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Summary. The popularity of smartphones equipped with GPS and geomagnetic sensors has
spurred mobile application developer interest in augmented reality (AR), which presents highly
contexualized, spatially relevant information that enhances user knowledge of their immediate
surroundings. AR applications typically mesh relevant information with user views of the phys-
ical world. Prior research has focused on interfaces built with custom hardware, but a smartphone
equipped with GPS, a camera, and a geomagnetic sensor is an attractive alternative to traditional so-
lutions. These devices can be programmed to present context-sensitive information to users without
needing custom hardware.

This paper examines three key challenges facing AR developers on mobile devices and presents
solutions applicable to modern mobile platforms, such as Apple’s iPhone and Google Android-
based smartphones. First, we investigate methods of filtering raw sensor data and present an algo-
rithm that eliminates sensor noise. Second, we explore the process of implementing a “magic lens”
interaction metaphor by overlaying perspective-renderedgraphics on the device’s camera using
OpenGL and UIKit. Third, we provide an efficient technique for fetching and caching geographi-
cally tagged points of interest from a server.

1.1 Introduction

Augmented reality (AR) overlays highly contexualized, spatially relevant information on
user views of the physical world [1, 2]. In a typical mobile ARapplication, users point
their smartphones at objects of interest and view the augmented display that is drawn on
the phone’s screen. The display provides additional information about their environment,
e.g., to make them aware of information that is not immediately visible, such as the dates
of upcoming events or ratings of nearby restaurants.

AR has been used to create mixed reality video games for use ineducation [3, 4] and
handheld tools for underground infrastructure visualization [5]. It has also made inroads
in the medical domain. For example, AR has been used to give surgeons information
about the position of internal organs and the adjustments needed for needle biopsy [2].

Meshing content onto users’ views of their environments (e.g., as shown in Figure 1.1)
is a fundamental challenge of AR, requiring methods for determining user locations and
estimating the area within their field of view. In applications where environments contain
known identifiable markers (such as 2D barcodes) image analysis of these markers can be
used to infer the camera’s position and frame of reference. Markers are typically designed
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Fig. 1.1: An AR Application Overlaying Labels on Real-worldObjects

for ease of recognition and planted in fixed locations withinthe environment. This class
of solutions for pre-prepared environments has been studied extensively [6, 1, 7, 8].

In open environments that have not been previously instrumented with markers, on-
board sensors or natural feature recognition can be used. Identifying naturally occurring
features of an environment and inferring the user’s location is computationally intensive,
however, and traditional solutions have been relegated to research labs due to the high
cost of the custom hardware required [1]. Today’s smartphones are an attractive alterna-
tive to custom hardware since they are equipped with Internet access, cameras, and GPS
and geomagnetic sensors. The prevalence of smartphones—combined with the ease with
which new software can be delivered—makes them a promising platform for building AR
applications and conducting future research.

Due to data caching and processing power requirements, natural feature recognition is
beyond modern mobile device capabilities. Approaches thatcentralize data processing [9]
are undesirable for consumer mobile applications due to thehigh cost of scaling server-
based solutions and the relatively low-bandwidth networksconnecting mobile devices to
servers. Several applications perform detection and pose estimation of 2D barcodes and
fiducial markers [10, 7], which can be used in AR applicationsthat display special content
on objects branded with 2D markers [11]. Marker tracking, however, is a specialized use-
case not suited for general-purpose, open environment applications, such as providing
nearby restaurant reviews or information about events in a city.

GPS and geomagnetic sensors in modern smartphones require significantly less pro-
cessing power and can work in open environments lacking custom markers needed for
image analysis. The use of GPS and geomagnetic sensors in commodity smartphones
are, however, accompanied by significant challenges [9], such as the limited accuracy
of the GPS sensors in and the noise present in sensor data. Forexample, the noise in
geomagnetic heading values can cause jitter in onscreen information presentation.

The paper provides the following contributions to R&D on mobile AR:
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• We present an algorithm that filters sensor data in real time, eliminating noise and
allowing for a smooth display based on GPS and geomagnetic sensor data alone. We
show that limited processing speeds are not a barrier to filtering sensor data necessary
to create smooth AR displays.

• We show that a large number of geographically tagged data points can be stored on a
central server, retrieved, and cached using geographic ranges without the processing
required to compare latitude/longitude values under the bandwidth constraints typical
of modern commodity smartphone hardware.

The remainder of this paper is organized as follows: Section1.2 examines key chal-
lenges facing developers of AR applications on modern smartphone devices; Section 1.3
presents solutions to these challenges based on ourVanderbilt AR Toolkit (VART), in-
cluding an approach for efficiently storing and retrieving geotagged data, a filter for ef-
fectively reducing geomagnetic sensor noise, and methods for creating perspective ren-
dered overlays in real-time; Section 1.4 evaluates the benefits of our solutions empirically
by analyzing database query speed for point-of-interest retrieval and quantifing the bene-
fits of our sensor filtering algorithm; Section 1.5 compares VART with related work; and
Section 1.6 presents concluding remarks.

1.2 Challenges of Mobile AR Application Development

This section presents four key challenges facing developers of AR applications for mod-
ern smartphone platforms.

1.2.1 Challenge 1: Mobile 3D Solutions are Non-optimal and Hard to Mesh with
Camera Imagery

The magic lens interaction metaphor [12, 13] (where widgetsare placed above content
to reveal hidden information) is common in AR applications,but is hard to produce on
resource-constrained smartphones. Information displayed over the camera preview must
be transformed and rendered in real-time according to information about the user’s posi-
tion, orientation, and heading within the environment. Rendering accuracy is important
since AR applications offer a rich user experience by precisely associating overlaid infor-
mation with elements in user surroundings.

Overlaying information directly on top of physical objectsobviates the need for con-
text in the information displayed and results in more intuitive data presentation. User
experience thus deteriorates quickly when accuracy is lost. Incorrectly aligned overlays
provide misleading information because the context assumed by the user is not accu-
rate. Previous AR applications have achieved fast rendering using OpenGL or by moving
processing to a server and streaming video to embedded devices [14].

Graphics libraries (such as OpenGL) are available on modernsmartphone platforms
and can render three dimensional models in real-time. On most devices, pixel fragment
processing is done on dedicated graphics hardware, so rendering does not block other
CPU-intensive operations, such as the loading of points of interest (POI). The use of
OpenGL on smartphone platforms introduces other challenges, however,e.g., rendering
content and displaying it over live camera video requires integrating low-level services
provided in mobile OS APIs.
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Using OpenGL to display interface elements is also undesirable on modern mobile
platforms. Once perspective-rendered content is displayed onscreen, it is hard to perform
hit testing because OpenGL ES 1.1 does not provide APIs for “picking mode” or “se-
lection” used to determine the geometry at particular screen coordinates. When controls
are rendered in a perspective view, it is hard to determine whether touch events lie within
the control bounds. While OpenGL supports perspective 3D rendering under the process-
ing constraints typical of modern mobile smartphones, it isnot optimal. Section 1.3.1
describes how VART addresses this challenge with an alternative graphical solution em-
ploying nested view objects that display perspective distorted content while preserving
user interaction with overlaid visuals.

1.2.2 Challenge 2: Real-time Estimation of Frame of Reference is Computationally
Demanding

AR requires high-performance techniques for mapping a virtual environment onto the
real-world coordinate space. As users move their smartphones, the virtual viewport must
update quickly to reflect changes in the camera’s orientation, heading, and perspective,
so it is essential to gather information about the device’s physical position in the environ-
ment in real-time. Traditional approaches [6, 1] to frame ofreference estimation depend
on identifiable tokens embedded in the environment or computationally-intensive image
processing of natural markers.

Image processing techniques must be optimized extensivelyto fit within the hardware
constraints imposed by mobile devices. Detection and frameof reference estimation of
identifiable markers (such as two-dimensional barcodes) isan option for closed environ-
ments that can be instrumented with such markers. This approach, however, is less suit-
able for AR applications in outdoor environments since instrumenting the environment
with markers prior to the applications use is unlikely.

Attempts to perform natural feature detection in open environments on commodity
mobile devices have been largely unsuccessful [9] since they use large amounts of cached
data and significant processing power. Devising a strategy for determining the device’s
position, heading, and orientation with high accuracy is a significant challenge given
the limited processing capabilities of mobile devices. Section 1.3.2 describes how VART
addresses this challenge using GPS and geomagnetic sensorsfor frame of reference esti-
mation.

1.2.3 Challenge 3: Geomagnetic Sensor Noise Makes Orientation Estimation Hard

Modern mobile smartphones contain a number of sensors that are applicable for AR
applications. For example, cameras are ubiquitous and accelerometers and geomagnetic
sensors are available in many smartphones. Geomagnetic sensors provide information
about user headings, which can be combined with GPS data to estimate field of view.

The geomagnetic sensors in popular mobile devices present unique problems, how-
ever, since they do not provide highly accurate readings. Tomap the virtual AR environ-
ment into a real-world coordinate space, sensor data must beaccurate and free of noise
that causes jitter in rendered overlays. The reduction of noise thus represents a significant
challenge confronting AR software.

The Savitzky-Golay smoothing filter [15] is a natural approach to removing sensor
noise. This filter leverages the fact that data from most types of rotations can be modeled
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by a fairly small number of standard equations. Different regression tests can thus be
run iteratively on a portion of the most recent data to identify the regression with the
highest coefficient of determination and use the resulting equation to adjust the incoming
point. Unfortunately, the Savitzky-Golay smoothing filteris not usable in mobile AR
application since running a single regression algorithm isexpensive and doing it multiple
times for a single incoming point at 40 Hertz is infeasible. Section 1.3.2 describes how
VART addresses this challenge via an algorithm that efficiently filters sensor noise within
the processing constraints of modern mobile smartphones.

1.2.4 Challenge 4: Filtering Geotagged POIs by Proximity isComputationally
Intensive

Mobile AR applications focus on providing information about immediate user vicinity.
In areas of high information density (such as a city) there may be a dozen POI within
a few hundred feet of a user. Efficiently storing a large number of geotagged points and
retrieving those most relevant to individual users is hard due to the large number of com-
parisons necessary to identify which item(s) are near user(s). Geotagged points change
frequently, so mobile devices need to query a central database server regularly to retrieve
information about nearby POI.

Unfortunately, there are several problems with this straightforward approach. Query-
ing a database of geotagged points by specifying latitude/longitude ranges is not practical
for mobile applications with many users. It is inefficient toplace bounds on two numeric
columns in a large data set because comparisons must be performed on each row to com-
pile the result. Databases index content for faster retrieval, but numerical values cannot
be efficiently preprocessed for faster comparison. While speed problems could be miti-
gated by subdividing points into separate tables based on geographic region, a popular
AR application might offer thousands of POI within a small geographic area. A differ-
ent approach is thus required to obviate the need for complexdatabase queries involving
numerical ranges.

Requesting and retrieving data on a mobile smartphone is also problematic for sev-
eral reasons. WiFi and cell network connectivity consumes battery rapidly and users may
observe rendering interruptions or a drop in frame rate as data from remote servers is re-
ceived and processed. Caching data on the mobile device partially alleviates the need for
network retrieval. This approach is also problematic, however, since it is hard to aggregate
geotagged points and filter them in a latitude/longitude window with limited processing
power. Section 1.3.3 describes how VART addresses this challenge by quantizing geo-
tagged points into geographic blocks and fetching, caching, and filtering on the block
level, which consumes less processing as users navigate their environment.

1.3 The Vandy AR Toolkit

This section describes our solutions to the challenges presented in Section 1.2 based on
theVanderbilt AR Toolkit (VART) for iPhone and Android smartphone platforms.1

1 VART is open-source software available atcode.google.com/p/vuphone.
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1.3.1 Using Hardware Accelerated 3D APIs to Display Perspective Rendered
Content

Section 1.2.1 describes that meshing perspective renderedgraphics onto smartphones is
hard due to limited control over their camera image. It is also hard to determine what
object in 3D space users are interacting with since screen coordinates do not map directly
to coordinates in the 3D environment once a projection has been applied. Hardware-
accelerated rendering can be achieved using the OpenGL graphics library on some mobile
platforms but fails to adequately address the challenge in Section 1.2.1. Below we present
an alternative solution based on nested view objects that display perspective distorted
content while preserving user interaction with overlaid visuals.

An alternate approach utilizing nested views.To easily enable user interaction with
rendered content, VART employs nested view objects to whicha 4x4 visual transforma-
tion matrix is applied. When the view hierarchy is rendered,the transformation matrix
is applied to each view allowing for basic perspective distortion of the content rendered
in each view. The benefits of this approach are that hit testing can be achieved by apply-
ing the transformation matrix to incoming touch locations and platform-standard view
objects allow the display of standard graphical interface elements.

We use Apple’s UIKit framework to implement this solution onthe iPhone. UIKit
provides sophisticated APIs for building graphical user interfaces composed of nested
views. Each view has bounds declared relative to its parent and draws itself. All views
may contain subviews; interaction events proceed down a call chain to the lowest view
capable of handling an event of that type.

UIKit also allows an AR application to specify a 4x4 visual transformation matrix
for each view, which supports basic perspective graphics. The transformation matrix is
applied to graphics output when each view draws its respective content and is also applied
to user interaction events as they are passed into the view stack. Since the transforms are
applied to events, hit testing is handled transparently regardless of the transformation
matrix.

We created a transformation matrix approximating distortion from a camera lens and
used it to render buttons and other controls with a perspective projection applied. This
solution obviates the need for other graphics libraries, such as OpenGL. It also enables
user interaction with rendered content, which is importantfor mobile AR applications.

Meshing content with the camera image.Meshing rendered content with imagery
from the smartphone camera required overcoming platform-specific issues on the iPhone
and Android platforms. For example, restrictions built into Apple’s 3.0 iPhone OS prevent
camera image data from being used in the graphics pipeline. Since direct access to the
camera image in memory is not provided, however, it is not possible to use OpenGL or
another graphics library to display the camera image and therendered POI elements.

Although Apple provides an API to take individual frames from the phone’s camera,
this approach yields low frame rates unsuitable for an AR application. Using a single
graphics pipeline to draw the camera image and the overlaid content seemed attractive
since images can be distorted and adjusted prior to their display, but our inability to
pull frames from the camera rapidly made this option unappealing. Instead, a generic
camera preview can be used to display the camera image on the screen separately, which
provides little flexibility since image data cannot be manipulated and its display is beyond
the application’s control. Transparent content can be displayed in a layer on top of the
camera preview, however, achieving the desired effect.
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1.3.2 Using GPS and Geomagnetic Sensors to Estimate of Device Position and
Orientation

Section 1.2.2 identified problems using traditional image recognition techniques for de-
vice position and orientation estimation on mobile devices. We now present an alternative
made possible by the sophisticated sensors in commodity smartphone hardware. Prior
work has focused on using specifically designed markers and token detection for location
and frame of reference estimation on mobile phones [2, 6, 10], which provide accurate
position and pose estimation of markers placed in user environments.

Our intended use of AR to display nearby POI does not require highly accurate pose
estimation or position information. Instead, geographic location information within a few
meters and heading data within a few degrees is acceptable. To avoid computationally ex-
pensive image processing and the need for environmental markers, therefore, VART uses
onboard GPS and geomagnetic sensors sensors available in modern commodity smart-
phones to pinpoint the user on a latitude/longitude grid andcompute the POI within their
field of view. Points are then rendered over a camera image, allowing use of the phone
as a lens to view an augmented version of the world, as shown inFigure 1.2. iPhone and

GPS

Geomagnetic

Sensor

Users position

Rendered

Overlay

Position of overlay

Latitude/longitude grid

Image displayed on screen

Fig. 1.2: Sensors Identify Device Frame of Reference and Update Screen.

Android devices feature GPS hardware and geomagnetic sensors, and both operating sys-
tems provide APIs for accessing data from this hardware within third-party applications.

Prevailing issues: sensor noise and accuracy.We tested Android and iPhone smart-
phones (such as the iPhone 3G and the Android G1) that are representative of modern
mobile phone technology. While these devices offer an impressive range of features, their
reliance on commodity sensor hardware is problematic. For example, these smartphones
incur a great deal of input noise and have less accurate hardware than traditional mobile
AR systems [14]. The geomagnetic sensors of these phones were noisy, even when the
phone was lying flat on a table. This variance in heading information yielded visual jitter
and degraded the presentation of POI on-screen. The GPS sensors in these smartphones
also provided less accurate readings than dedicated AR devices, which often utilize GNSS
surveying equipment with accuracy to one centimeter.

Although 100% accuracy is not required, reasonable accuracy is helpful in AR appli-
cations that overlay 3D geometry to match real-world features. These applications often
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render geometry on top of a view of the phone’s camera. When user location and heading
cannot established with high accuracy, overlaid geometry may be misaligned.

Possible approaches to filtering sensor noise.We identified several algorithms to
optimally filter incoming heading data. Ideally, an algorithm should work in the following
conditions: (1) device is held steady, (2) device is rotatedat a uniform speed, and (3)
device is moved semi-randomly. Pattern recognition algorithms run on the most recent
data would select the correct filter. Unfortunately, such algorithms require computing
power beyond the capacity of modern smartphones.

If we eliminate pattern recognition (which is the most processor intensive part of the
above algorithm) another approach emerges: the Savitzky-Golay smoothing filter [15].
Unfortunately, this technique is not usable in an AR applications on smartphones for the
reasons discussed in 1.2.3.

A lightweight and portable solution. The compass filtering algorithm shown in Fig-
ure 1.3 extends Finite Impulse Response filters [16], with added statistical analysis for
data exclusion and outlier analysis. It can be customized for different noise levels by a
small list of parameters. The filter structure shown in Figure 1.3 contains two ring buffers

Fig. 1.3: The Compass Filtering Algorithm

of set capacity, one for the recent data and one for outlier data. The filter starts in an
uninitialized state, accepting all incoming points and enqueuing them into the data buffer.
After we reach capacity, each new point’s z-score (which is astatistic for measuring the
deviation of a point from the mean of the sample) is calculated. If the z-score is within
an acceptable range, we enqueue the corresponding reading into the data buffer and clear
the outlier buffer. Otherwise, we enqueue the reading into the outlier buffer.

If the outlier buffer reaches its capacity, we determine thedirection of the outliers by
computing on which side of the mean the majority of the outliers lie. We then enqueue
all of the outliers in this majority to the data buffer, thus flushing it, and clear the outliers
buffer. We repeat this process each time a new sensor readingis available. When asked
for the filtered value, we return the mean of the data buffer.



1 Addressing Challenges with Augmented Reality Applications on Smartphones 9

Calculating mean and standard deviation are the most computationally expensive op-
erations in our compass filtering algorithm. After the initialization stage, however, these
calculations can be optimized to constant time operations by keeping track of the current
sum and variation. When a new point comes in, therefore, we only have to remove the old
point from the current sum/variation and add in the new one. Our approach lends itself to
extension via subclassing so that the filter parameters can vary dynamically.

1.3.3 A Grid-based Approach to Data Storage and Retrieval

Section 1.2.4 described the problems surrounding the storage and retrieval of many POI.
Below we present a highly scalable solution to the problem ofdata retrieval, caching,
and filtering on both the server and mobile device using a grid-based approach (shown in
Figure 1.4) that progressively loads content from web sources based on GPS coordinates.

[1,1] [2,1]

[1,2] [2,2]

[1,3] [2,3]

[1,0]

[0,1]

[0,2]

[0,3]

[0,0] [2,0]

Fig. 1.4: Geotagged POI are Discretized into a Grid of Blocks.

A mapping function generates discretized x,y values for each POI based on the
latitude/longitude pair such that multiple POI in the same geographic region share the
same x,y value. A basic function might round latitude and longitude values, giving all
POI in the same lat/lon minute the same x,y pair.

Each block in the x,y grid contains all points within a specific geographical area,
and may be loaded by querying the database for the indexed coordinate values. Indexing
the contents of the database using discretized values obviates the need for numeric com-
parison and queries bounded by latitude and longitude values. Queries may specify an
exact block index such as (x=1, y=2) and retrieve a group of points within a predefined
geographic area.

Dividing available content into a latitude/longitude gridand fetching it in discrete
blocks has several advantages. Information can be requested by specifying an index to
a particular block within the grid and stored based on grid coordinates, alleviating com-
plex retrieval queries on a central server. Caching retrieved data is also straightforward
since data can be stored and retrieved on the device based on the block index. Purging
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cached data based on its distance from the user’s current location does not require iter-
ating through each cached point. Instead, entire blocks canbe quickly purged based on
their discretized latitude and longitude values.

Dividing content into geographic blocks maps well onto the presentation space, where
POI must be displayed/hidden as the user moves toward/away from an area. Blocks may
be partitioned into a small geographic size so that a fixed number of blocks are displayed
at a time, corresponding to a few miles in each direction. Filtering blocks of points is
much more efficient than processing each point and also requires constant evaluation
time, regardless of the number of points present in the area.Hiding and showing POI
one-by-one can yield poor application performance in high data density areas.

1.4 Empirical Results

This section presents empirical data that evaluates our techniques and algorithms de-
scribed in Section 1.3.

1.4.1 Evaluating the Compass Filtering Algorithm

Below we present an experiment assessing the efficacy of our VART compass filtering al-
gorithm described in Section 1.3.2. We sample a typical geomagnetic sensor and demon-
strate favorable results produced in real-time.

Experimental setup.We used an Android Dev Phone 1 running Android 1.5 to col-
lect measurements. The sensor was sampled at highest possible rate (roughly 36 Hz). The
data was stored to an SD card via a Java application.

Raw sensory data was saved while the device was rotated at a uniform angular ve-
locity on a magnetically insulated rotating mechanism. An adapter was then used to feed
this time-stamped data into the filtering application in real-time. The resulting filtered
measurements were then recorded and plotted on a time versusangle graph from which
noise reduction was then calculated.

Hypothesis.Plotting the raw sensory output provides a general idea of the noise levels
to reduce. The noise is most visible when the device is held steady. When it is rotated at
a uniform angular velocity, noise becomes almost non-existent. An effective filter must
therefore eliminate the corrupted data while preserving accurate measurements.

Analysis of results.Analysis of our filter on real-life data suggests that we are doing
just that. Figures 1.5, 1.6, and 1.7 depict a graphical representation of our filter’s per-
formance. In a worst-case scenario (i.e., when the device is held steady) we achieved a
60% noise reduction. When the data is most accurate (i.e., rotation at uniform angular
velocity) we still eliminate over half the noise.

The results in Figures 1.5, 1.6, and 1.7 show a significant reduction of sensor noise
when our algorithm is employed, even in the worst case scenario of the device lying
stationary. Prior to filtering, the geomagnetic sensor was shown to produce values ranging
±4.8◦ at rest and we reduced the margin of error to±2◦. This reduction is a significant
improvement, confirming that our filtering algorithm is effective and reduces overlay jitter
observed by the end user of a mobile AR application.

Using data from the geomagnetic sensor of a commodity Android smartphone, we
confirm that sensor noise is problematic. Our experiment also demonstrates that this al-
gorithm is within the processing capabilities of modern smartphones. AR applications can
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Fig. 1.5: Noise Observed When the Device is Held Steady

Fig. 1.6: Relative Angle Offset When the Device is Under Uniform Rotation

Fig. 1.7: Noise Observed When the Device is Experiencing Freehand Motion

therefore be developed to leverage GPS and geomagnetic sensors for frame of reference
estimation without significant levels of jitter due to noisein orientation information.

1.4.2 Evaluating Database Retrieval of Quantized Data Points

Section 1.3.3 presented an approach to efficiently storing and retrieving data points using
a grid based on latitude and longitude values. To test that avoiding numeric comparisons
improves retrieval speed, we designed an experiment for measuring the speed of various
database queries on a large set of geocoded points.
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Experimental setup.All experiments were conducted on an Apple Powerbook with
a 2.53 GHz Intel Core 2 Duo processor, 4 gigabyes of 1067MHz DDR3 RAM running
OS X version 10.6.2 and mySQL 5. Queries were executed and timed using PHP 5.3.0.
The results of each query were not processed, so recorded times indicate time spent per-
forming queries only.

A single table containing 1,000,000 rows was created in a mySQL database on the
machine executing the queries. Each row in the table consisted of an integer id, double
latitude value, and an integer block id. Blocks were assigned based on the latitude values
so that 1000 blocks were evenly filled with 1000 rows each. A standard mySQL index
was created on the block id column.

Hypothesis.Storing geotagged points in discrete blocks within the database and re-
trieving them based on block index is much faster than performing numerical queries that
specify upper and lower bounds on latitude, longitude values.

Analysis of results.We ran three types of queries on the database and noted average
response time in microseconds for 200 queries, each returning 1,000 matching rows from
1,000,000 rows, as shown in Table 1.1. Our results confirmed that querying a large data set

Table 1.1: Average Query Response Time

Query Type Response Time
Latitude range (latitude column indexed) 581700 µs
Latitude range (latitude column not indexed) 284600 µs
Specific latitude block 5209 µs

of geocoded points based on latitude/longitude values is a performance issue and that our
solution presented in Section 1.3.3 offers dramatic performance benefits by organizing
data points into discretized numerical blocks. Retrievingrecords based on discretized
numerical blocks was exponentially faster than querying for the equivalent numerical
range of latitude values. Since AR applications generally load a number of records at a
time, the loss of granularity in queries for discrete blocksis not an issue and this approach
will dramatically decrease server load. The poor performance observed when querying
points without our approach suggests that mobile smartphones would not be capable of
caching a large number of points and filtering them for display without the optimization
described in Section 1.3.3.

1.5 Related Work

This section compares our work on smartphone-based AR applications with related work.
The techniques employed in this paper are inspired by earlier work in mobile AR, data
filtering, and magic lenses. Location and frame of referenceestimation is a fundamental
issue in AR and has been addressed in two primary ways in recent literature. In ap-
plications where environments can be instrumented with easily identifiable markers or
contain a limited number of known natural features, image analysis techniques are opti-
mal and provide highly accurate results. This class of solutions has been studied in great
detail [6, 1, 7, 8].
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Techniques utilizing sensors present a viable alternativein open, unprepared environ-
ments and have been presented in [5]. Likewise, [9] presentsa hybrid approach using
image recognition to refine frame of reference information derived from onboard inertial
sensors. Although this approach helps increase accuracy inopen uncontrolled environ-
ments, future research is needed to reduce the requirement for large amounts of pre-
prepared environment data. It is likely that methods for filtering sensor data (such as our
solution in 1.3.2) partially obviate the need to refine sensor data using image analysis.

To cache and retrieve points of interest rapidly, we employ acoordinate quantization
technique similar to “loxels” [17], which organized image descriptors used for pose es-
timation by natural feature recognition into a location-based grid that could be loaded
incrementally and provided the inspiration for our method of POI storage. We adapt this
approach to store and retrieve geotagged data points and quantify the benefit of querying
a database based on discrete blocks instead of numeric latitude and longitude ranges.

Our approach to data smoothing leverages qualities of the Savitzky-Golay filter [15].
It takes advantage of the fact that data from most types of rotations can be modeled by
a fairly small number of standard equations. This insight provided the inspiration for
our filter for applications where the regression required bySavitzky-Golay filter is not
tractable due to constraints on processing power.

Another approach to filtering utilizing a Kalman filter is found in [18]. When multiple
sensors such as accelerometers and magnetometers are available, Kalman filters can fuse
multiple sensor signals into a single estimate of heading. These filters have been shown
to have low calculation times, on the order of 1/10th of a sec.on a 50MHz processor [18],
but require multiple sensors for fusion and are thus not wellsuited for mobile phones.

1.6 Concluding Remarks

Today’s smartphones are promising platforms for AR applications since they are portable,
ubiquitous, and provide the processing power and sensor capabilities necessary for AR
applications. This paper identified several challenges in developing AR applications for
the iPhone and Android platforms and showed how ourVanderbilt AR Toolkit (VART)
provided acceptable solutions to these challenges. Our work on VART has yielded the
following lessons learned:

• POI retrieval based on numeric geographic ranges is infeasible. Retrieving geo-
tagged points from a database table within a specific numericgeographic range is
costly. Quantizing points into a grid of discrete blocks is amore efficient solution.

• Discretizing POI locations eliminates costly comparisons. Discretizing latitude
and longitude values allows geotagged points to be indexed and retrieved rapidly
from a database.

• Hit testing in OpenGL is laborious. Hit testing three dimensional content rendered
in OpenGL is hard due to the lack of selection and picking modes in OpenGL ES.

• Sensor data requires processing to remove noise.Raw data from smartphone geo-
magnetic sensors contains significant noise that results injitter in rendered overlays
unless corrected.

• Existing smartphone platforms are capable of delivering magic lens AR, but ad-
ditional work is needed to identify other forms of AR that canbe supported,e.g., a
hybrid form of AR utilizing onboard sensor data and flucidialmarker detection could
allow for impressive massively-multiplayer AR games.
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