constraint Languages
	4 Integrating Model Intelligence with the Command Pattern

	5 Concluding Remarks

