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1 Introduction

Communication software for next-generation distributed ap-
plications should possess the following qualities:

� Flexibility is needed to support a growing range of mul-
timedia datatypes, traffic patterns, and end-to-end quality
of service (QoS) requirements.

� Efficiency is needed to provide low latency to delay-
sensitive applications, high performance to bandwidth-
intensive applications, and predictability to real-time ap-
plications.

� Reliability is needed to ensure that applications are ro-
bust, fault tolerant, and highly available.

� Portability is needed to reduce the effort required to sup-
port applications on heterogeneous OS platforms and
compilers.

This article describes the software architecture of ACE [1],
which is a freely available, open source C++ framework tar-
geted for developers of high-performance and real-time com-
munication services and applications.

The ACE framework provides an integrated set of compo-
nents that help developers navigate between the “Scylla and
Charybdis” limitations of (1) low-level native OS APIs, which
are inflexible and non-portable and (2) higher-level distributed
object computing middleware, which are often inefficient and
unreliable. This article describes the structure and function-
ality of ACE, outlines several complex communication mid-
dleware applications that have been developed with ACE, and
summarizes the key lessons learned developing and deploy-
ing reusable the OO communication software components and
frameworks in ACE.

2 Overview of ACE

ACE is an object-oriented (OO) framework that implements
core concurrency and distribution patterns [2] for communica-
tion software. ACE provides a rich set of reusable C++ wrap-
pers and framework components that are targeted for develop-
ers of high-performance, real-time services and applications
across a wide range of OS platforms, including Win32, most
versions of UNIX, and many real-time operating systems. The
components in ACE provide reusable implementations of the
following common communication software tasks:

� Connection establishment and service initialization[3];

� Event demultiplexing and event handler dispatching[4,
5, 6];

� Interprocess communication[7] and shared memory
management;

� Static and dynamic configuration [8, 9] of communica-
tion services;

� Concurrency and synchronization[5, 10];

� Distributed communication services– such as naming,
event routing [2], logging, time synchronization, and net-
work locking;

� Higher-level distributed computing middleware compo-
nents– such as Object Request Brokers (ORBs) [11],
Web servers [12], and electronic medical imaging sys-
tems [13].

This section outlines the structure and functionality of the
ACE framework.

2.1 The Structure and Functionality of ACE

The ACE framework contains�150,000 lines of C++ code di-
vided into�450 classes. To separate concerns and to reduce
the complexity of the framework, ACE is designed using a
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Figure 1: The Layering Structure of Components in the ACE Framework

layered architecture. Figure 1 illustrates the relationships be-
tween the key components in ACE.

The lower layers of ACE contain anOS adapterandC++
wrappersthat portably encapsulate core OS communication
and concurrency services. The higher layers of ACE ex-
tend the C++ wrappers to provide reusableframeworks, self-
contained distributed service components, and higher-level
distributed computing middleware components. Together,
these layers and components simplify the creation, compo-
sition, and configuration of communication systems,without
incurring significant performance overhead. The role of each
layer is outlined below.

2.1.1 The ACE OS Adaptation Layer

The OS adaptation layerconstitutes approximately 13% of
ACE, i.e., �20,000 lines of code. This layer resides directly
atop the native OS APIs written in C. The OS adaptation
layer shields the other layers and components in ACE from
platform-specific dependencies associated with the following
OS APIs:

Concurrency and synchronization: ACE’s adaptation
layer encapsulates OS APIs for multi-threading, multi-
processing, and synchronization.

Interprocess communication (IPC) and shared memory:
ACE’s adaptation layer encapsulates OS APIs for local and

remote IPC and shared memory.

Event demultiplexing mechanisms: ACE’s adaptation
layer encapsulates OS APIs for synchronous and asyn-
chronous demultiplexing I/O-based, timer-based, signal-
based, and synchronization-based events.

Explicit dynamic linking: ACE’s adaptation layer encapsu-
lates OS APIs for explicit dynamic linking, which allows ap-
plication services to be configured at installation-time or run-
time.

File system mechanisms: ACE’s adaptation layer encapsu-
lates OS file system APIs for manipulating files and directo-
ries.

The portability of ACE’s OS adaptation layer enables it to
run on a wide range of operating systems. The OS platforms
supported by ACE include Win32 (WinNT 3.5.x, 4.x, Win95,
and WinCE using MSVC++ and Borland C++), most versions
of UNIX (SunOS 4.x and 5.x; SGI IRIX 5.x and 6.x; HP-UX
9.x, 10.x, and 11.x; DEC UNIX 3.x and 4.x, AIX 3.x and 4.x,
DG/UX, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
real-time operating systems (VxWorks, Chorus, LynxOS, and
pSoS), and MVS OpenEdition.

Because of the abstraction provided by ACE’s OS adapta-
tion layer, a single source tree is used for all these platforms.
This design greatly simplies the portability and maintainability
of ACE.
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2.1.2 The ACE C++ Wrapper Layer

It is possible to program highly portable C++ applications di-
rectly atop ACE’s OS adaptation layer. However, most ACE
developers use theC++ wrappers layer shown in Figure 1.
The ACE C++ wrappers simplify application development by
providing typesafe C++ interfaces that encapsulate and en-
hance the native OS concurrency, communication, memory
management, event demultiplexing, dynamic linking, and file
system APIs.

The C++ wrappers provided by ACE are quite comprehen-
sive, constituting�50% of its source code. Applications can
combine and compose these wrappers by selectively inherit-
ing, aggregating, and/or instantiating the following compo-
nents:

Concurrency and synchronization components: ACE ab-
stracts native OS multi-threading and multi-processing mecha-
nisms like mutexes and semaphores to create higher-level OO
concurrency abstractions like Active Objects [10] and Poly-
morphic Futures [14].

IPC and filesystem components: The ACE C++ wrappers
encapsulate local and/or remote IPC mechanisms [7] such as
sockets, TLI, UNIX FIFOs and STREAM pipes, and Win32
Named Pipes. In addition, the ACE C++ wrappers encapsulate
the OS filesystem APIs.

Memory management components: The ACE memory
management components provide a flexible and extensible ab-
straction for managing dynamic allocation and deallocation of
interprocess shared memory and intraprocess heap memory.

The C++ wrappers provide many of the same features as the
OS adaptation layer in ACE. However, these features are struc-
tured in terms of C++ classes and objects, rather than stand-
alone C functions. This OO packaging helps to reduce the
effort required to learn and use ACE correctly [15].

For instance, the use of C++ improves application robust-
ness because the C++ wrappers are strongly typed. Therefore,
compilers can detect type system violations at compile-time
rather than at run-time. In contrast, it is not possible to detect
typesystem violations for C-level OS APIs, such as sockets or
filesystem I/O, until run-time.

ACE employs a number of techniques to minimize or elim-
inate the performance overhead. For instance, ACE uses C++
inlining extensively to eliminate method call overhead that
would otherwise be incurred from the additional typesafety
and levels of abstraction provided by its OS adaptation layer
and the C++ wrappers In addition, ACE avoids the use of
virtual methods for performance-critical wrappers, such as
send /recv methods for socket and file I/O.

2.1.3 The ACE Framework Components

The remaining�40% of ACE consists of communication soft-
ware framework components that integrate and enhance the
C++ wrappers. These framework components support the flex-
ible configuration of concurrent communication applications
and services [8]. The framework layer in ACE contains the
following components:

Event demultiplexing components: The ACE Reactor [4]
and Proactor [6] are extensible, object-oriented demultiplex-
ers that dispatch application-specific handlers in response to
various types of I/O-based, timer-based, signal-based, and
synchronization-based events.

Service initialization components: The ACE Connector
and Acceptor components [3] decouple the active and pas-
sive initialization roles, respectively, from application-specific
tasks that communication services perform once initialization
is complete.

Service configuration components: The ACE Service Con-
figurator [9] supports the configuration of applications whose
services may be assembled dynamically at installation-time
and/or run-time.

Hierarchically-layered stream components: The ACE
Streams components [8, 1] simplify the development of com-
munication software applications, such as user-level protocol
stacks, that are composed of hierarchically-layered services.

ORB adapter components: ACE can be integrated seam-
lessly with single-threaded and multi-threaded CORBA imple-
mentations via its ORB adapters [16].

The ACE framework components facilitate the development
of communication software that can be updated and extended
without the need to modify, recompile, relink, or often restart
running applications [8]. This flexibility is achieved in ACE
by combining (1) C++ language features, such as templates,
inheritance, and dynamic binding, (2) design patterns, such as
Abstract Factory, Strategy, and Service Configurator [17, 9],
and (3) OS mechanisms, such as dynamic linking and multi-
threading.

2.1.4 Self-contained Distributed Service Components

In addition to its C++ wrappers and framework components,
ACE provides a standard library of distributed services that
are packaged as self-contained components. Although these
service components are not strictly part of the ACE framework
library, they play two important roles:
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Figure 2: Components in the TAO Real-time ORB

Factoring out reusable distributed application building
blocks: These service components provide reusable imple-
mentations of common distributed application tasks such as
naming, event routing [2], logging, time synchronization, and
network locking.

Demonstrating common use-cases of ACE components:
The distributed services also demonstrate how ACE com-
ponents like Reactors, Service Configurators, Acceptors and
Connectors, Active Objects, and IPC wrappers can be used
effectively to develop flexible, efficient, and reliable commu-
nication software.

2.1.5 Higher-level Distributed Computing Middleware
Components

Developing robust, extensible, and efficient communication
applications is challenging, even when using a communica-
tion framework like ACE. In particular, developers must still
master a number of complex OS and communication concepts
such as:

� Network addressing and service identification.

� Presentation conversions, such as encryption, compres-
sion, and network byte-ordering conversions between
heterogeneous end-systems with alternative processor
byte-orderings.

� Process and thread creation and synchronization.

� System call and library routine interfaces to local and re-
mote interprocess communication (IPC) mechanisms.

It is possible to alleviate some of the complexity of de-
veloping communication applications by employing higher-
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Figure 3: Architectural Overview of the JAWS Framework

level distributed computing middleware, such as CORBA [18],
DCOM [19], or Java RMI [20]. Higher-level distributed com-
puting middleware resides between clients and servers and au-
tomates many tedious and error-prone aspects of distributed
application development, including:

� Authentication, authorization, and data security.

� Service location and binding.

� Service registration and activation.

� Demultiplexing and dispatching in response to events.

� Implementing message framing atop bytestream-oriented
communication protocols like TCP.

� Presentation conversion issues involving network byte-
ordering and parameter marshaling.

To provide developers of communication software with
these features, the following higher-level middleware applica-
tions are bundled with the ACE release:

The ACE ORB (TAO): TAO [21] is a real-time imple-
mentation of CORBA built using the framework components
and patterns provided by ACE. TAO contains the network in-
terface, OS, communication protocol, and CORBA middle-
ware components and features shown in Figure 2. TAO is
based on the standard OMG CORBA reference model [18],
with the enhancements designed to overcome the shortcom-
ings of conventional ORBs [22] for high-performance and
real-time applications. TAO, like ACE, is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .

JAWS: JAWS [23] is a high-performance, adaptive Web
server built using the framework components and patterns
provided by ACE. Figure 3 illustrates the major structural
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components and design patterns in JAWS. JAWS is struc-
tured as aframework of frameworks. The overall JAWS
framework contains the following components and frame-
works: anEvent Dispatcher, Concurrency Strategy, I/O Strat-
egy, Protocol Pipeline, Protocol Handlers, andCached Vir-
tual Filesystem. Each framework is structured as a set of
collaborating objects implemented by combining and extend-
ing components in ACE. JAW is also freely available at
www.cs.wustl.edu/ �jxh/research/ .

3 Lessons Learned Developing and De-
ploying ACE

This section summarizes the lessons I’ve learned during the
past seven years developing the reusable OO communication
software components in the ACE framework and deploying
ACE in a wide range of commercial applications in the avion-
ics, telecommunications, and medical domains.

Software reuse fails largely to non-technical reasons: In
theory, organizations recognize the importance of reuse as
a means to reduce cycle-time and improve software qual-
ity. In practice, many factors conspire to make it hard to
achieve systematic software reuse. Most of the impediments
are largely political, economical, organizational, and psycho-
logical, rather than technical. For instance, teams that develop
reusable middleware platforms are often viewed with suspi-
cion by application development teams, who resent the fact
that they are no longer empowered to make key architectural
decisions.

Successful reuse-in-the-large requires prerequisites: In
my experience, large-scale reuse of software works best when
the following conditions apply:

� The marketplace is highly competitive: In a compet-
itive environment, time-to-market is crucial. Therefore, it is
essential to leverage existing software to substantially reduce
development effort and cycle time. When a market place is
not competitive, however, there is often a tendency to reinvent
rather than reuse.

� The application domain is challenging: Components
that are relatively easy to develop, such as generic linked
lists, stacks, or queues, are often rewritten from scratch, rather
than reused. In contrast, developers are generally willing to
reuse highly complex components, such as dynamic schedul-
ing frameworks [24] or real-time ORBs [21], since building
complete solutions from scratch is too difficult, costly, and
time-consuming.

� The corporate culture is supportive: It is hard to de-
velop high-quality reusable components and frameworks. In
particular, it is hard to reap the benefits of reuse immediately.

A great deal of effort must be expended initially to produce ef-
ficient, flexible, and well-documented reusable software arti-
facts. Thus, an organization must support an effective process
in order for reuse to flourish. For instance, developers must
be rewarded, not punished, for taking the time to build ro-
bust reusable components. Moreover, the reuse process must
reward production of concrete software artifacts, rather than
endless abstract meta-models or high-level design documents.

In my experience, these prerequisites often do not exist in
contemporary organizations. In such cases, I’ve observed that
organizations often fall victim to the “not-invented-here” syn-
drome and redevelop most of their software components from
scratch. Unfortunately, increasing deregulation and global
competition make it hard to succeed with this type of devel-
opment process.

Iteration and incremental growth is essential: It is cru-
cial for organizations to explicitly recognize that good com-
ponents, frameworks, and software architectures require time
to craft, hone, and apply. In general, developing, using, and
reusing software requires a mature organization that can dis-
tinguish key sources of variability and commonality in its ap-
plication domain. Identifying and separating these concerns
requires multiple iterations.

For reuse to succeed in-the-large, management must have
the vision and resolve to support the incremental evolution
of reusable software. Fred Brook’s observation that “Plan to
throw the first one away, you will anyway” [25] applies as
much today as it did 20 years ago. Moreover, in my experi-
ence, “the best is often the enemy of the good” when it comes
to deploying reusable software frameworks and components.
Often, an 80% solution that can be deployed and evolved in-
crementally is preferable to waiting for a 100% solution that
never ships.

There’s no substitute for hands-on experience: Develop-
ing high quality communication software is hard; develop-
ing high quality reusable communication software is even
harder. The principles, methods, and skills required to develop
reusable software simply cannot be learned by generalities.
Instead, developers must learn through hands-on experience
how to design, implement, optimize, validate, maintain, and
enhance reusable software components and frameworks. Only
by activately engaging in these activities will developers truly
internalize good development practices and patterns.

Integrate infrastructure developers with application devel-
opers: Most useful components and frameworks originate
from solving real problems in a particular application domain,
such as telecommunications, medical imaging, avionics, and
Web programming. A time-honored way of producing ef-
fective reusable components, therefore, is togeneralizethem
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from working systems and applications. This was how ACE
evolved.

I’ve found that creating “component teams,” which build
reusable frameworks in isolation from application teams, is
often counter-productive. Without intimate feedback from ap-
plication developers, the software artifacts produced by com-
ponent teams rarely solve real problems and are unlikely to be
reused systematically.

Design to an architecture rather than program to a partic-
ular middleware technology “standard”: It is very risky
to expect that emerging industry middleware standards, like
CORBA, DCOM, or Java RMI, will automatically eliminate
the complexity of developing communication software. No
single solution is a panacea, nor are “standards” necessarily
ubiquitous or implemented consistently.

Therefore, for complex communication software systems it
is essential to design and usearchitecturesthat can transcend
any specific middleware technology standard. I’ve found it
is much more effective to devise a common software architec-
ture that can be instantiated on multiple middleware platforms,
rather than programming directly to a particular middleware
API, which can rapidly become obsolete.

OS API “wars” are largely irrelevant: ACE’s OS adap-
tation layer makes the selection of the native OS API,e.g.,
POSIX vs. Win32 vs. real-time operating systems, largely
an implementation detail. Using ACE, it is straightforward to
develop highly portable communication software that runs ef-
ficiently on a wide range of operating systems and C++ com-
pilers. Moreover, ACE provides this portability without in-
curring the performance penalties associated with interpreted
virtual machines.1 Thus, the portability provided by ACE al-
lows developers to select an OS platform based on features,
price, performance, development tools, and ease of integration
with other applications.

Beware of simple(-minded) solutions to complex software
problems: Trying to apply overly simple solutions to com-
plex problems is an exercise in frustration and a recipe for
failure. For instance, attempting to translate the software im-
plementations entirely from high-level SDL specifications or
“analysis rules” rarely succeed for complex communication
systems. Likewise, using trendy OO design methodologies,
modeling notations, and programming languages is no guaran-
tee of success. In my experience, there’s simply no substitute
for employing skilled software developers, which leads to the
following final “lesson learned.”

Respect and reward quality developers and architects:
Ultimately, reusable components and frameworks are only as

1However, a Java version [26] of many ACE components is also available
at www.cs.wustl.edu/ �schmidt/JACE.html .

good as the people who build and use them. Developing ro-
bust, efficient, and reusable middleware requires teams with
a wide range of skills. We need expert analysts and design-
ers who have mastered design patterns, software architectures,
and communication protocols to alleviate the inherent and ac-
cidental complexities of communication software. Moreover,
we need expert programmers who can implement these pat-
terns, architectures, and protocols in reusable frameworks and
components.

In my experience, it is exceptionally hard to find high qual-
ity software developers. Ironically, many companies treat their
developers as interchangeable, “unskilled labor,” who can be
replaced easily. Over time, companies who respect and reward
their high quality software developers are increasingly outper-
forming those who do not.

4 Concluding Remarks

Computing power and network bandwidth has increased dra-
matically over the past decade. However, the design and im-
plementation of communication software remains expensive
and error-prone. Much of the cost and effort stems from
the continual re-discovery and re-invention of fundamental
patterns and framework components across the software in-
dustry. However, the growing heterogeneity of hardware ar-
chitectures, the diversity of OS and network platforms, and
global competition make it increasingly costly to build correct,
portable, and efficient applications from scratch.

Object-oriented application frameworks and patterns help to
reduce the cost and improve the quality of software by leverag-
ing proven software designs and implementations to produce
reusable components that can be customized to meet new ap-
plication requirements. The ACE framework described in this
article illustrates how the development of communication soft-
ware like ORBs and Web servers, can be significantly simpli-
fied and unified.

The widespread adoption of ACE is a testament to the power
of an open source software process and to the benefits of sys-
tematic software reuse in complex communication systems.
One key to the success of ACE has been its ability to capture
common communication software design patterns and con-
solidate these patterns into flexible framework components.
The framework components efficiently encapsulate and en-
hance low-level OS mechanisms for interprocess communi-
cation, event demultiplexing, dynamic configuration, concur-
rency, synchronization, and file system access.

The ACE C++ wrappers, framework components, dis-
tributed services, and higher-level distributed computing mid-
dleware components described in this article are freely avail-
able at www.cs.wustl.edu/ �schmidt/ACE.html .
This URL contains complete source code, documentation, and
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example applications, including JAWS and TAO.
ACE has been used in research and development projects

at many universities and companies. For instance, ACE
has been used to build real-time avionics systems at Boe-
ing [27]; telecommunication systems at Bellcore [4], Erics-
son [28], Motorola [2], and Lucent; medical imaging systems
at Siemens [9] and Kodak [16]; and distributed simulation
systems at SAIC/DARPA. It is also widely used for research
projects and classroom instruction.

A description of many of the projects using the
ACE, TAO, and JAWS frameworks are available at
www.cs.wustl.edu/ �schmidt/ACE-users.html .
In addition, comp.soft-sys.ace is a USENET news-
group devoted to ACE-related topics.
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