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Summary. The popularity of smartphones equipped with GPS and geoatizgeensors has
spurred mobile application developer interest in augntenéality (AR), which presents highly
contexualized, spatially relevant information that erdenuser knowledge of their immediate
surroundings. AR applications typically mesh relevanbinfation with user views of the phys-
ical world. Prior research has focused on interfaces buit eustom hardware, but a smartphone
equipped with GPS, a camera, and a geomagnetic sensor isaantiae alternative to traditional so-
lutions. These devices can be programmed to present cesgngitive information to users without
needing custom hardware.

This paper examines three key challenges facing AR deved@pemobile devices and presents
solutions applicable to modern mobile platforms, such aplé&p iPhone and Google Android-
based smartphones. First, we investigate methods of fiiffeaw sensor data and present an algo-
rithm that eliminates sensor noise. Second, we explorertheeps of implementing a “magic lens”
interaction metaphor by overlaying perspective-rendepegbhics on the device’s camera using
OpenGL and UIKit. Third, we provide an efficient technique fietching and caching geographi-
cally tagged points of interest from a server.

1.1 Introduction

Augmented reality (AR) overlays highly contexualized,tsgdly relevant information on
user views of the physical world [1, 2]. In a typical mobile ARplication, users point
their smartphones at objects of interest and view the autgdetisplay that is drawn on
the phone’s screen. The display provides additional infdiom about their environment,
e.g., to make them aware of information that is not immediate$jble, such as the dates
of upcoming events or ratings of nearby restaurants.

AR has been used to create mixed reality video games for wsduication [3, 4] and
handheld tools for underground infrastructure visuaii@af5]. It has also made inroads
in the medical domain. For example, AR has been used to grgesos information
about the position of internal organs and the adjustmergdatkfor needle biopsy [2].

Meshing content onto users’ views of their environmeats(as shown in Figure 1.1)
is a fundamental challenge of AR, requiring methods for mheiteing user locations and
estimating the area within their field of view. In applicatsonvhere environments contain
known identifiable markers (such as 2D barcodes) image sisaljthese markers can be
used to infer the camera’s position and frame of refereneekbts are typically designed



2 J. Benjamin Gotow, Krzysztof Zienkiewicz, Jules Whited @vouglas C. Schmidt

y
' g

L -.r' » I
18 ,‘L" Student’s augmented |
| view of the scene
’ '{ with overlay of course

4 material

Real world imagery ‘ 1
in smartphone camera s
preview

_Actual real world scene
iy

R Lt

]
Fig. 1.1: An AR Application Overlaying Labels on Real-woflbjects

for ease of recognition and planted in fixed locations withia environment. This class
of solutions for pre-prepared environments has been stwitensively [6, 1, 7, 8].

In open environments that have not been previously instntedewith markers, on-
board sensors or natural feature recognition can be useutifiging naturally occurring
features of an environment and inferring the user’s locasaomputationally intensive,
however, and traditional solutions have been relegatedgearch labs due to the high
cost of the custom hardware required [1]. Today’s smartph@mne an attractive alterna-
tive to custom hardware since they are equipped with Intexoeess, cameras, and GPS
and geomagnetic sensors. The prevalence of smartphonesbired with the ease with
which new software can be delivered—makes them a promigatfppm for building AR
applications and conducting future research.

Due to data caching and processing power requirementsahiature recognition is
beyond modern mobile device capabilities. Approache<tatalize data processing [9]
are undesirable for consumer mobile applications due tditjie cost of scaling server-
based solutions and the relatively low-bandwidth netwarksnecting mobile devices to
servers. Several applications perform detection and pstsaation of 2D barcodes and
fiducial markers [10, 7], which can be used in AR applicatitiag display special content
on objects branded with 2D markers [11]. Marker trackingyéweer, is a specialized use-
case not suited for general-purpose, open environmenicagiphs, such as providing
nearby restaurant reviews or information about events itya c

GPS and geomagnetic sensors in modern smartphones reiguifecantly less pro-
cessing power and can work in open environments lackingpousharkers needed for
image analysis. The use of GPS and geomagnetic sensors imaaiity smartphones
are, however, accompanied by significant challenges [@h sis the limited accuracy
of the GPS sensors in and the noise present in sensor datax&mple, the noise in
geomagnetic heading values can cause jitter in onscreemation presentation.

The paper provides the following contributions to R&D on rie\R:
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* We present an algorithm that filters sensor data in real,tetiminating noise and
allowing for a smooth display based on GPS and geomagneisoseata alone. We
show that limited processing speeds are not a barrier taffiffsensor data necessary
to create smooth AR displays.

e We show that a large number of geographically tagged dataspcan be stored on a
central server, retrieved, and cached using geographiesanithout the processing
required to compare latitude/longitude values under timgllyédth constraints typical
of modern commodity smartphone hardware.

The remainder of this paper is organized as follows: Secti@rexamines key chal-
lenges facing developers of AR applications on modern gharte devices; Section 1.3
presents solutions to these challenges based oivamderbilt AR Toolkit (VART), in-
cluding an approach for efficiently storing and retrievireptagged data, a filter for ef-
fectively reducing geomagnetic sensor noise, and methmrdsréating perspective ren-
dered overlays in real-time; Section 1.4 evaluates theffisoé€our solutions empirically
by analyzing database query speed for point-of-interéseval and quantifing the bene-
fits of our sensor filtering algorithm; Section 1.5 compara&V with related work; and
Section 1.6 presents concluding remarks.

1.2 Challenges of Mobile AR Application Development

This section presents four key challenges facing devesogfeAR applications for mod-
ern smartphone platforms.

1.2.1 Challenge 1: Mobile 3D Solutions are Non-optimal and Brd to Mesh with
Camera Imagery

The magic lens interaction metaphor [12, 13] (where widget¢splaced above content
to reveal hidden information) is common in AR applicatiobst is hard to produce on
resource-constrained smartphones. Information disglayer the camera preview must
be transformed and rendered in real-time according to inédion about the user’s posi-
tion, orientation, and heading within the environment. (R&aing accuracy is important
since AR applications offer a rich user experience by pedgigssociating overlaid infor-
mation with elements in user surroundings.

Overlaying information directly on top of physical objectsviates the need for con-
text in the information displayed and results in more ineitdata presentation. User
experience thus deteriorates quickly when accuracy is llosbrrectly aligned overlays
provide misleading information because the context asdubyethe user is not accu-
rate. Previous AR applications have achieved fast rengeisimg OpenGL or by moving
processing to a server and streaming video to embeddedddi4].

Graphics libraries (such as OpenGL) are available on mosteartphone platforms
and can render three dimensional models in real-time. Ont denvices, pixel fragment
processing is done on dedicated graphics hardware, soriegdmes not block other
CPU-intensive operations, such as the loading of pointsw@rést (POI). The use of
OpenGL on smartphone platforms introduces other chalerysvevere.g., rendering
content and displaying it over live camera video requirésgrating low-level services
provided in mobile OS APIs.
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Using OpenGL to display interface elements is also undelgiran modern mobile
platforms. Once perspective-rendered content is disglapecreen, it is hard to perform
hit testing because OpenGL ES 1.1 does not provide APIs fickifpy mode” or “se-
lection” used to determine the geometry at particular scoa®rdinates. When controls
are rendered in a perspective view, it is hard to determingthr touch events lie within
the control bounds. While OpenGL supports perspective Bdegng under the process-
ing constraints typical of modern mobile smartphones, itas optimal. Section 1.3.1
describes how VART addresses this challenge with an aligengraphical solution em-
ploying nested view objects that display perspective distbcontent while preserving
user interaction with overlaid visuals.

1.2.2 Challenge 2: Real-time Estimation of Frame of Referaze is Computationally
Demanding

AR requires high-performance techniques for mapping ai@irenvironment onto the
real-world coordinate space. As users move their smarggdhe virtual viewport must
update quickly to reflect changes in the camera’s orientatieading, and perspective,
so it is essential to gather information about the devickissiral position in the environ-
ment in real-time. Traditional approaches [6, 1] to framesférence estimation depend
on identifiable tokens embedded in the environment or coatjoumally-intensive image
processing of natural markers.

Image processing techniques must be optimized extensivétywithin the hardware
constraints imposed by mobile devices. Detection and frahmeference estimation of
identifiable markers (such as two-dimensional barcodes) isption for closed environ-
ments that can be instrumented with such markers. This apprdowever, is less suit-
able for AR applications in outdoor environments sincerinsienting the environment
with markers prior to the applications use is unlikely.

Attempts to perform natural feature detection in open @mritents on commodity
mobile devices have been largely unsuccessful [9] singeuke large amounts of cached
data and significant processing power. Devising a strateggdétermining the device’s
position, heading, and orientation with high accuracy idgaiicant challenge given
the limited processing capabilities of mobile devices.ti®acl.3.2 describes how VART
addresses this challenge using GPS and geomagnetic séardoasne of reference esti-
mation.

1.2.3 Challenge 3: Geomagnetic Sensor Noise Makes Orienitat Estimation Hard

Modern mobile smartphones contain a number of sensors thaamplicable for AR
applications. For example, cameras are ubiquitous andegioogeters and geomagnetic
sensors are available in many smartphones. Geomagnesorsaorovide information
about user headings, which can be combined with GPS datéitoags field of view.

The geomagnetic sensors in popular mobile devices preséqiel problems, how-
ever, since they do not provide highly accurate readingsndp the virtual AR environ-
ment into a real-world coordinate space, sensor data mustdeate and free of noise
that causes jitter in rendered overlays. The reduction enhius represents a significant
challenge confronting AR software.

The Savitzky-Golay smoothing filter [15] is a natural apmio@o removing sensor
noise. This filter leverages the fact that data from mostdygfeotations can be modeled
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by a fairly small number of standard equations. Differemfression tests can thus be
run iteratively on a portion of the most recent data to idgritie regression with the
highest coefficient of determination and use the resultqugaéon to adjust the incoming
point. Unfortunately, the Savitzky-Golay smoothing filisrnot usable in mobile AR
application since running a single regression algorithexjgensive and doing it multiple
times for a single incoming point at 40 Hertz is infeasiblect®n 1.3.2 describes how
VART addresses this challenge via an algorithm that efftbiditters sensor noise within
the processing constraints of modern mobile smartphones.

1.2.4 Challenge 4: Filtering Geotagged POls by Proximity i€omputationally
Intensive

Mobile AR applications focus on providing information alb@mmediate user vicinity.
In areas of high information density (such as a city) therg imaa dozen POI within
a few hundred feet of a user. Efficiently storing a large nundbgeotagged points and
retrieving those most relevant to individual users is hare @ the large number of com-
parisons necessary to identify which item(s) are near slseBeotagged points change
frequently, so mobile devices need to query a central databerver regularly to retrieve
information about nearby POI.

Unfortunately, there are several problems with this shfayward approach. Query-
ing a database of geotagged points by specifying latitadgitude ranges is not practical
for mobile applications with many users. It is inefficienfgi@ace bounds on two numeric
columns in a large data set because comparisons must berpedon each row to com-
pile the result. Databases index content for faster rettjdut numerical values cannot
be efficiently preprocessed for faster comparison. Whiksedpproblems could be miti-
gated by subdividing points into separate tables based ogrgghic region, a popular
AR application might offer thousands of POI within a smalbgeaphic area. A differ-
ent approach is thus required to obviate the need for congaabase queries involving
numerical ranges.

Requesting and retrieving data on a mobile smartphone aspaitsblematic for sev-
eral reasons. WiFi and cell network connectivity consunateby rapidly and users may
observe rendering interruptions or a drop in frame rate tsfdam remote servers is re-
ceived and processed. Caching data on the mobile devidelpeatleviates the need for
network retrieval. This approach is also problematic, h@wesince it is hard to aggregate
geotagged points and filter them in a latitude/longitudedeim with limited processing
power. Section 1.3.3 describes how VART addresses thisectysd by quantizing geo-
tagged points into geographic blocks and fetching, cachang filtering on the block
level, which consumes less processing as users navigateth@onment.

1.3 The Vandy AR Toolkit

This section describes our solutions to the challengeepted in Section 1.2 based on
the Vanderbilt AR Toolkit (VART) for iPhone and Android smartphone platforms.

1 VART is open-source software availablecatle. googl e. cont p/ vuphone.
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1.3.1 Using Hardware Accelerated 3D APIs to Display Perspéue Rendered
Content

Section 1.2.1 describes that meshing perspective rendeaptiics onto smartphones is
hard due to limited control over their camera image. It i®dlard to determine what

object in 3D space users are interacting with since screertwates do not map directly
to coordinates in the 3D environment once a projection has lapplied. Hardware-

accelerated rendering can be achieved using the OpenGhigsdiprary on some mobile

platforms but fails to adequately address the challenge@i@& 1.2.1. Below we present
an alternative solution based on nested view objects tisplali perspective distorted
content while preserving user interaction with overlaisiagls.

An alternate approach utilizing nested viewsTo easily enable user interaction with
rendered content, VART employs nested view objects to whidk4 visual transforma-
tion matrix is applied. When the view hierarchy is rendetéd, transformation matrix
is applied to each view allowing for basic perspective digta of the content rendered
in each view. The benefits of this approach are that hit tgstam be achieved by apply-
ing the transformation matrix to incoming touch locatiomsl glatform-standard view
objects allow the display of standard graphical interfdeeents.

We use Apple’s UIKit framework to implement this solution tre iPhone. UIKit
provides sophisticated APIs for building graphical useeifaces composed of nested
views. Each view has bounds declared relative to its pamhidaaws itself. All views
may contain subviews; interaction events proceed downlalain to the lowest view
capable of handling an event of that type.

UIKit also allows an AR application to specify a 4x4 visuarnsformation matrix
for each view, which supports basic perspective graphibs. tfansformation matrix is
applied to graphics output when each view draws its respectintent and is also applied
to user interaction events as they are passed into the vimk.Since the transforms are
applied to events, hit testing is handled transparentlaneigss of the transformation
matrix.

We created a transformation matrix approximating distorfrom a camera lens and
used it to render buttons and other controls with a persgegptiojection applied. This
solution obviates the need for other graphics librarieshsas OpenGL. It also enables
user interaction with rendered content, which is imporfanmobile AR applications.

Meshing content with the camera imageMeshing rendered content with imagery
from the smartphone camera required overcoming platfqretific issues on the iPhone
and Android platforms. For example, restrictions builbidpple’s 3.0 iPhone OS prevent
camera image data from being used in the graphics pipelinee Slirect access to the
camera image in memory is not provided, however, it is nosjds to use OpenGL or
another graphics library to display the camera image ancetidered POI elements.

Although Apple provides an API to take individual framesrfré¢he phone’s camera,
this approach yields low frame rates unsuitable for an ARliegion. Using a single
graphics pipeline to draw the camera image and the overtaiteot seemed attractive
since images can be distorted and adjusted prior to thgiadisbut our inability to
pull frames from the camera rapidly made this option unalipgalnstead, a generic
camera preview can be used to display the camera image oordensseparately, which
provides little flexibility since image data cannot be maitéped and its display is beyond
the application’s control. Transparent content can belaysal in a layer on top of the
camera preview, however, achieving the desired effect.
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1.3.2 Using GPS and Geomagnetic Sensors to Estimate of DevRosition and
Orientation

Section 1.2.2 identified problems using traditional imageognition techniques for de-
vice position and orientation estimation on mobile devi¥és now present an alternative
made possible by the sophisticated sensors in commoditytjshaome hardware. Prior
work has focused on using specifically designed markersakmshtdetection for location
and frame of reference estimation on mobile phones [2, §,vBich provide accurate
position and pose estimation of markers placed in user emvients.

Our intended use of AR to display nearby POI does not requgfieyhaccurate pose
estimation or position information. Instead, geograpbéation information within a few
meters and heading data within a few degrees is acceptatdeold computationally ex-
pensive image processing and the need for environmentaemsatherefore, VART uses
onboard GPS and geomagnetic sensors sensors availabledarmmmmodity smart-
phones to pinpoint the user on a latitude/longitude grid@rdpute the POI within their
field of view. Points are then rendered over a camera imaltpayiah use of the phone
as a lens to view an augmented version of the world, as showigime 1.2. iPhone and
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Android devices feature GPS hardware and geomagneticrseasa both operating sys-
tems provide APIs for accessing data from this hardwareimwttiird-party applications.

Prevailing issues: sensor noise and accuracye tested Android and iPhone smart-
phones (such as the iPhone 3G and the Android G1) that aresegative of modern
mobile phone technology. While these devices offer an isgive range of features, their
reliance on commodity sensor hardware is problematic. kamgle, these smartphones
incur a great deal of input noise and have less accurate haedtvan traditional mobile
AR systems [14]. The geomagnetic sensors of these phonesne&y, even when the
phone was lying flat on a table. This variance in heading médion yielded visual jitter
and degraded the presentation of POl on-screen. The GP&sémshese smartphones
also provided less accurate readings than dedicated ARaewihich often utilize GNSS
surveying equipment with accuracy to one centimeter.

Although 100% accuracy is not required, reasonable acgusd®Ipful in AR appli-
cations that overlay 3D geometry to match real-world fezguThese applications often
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render geometry on top of a view of the phone’s camera. Whenlosation and heading
cannot established with high accuracy, overlaid geometry be misaligned.

Possible approaches to filtering sensor nois&Ve identified several algorithms to
optimally filter incoming heading data. Ideally, an algbnit should work in the following
conditions: (1) device is held steady, (2) device is rotattd uniform speed, and (3)
device is moved semi-randomly. Pattern recognition atgors run on the most recent
data would select the correct filter. Unfortunately, sudjoethms require computing
power beyond the capacity of modern smartphones.

If we eliminate pattern recognition (which is the most pres@ intensive part of the
above algorithm) another approach emerges: the SavitdtgyGmoothing filter [15].
Unfortunately, this technique is not usable in an AR appilices on smartphones for the
reasons discussed in 1.2.3.

A lightweight and portable solution. The compass filtering algorithm shown in Fig-
ure 1.3 extends Finite Impulse Response filters [16], witthealdstatistical analysis for
data exclusion and outlier analysis. It can be customizediifterent noise levels by a
small list of parameters. The filter structure shown in Feglu3 contains two ring buffers

Variables/Functions: Algorithm:

R = Ring Buf fer of Received Data filtered(p;) =

O = Ring Buf fer of Outlier Data if size(R) < |R|: enqueue(R, p;)
|R| = |O| = Maximum Allowable Size of Buf fer else:

size(buf fer) = ReturnsCurrentSizeofBuf fer z=2Z(pi)
pi = A compass reading as a Single Precision Float if abs(zi) < Zrange:
Z(pi) = (pi—mean(R))/stdDev(R) enqueue(R, p;)
Zrange = Maximum Allowable Deviation clear(0)
outlierDirection(p;) = pi > mean(R)?1: —1 else: enqueue(0, p;)
enqueue(buffer,p;) = Adds p; to the Buf fer if size(0) = |0 :
side = outlierCluster()
Vp; €O

if outlierDirection(p;) = side:
enqueue(R, p;)
clear(0)
return mean(R)
outlierCluster() =
intsum=0
¥p ;€ o
sum+ = p ; —mean(R)
return signum(sum)

Fig. 1.3: The Compass Filtering Algorithm

of set capacity, one for the recent data and one for outlita. déhe filter starts in an
uninitialized state, accepting all incoming points andegng them into the data buffer.
After we reach capacity, each new point’s z-score (whichggatistic for measuring the
deviation of a point from the mean of the sample) is calcdlatethe z-score is within
an acceptable range, we enqueue the corresponding reatbrigé data buffer and clear
the outlier buffer. Otherwise, we enqueue the reading imeootutlier buffer.

If the outlier buffer reaches its capacity, we determinedinection of the outliers by
computing on which side of the mean the majority of the orgliee. We then enqueue
all of the outliers in this majority to the data buffer, thussthing it, and clear the outliers
buffer. We repeat this process each time a new sensor remdavgilable. When asked
for the filtered value, we return the mean of the data buffer.



1 Addressing Challenges with Augmented Reality Applicagion Smartphones 9

Calculating mean and standard deviation are the most catipuoilly expensive op-
erations in our compass filtering algorithm. After the mlitiation stage, however, these
calculations can be optimized to constant time operatigriebping track of the current
sum and variation. When a new point comes in, therefore, Wehmve to remove the old
point from the current sum/variation and add in the new ona.approach lends itself to
extension via subclassing so that the filter parametersagndynamically.

1.3.3 A Grid-based Approach to Data Storage and Retrieval

Section 1.2.4 described the problems surrounding thegetaaad retrieval of many POI.
Below we present a highly scalable solution to the problerdaif retrieval, caching,
and filtering on both the server and mobile device using algaised approach (shown in
Figure 1.4) that progressively loads content from web sesib@sed on GPS coordinates.

Fig. 1.4: Geotagged POI are Discretized into a Grid of Blocks

A mapping function generates discretized X,y values foheR©I| based on the
latitude/longitude pair such that multiple POI in the saneegraphic region share the
same X,y value. A basic function might round latitude andylarde values, giving all
POl in the same lat/lon minute the same X,y pair.

Each block in the x,y grid contains all points within a specieographical area,
and may be loaded by querying the database for the indexedinate values. Indexing
the contents of the database using discretized valuestebiltae need for numeric com-
parison and queries bounded by latitude and longitude salQaeries may specify an
exact block index such as (x=1, y=2) and retrieve a group oftpavithin a predefined
geographic area.

Dividing available content into a latitude/longitude gadd fetching it in discrete
blocks has several advantages. Information can be regulegtspecifying an index to
a particular block within the grid and stored based on griordmates, alleviating com-
plex retrieval queries on a central server. Caching retdedata is also straightforward
since data can be stored and retrieved on the device basée drock index. Purging



10 J. Benjamin Gotow, Krzysztof Zienkiewicz, Jules Whited@ouglas C. Schmidt

cached data based on its distance from the user’s curreattdaadoes not require iter-
ating through each cached point. Instead, entire blockdeaguickly purged based on
their discretized latitude and longitude values.

Dividing content into geographic blocks maps well onto thesgntation space, where
POI must be displayed/hidden as the user moves toward/awmayen area. Blocks may
be partitioned into a small geographic size so that a fixedbaurof blocks are displayed
at a time, corresponding to a few miles in each directiortefiilg blocks of points is
much more efficient than processing each point and also negjabnstant evaluation
time, regardless of the number of points present in the atating and showing POI
one-by-one can yield poor application performance in higtadiensity areas.

1.4 Empirical Results

This section presents empirical data that evaluates otinigges and algorithms de-
scribed in Section 1.3.

1.4.1 Evaluating the Compass Filtering Algorithm

Below we present an experiment assessing the efficacy ofARIT\¢ompass filtering al-
gorithm described in Section 1.3.2. We sample a typical gapratic sensor and demon-
strate favorable results produced in real-time.

Experimental setup.We used an Android Dev Phone 1 running Android 1.5 to col-
lect measurements. The sensor was sampled at highestlpaasi#(roughly 36 Hz). The
data was stored to an SD card via a Java application.

Raw sensory data was saved while the device was rotated atcanumngular ve-
locity on a magnetically insulated rotating mechanism. dager was then used to feed
this time-stamped data into the filtering application inl4t&@ae. The resulting filtered
measurements were then recorded and plotted on a time \&rglesgraph from which
noise reduction was then calculated.

Hypothesis.Plotting the raw sensory output provides a general ideaeafittise levels
to reduce. The noise is most visible when the device is helaldst When it is rotated at
a uniform angular velocity, noise becomes almost non-emistAn effective filter must
therefore eliminate the corrupted data while preservimyeate measurements.

Analysis of results.Analysis of our filter on real-life data suggests that we arieg
just that. Figures 1.5, 1.6, and 1.7 depict a graphical sgation of our filter's per-
formance. In a worst-case scenari@.( when the device is held steady) we achieved a
60% noise reduction. When the data is most accuiiag (otation at uniform angular
velocity) we still eliminate over half the noise.

The results in Figures 1.5, 1.6, and 1.7 show a significantatézh of sensor noise
when our algorithm is employed, even in the worst case saeérthe device lying
stationary. Prior to filtering, the geomagnetic sensor wasve to produce values ranging
+4.8 at rest and we reduced the margin of errorH2°. This reduction is a significant
improvement, confirming that our filtering algorithm is effiee and reduces overlay jitter
observed by the end user of a mobile AR application.

Using data from the geomagnetic sensor of a commodity Addsoiartphone, we
confirm that sensor noise is problematic. Our experimeiot désnonstrates that this al-
gorithm is within the processing capabilities of moderngptaones. AR applications can



1 Addressing Challenges with Augmented Reality Applicagion Smartphones 11

Device Steady

Time (s)

i Real Angle == Filtered Angle == Raw Angle

Fig. 1.5: Noise Observed When the Device is Held Steady

Device during Uniform Rotation
Relative Angle Offset

Angle Offset (deg)

5
Time (s)

== Relative Filtered Angle == Relative Raw Angle

Fig. 1.6: Relative Angle Offset When the Device is Under dnifi Rotation

Device during Free Motion

Angle (deg)

0 1 2 3 4 5
Time (s)

== Fitered Angle == Raw Angle

Fig. 1.7: Noise Observed When the Device is Experiencinglraad Motion

therefore be developed to leverage GPS and geomagnetarsdéosframe of reference
estimation without significant levels of jitter due to noiserientation information.

1.4.2 Evaluating Database Retrieval of Quantized Data Pota

Section 1.3.3 presented an approach to efficiently stomdlgetrieving data points using
a grid based on latitude and longitude values. To test tl@tlang numeric comparisons
improves retrieval speed, we designed an experiment fosunigay the speed of various
database queries on a large set of geocoded points.
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Experimental setup.All experiments were conducted on an Apple Powerbook with
a 2.53 GHz Intel Core 2 Duo processor, 4 gigabyes of 1067MHRBBRAM running
OS X version 10.6.2 and mySQL 5. Queries were executed araditiming PHP 5.3.0.
The results of each query were not processed, so recorded iidicate time spent per-
forming queries only.

A single table containing 1,000,000 rows was created in a@iy8atabase on the
machine executing the queries. Each row in the table ceusadtan integer id, double
latitude value, and an integer block id. Blocks were assigrased on the latitude values
so that 1000 blocks were evenly filled with 1000 rows each.ahdard mySQL index
was created on the block id column.

Hypothesis.Storing geotagged points in discrete blocks within the loiga and re-
trieving them based on block index is much faster than periiog numerical queries that
specify upper and lower bounds on latitude, longitude \&alue

Analysis of results.We ran three types of queries on the database and noted averag
response time in microseconds for 200 queries, each rain®00 matching rows from
1,000,000 rows, as shown in Table 1.1. Our results confirtmedjuerying a large data set

Table 1.1: Average Query Response Time

Query Type Response Time
Latitude range (latitude column indexed) 581700 us
Latitude range (latitude column not indexed) 284600 us
Specific latitude block 5209 us

of geocoded points based on latitude/longitude values &fapnance issue and that our
solution presented in Section 1.3.3 offers dramatic peréorce benefits by organizing
data points into discretized numerical blocks. Retrieviagords based on discretized
numerical blocks was exponentially faster than queryingtfie equivalent numerical
range of latitude values. Since AR applications generaliylla number of records at a
time, the loss of granularity in queries for discrete bloisksot an issue and this approach
will dramatically decrease server load. The poor perforreambserved when querying
points without our approach suggests that mobile smarghamuld not be capable of
caching a large number of points and filtering them for digmi&hout the optimization
described in Section 1.3.3.

1.5 Related Work

This section compares our work on smartphone-based ARcapiplns with related work.
The techniques employed in this paper are inspired by eavliek in mobile AR, data
filtering, and magic lenses. Location and frame of refererstienation is a fundamental
issue in AR and has been addressed in two primary ways in tréicemture. In ap-
plications where environments can be instrumented witilye@kentifiable markers or
contain a limited number of known natural features, imagayesis techniques are opti-
mal and provide highly accurate results. This class of &misthas been studied in great
detail [6, 1, 7, 8].
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Techniques utilizing sensors present a viable alternatiepen, unprepared environ-
ments and have been presented in [5]. Likewise, [9] preselgbrid approach using
image recognition to refine frame of reference informatieriveed from onboard inertial
sensors. Although this approach helps increase accuramyen uncontrolled environ-
ments, future research is needed to reduce the requiremetarfie amounts of pre-
prepared environment data. It is likely that methods foeffittg sensor data (such as our
solution in 1.3.2) partially obviate the need to refine sewlsta using image analysis.

To cache and retrieve points of interest rapidly, we emplog@rdinate quantization
technique similar to “loxels” [17], which organized imagesdriptors used for pose es-
timation by natural feature recognition into a locatiorséa grid that could be loaded
incrementally and provided the inspiration for our meth6&01 storage. We adapt this
approach to store and retrieve geotagged data points amdifgube benefit of querying
a database based on discrete blocks instead of numendktind longitude ranges.

Our approach to data smoothing leverages qualities of thiezBg-Golay filter [15].

It takes advantage of the fact that data from most types atioots can be modeled by
a fairly small number of standard equations. This insigluvfated the inspiration for
our filter for applications where the regression requiredShyitzky-Golay filter is not
tractable due to constraints on processing power.

Another approach to filtering utilizing a Kalman filter is fodiin [18]. When multiple
sensors such as accelerometers and magnetometers aablay&iblman filters can fuse
multiple sensor signals into a single estimate of headihgse filters have been shown
to have low calculation times, on the order of 1/10th of a ea@ 50MHz processor [18],
but require multiple sensors for fusion and are thus not stéted for mobile phones.

1.6 Concluding Remarks

Today’s smartphones are promising platforms for AR apfibices since they are portable,
ubiquitous, and provide the processing power and sens@bddjes necessary for AR
applications. This paper identified several challengesiretbping AR applications for
the iPhone and Android platforms and showed how \é@anderbilt AR Toolkit (VART)
provided acceptable solutions to these challenges. Ouk @oVART has yielded the
following lessons learned:

* POl retrieval based on numeric geographic ranges is infealle. Retrieving geo-
tagged points from a database table within a specific nungeagraphic range is
costly. Quantizing points into a grid of discrete blocks imare efficient solution.

e Discretizing POI locations eliminates costly comparisonsDiscretizing latitude
and longitude values allows geotagged points to be inderedretrieved rapidly
from a database.

e Hittesting in OpenGL is laborious. Hit testing three dimensional content rendered
in OpenGL is hard due to the lack of selection and picking nsad®©penGL ES.

e Sensor data requires processing to remove noisRaw data from smartphone geo-
magnetic sensors contains significant noise that resujitenin rendered overlays
unless corrected.

« Existing smartphone platforms are capable of delivering maic lens AR, but ad-
ditional work is needed to identify other forms of AR that daasupportede.g., a
hybrid form of AR utilizing onboard sensor data and flucidrerker detection could
allow for impressive massively-multiplayer AR games.
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