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Abstract

As network-centric computing becomes more pervasive and
applications become more distributed, the demand for greater
scalability and dependability is increasing. Distributed system
scalability can degrade significantly, however, when servers
become overloaded by the volume of client requests. To allevi-
ate such bottlenecks, load balancing middleware mechanisms
can be used to distribute system load equitably across object
replicas residing on multiple servers. This paper describes the
key design challenges we faced when adding this load balanc-
ing service to our CORBA ORB (TAO) and outline how we
resolved the challenges by applying patterns.
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1 Introduction

An increasingly popular and cost effective technique to im-
prove networked server performance isload balancing, where
hardware and/or software mechanisms distribute client work-
load equitably among back-end servers to improve overall
system responsiveness. This paper focuses on middleware-
based load balancing supported by CORBA [1]object request
brokers(ORBs). ORB middleware allows clients to invoke
operations on distributed objects without concern for object
location, programming language, OS platform, communica-
tion protocols and interconnects, and hardware [2]. Moreover,
ORBs can determine which client requests to route to which
object replicas on which servers.

Our previous research on middleware has examined many
dimensions of ORB endsystem design, including static [3]

�This work was funded in part by Automated Trading Desk, BBN, Cisco,
DARPA contract 9701516, and Siemens MED.

and dynamic [4] scheduling, event processing [5], I/O sub-
system [6] and pluggable protocol [7] integration, syn-
chronous [8] and asynchronous [9] ORB Core architectures,
ORB fault tolerance [10], systematic benchmarking of multi-
ple ORBs [11], patterns for ORB extensibility [12], ORB per-
formance [13], and CORBA load balancing performance [14].
This paper focuses on another dimension in the CORBA re-
search domain:the design of middleware-based load balanc-
ing mechanisms developed using standard CORBA.Our ap-
proach is based on standard CORBA features available in any
ORB compliant with the CORBA 2.3 [1] (or later) specifica-
tion. This approach can also be generalized to other distributed
object computing middleware, such as COM+ and Java RMI,
that offer similar features.

CORBA’s rich set of features provides the means to realize
an adaptive load balancing service. CORBA is an effective
choice for distributed systems due to the inherent distribution
and common heterogeneity of clients and servers written in
different programming languages running on different hard-
ware and software platforms. In this context, CORBA can sim-
plify system implementation because it offers a language- and
platform-neutral communication infrastructure. Moreover, it
reduces development effort by offering higher level program-
ming abstractions that shield application developers from dis-
tribution complexities, thereby allowing them to concentrate
their efforts on stock trading business logic.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the requirements of CORBA-based load
balancing services; Section 3 describes the design of our load
balancing service, which is based on standard CORBA fea-
tures and implemented using the TAO open-source1 CORBA-
compliant ORB; Section 4 outlines the key challenges we
faced when design TAO’s load balancing service and illus-
trates the patterns we applied to address these challenges; and
Section 5 presents concluding remarks.

1The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .
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2 Requirements for a CORBA Load
Balancing Service

The OMG CORBA specification provides the core capabili-
ties needed to support load balancing. In particular, a CORBA
load balancing service can take full advantage of therequest
forwarding mechanism2 mandated by the CORBA specifica-
tion [1]. A CORBA server application can use this mecha-
nism to forward client requests to other serverstransparently,
portably, andinteroperably.

The CORBA specification, however, does notstandardize
load balancing interfaces. Nor does it specify load balanc-
ing mechanisms, which are left as implementation decisions
for ORB providers. Below, therefore, we describe the key re-
quirements that CORBA load balancing services should be de-
signed to address.

Support an object-oriented load balancing model: In the
CORBA programming model objects are the unit of abstrac-
tion and system architects reason about objects in order to
manage their available resources. Thus, the granularity of
load balancing in CORBA should be based on objects, rather
than,e.g., processes or TCP/IP addresses. Moreover, a load
balancing service and ORB should coordinate the interactions
amongstmultipleobject replicas. Sets of multiple object repli-
cas are calledobject groupsor replica groups.

Client application transparency: Distributing work load
amongst multiple servers should require little or no modifi-
cations to the way in which CORBA applications are devel-
oped normally. In particular, a CORBA load balancing ser-
vice should be as transparent as possible to clients and servers.
Likewise, a general principle in CORBA is that client imple-
mentations should be as simple as possible. A CORBA load
balancing service that follows this principle should therefore
require no changes to clients whose requests it balances.

Server application transparency: Although load balancing
should ideally require few modifications to servers, this goal
is hard to achieve in practice. For example, load balancing
a stateful CORBA object requires the transfer of its state to
a new replica. The application implementation must either
perform the transfer itself or define hooks that allow the load
balancing framework to perform the state transfer as unobtru-
sively as possible [15].

The situation for stateless CORBA servers is different. In
this case, the implementation of an server object’sservant3

should require no changes to support load balancing. Yet
changes to the serverapplicationmay still be required under

2The standard CORBALOCATION FORWARD GIOP message used to fa-
cilitate this request forwarding mechanism is discussed in Section 4.0.1.

3The servant is a programming language entity that implements object
functionality in a server application.

certain conditions. For example, some applications may define
ad hocload metrics, such as number of active transactions or
user sessions. In practice, collecting these metrics may require
some modifications to server application code.

Dynamic client operation request patterns: Load balanc-
ing services can be based on various client request patterns.
For example, load balancers for certain types of systems as-
sume client requests occur at deterministic or stochastic rates
that execute for known or fixed durations of time. While these
assumptions may apply for certain types of applications, such
as continuous multimedia streaming [16], they do not apply in
complex Internet or military [17] environments where client
operation request patterns are dynamic and the duration of
each request may not be known in advance. In this paper,
therefore, we focus on load balancing techniques that do not
requirea priori scheduling information.

Maximize scalability and equalize dynamic load distribu-
tion: Although it is common practice to design lightweight
load distribution capabilities,e.g., based on extensions to nam-
ing services [18], these approaches do not balance dynamic
loads equitably, which limits their scalability. Thus, a CORBA
load balancing service must increase system scalability by
maximizing dynamic resource utilization in a group of servers
whose resources would not otherwise be used as efficiently.
By improving resource utilization via load balancing, the over-
all scalability of the server group should be enhanced signifi-
cantly.

Increase system dependability: Load balancing services
can also handle certain types of server failures. By using
administrative interfaces or automated policies, for example,
clients that access a crashed or failing server can be migrated
to other servers until the failure is resolved. Load balanc-
ing services need not provide full fault-tolerance capabilities,
however,i.e., it should not be the role of a load balancing ser-
vice to detect and mask failures [19, 20]. Instead, they should
provide mechanisms to handle those failures efficiently when
they are detected by administrators or other components in the
system.

Support administrative tasks: System administrators may
need to add new object replicas dynamically, without disrupt-
ing or suspending service for existing clients. A good CORBA
load balancing service should allow the dynamic addition of
new replicas and adjust to the new load conditions rapidly.
Likewise, the service should allow the removal of replicas for
upgrades, preemptive maintenance, or re-allocation of system
resources.

Minimal overhead: A CORBA load balancing service
should not introduce undue latency or networking overhead
since otherwise it can actually reduce–rather than enhance–
overall system performance. In particular, an implementation
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that (1) increases the average number of messages per-request
or (2) uses a single server to process all requests may be in-
appropriate for high-performance and/or large-scale applica-
tions. [30] illustrates empirically how certain load balancing
strategies can degrade overall performance due to excess over-
head.

Support application-defined load metrics and balancing
policies: Different types of applications have different no-
tions of load. Thus, a CORBA load balancing service should
allow applications to:

� Specify the semantics of metrics used to measure load
– For example, some applications may want to bal-
ance CPU load, whereas other applications may be more
concerned with balancing I/O resources, communication
bandwidth, or memory load.

� Set policies that determine the load balancing service’s
semantics– For example, some applications may want to
distribute load uniformly, others randomly, and still oth-
ers may want load distributed based on dynamic metrics,
such as current CPU load or current time.

Support for application-defined metrics and policies need not
affect client transparency because these policies can be admin-
istered solely for server replicas. Thus, clients can be shielded
from knowledge of load balancing metrics and policies.

CORBA interoperability and portability: Application de-
velopers rarely want to be restricted to a single provider’s
ORB. Therefore, a CORBA load balancing service should not
rely on extensions to GIOP/IIOP, which are standard protocols
that allow heterogeneous CORBA clients and servers to inter-
operate. Likewise, it is desirable to avoid implementing load
balanced objects by adding proprietary extensions to an ORB.

3 The Design of TAO’s Load Balancing
Service for CORBA

This section describes the design of an adaptive load balancing
service in TAO [3], which is a CORBA-compliant ORB that
supports applications with stringent QoS requirements. TAO’s
load balancing service is designed to support the requirements
presented in Section 2.

3.1 Component Structure in TAO’s Load Bal-
ancing Service

Figure 1 illustrates the components4 in the TAO’s load bal-
ancing service, which supports adaptive load balancing and

4The termcomponentused throughout this paper refers to a “component”
in the general sense,i.e., an identifiable entity in a program, rather than in the
more specific sense of the CORBA Component Model [21].

: Client

: Replica

: Load Monitor

: Load Balancer

: Replica Locator

: Load Analyzer

replicas

: Replica Proxyloads

: POArequests

: POA

requests

*

*

Figure 1: Components in the TAO Load Balancing Service

on-demand request forwarding. Each of these components is
outlined below:

Replica locator: This component identifies which replicas
will receive which requests. It is also the mechanism that
binds clients to the identified replicas. The replica locator can
be implemented portably using standard CORBA portable ob-
ject adapter (POA) mechanisms, such as servant locators [2],
which implement the Interceptor pattern [22]. The Replica lo-
cator forwards each request it receives to the replica selected
by the load analyzer described below.

Load monitor: This component (1) monitors loads on a
given replica, (2) reports replica loads to a load balancer, and
(3) responds to load advisories sent by the load balancer. As
depicted in Figure 2, a load monitor can be configured with
either of two policies:

� Pull policy – In this mode, a load balancer can query a
given replica load on-demand,i.e., “pull” loads from the
load monitor.

� Push policy– In this mode, a load monitor can “push”
load reports to the load balancer.

A load monitor also processes load advisories sent by the load
balancer and informs replicas when they should accept re-
quests versus forward them back to the load balancer.

Load analyzer: This component decides which replica will
receive the next client request. The replica locator described
above obtains a reference to a replica from the load analyzer
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: Load Balancer : Load Monitor : Server Replica

get_load()

: Load Balancer

: Load Monitor : Server Replica: Replica Proxy

report_load()

Pull Policy

Push Policy

Figure 2: Load Reporting Policies

and then forwards the request to that replica. The load analyzer
also allows a load balancing strategy to be selected explicitly
at run-time, while maintaining a simple and flexible design.
Since the load balancing strategy can be chosen at run-time,
replica selection can be tailored to fit the dynamics of a system
that is being load balanced.

Replica proxy: Each object managed by TAO’s load bal-
ancing service communicates with it via a unique proxy. The
load balancer uses these replica proxies to distinguish differ-
ent replicas to workaround CORBA’s so-called “weak” notion
of object identity [20], where two references to the same ob-
ject may have different values. Thus, it is only possible to
compare theequivalenceof two object references. Two ob-
ject references are equivalent if they refer to the same object.
Otherwise, they are not equivalent if they do not refer to the
same object or the ORB was unable to make this determina-
tion. It is the intentional ambiguity of the latter case that makes
CORBA object identity “weak.”5 Section 4.0.5 discusses the
replica proxy in more detail.

Load balancer: This component is a mediator that inte-
grates all the components described above. It provides an
interface through which load balancing can be administered,
without exposing clients to the intricate interactions between
the components it integrates.

3.2 Dynamic Interactions in TAO’s Load Bal-
ancing Service

As described in [30], selecting a target replica using a non-
adaptive balancing policy can yield non-uniform loads across
replicas. In contrast, selecting a replica adaptively for each
request can incur excessive overhead and latency. To avoid
either extreme, therefore, TAO’s load balancing service pro-
vides a hybrid solution via one of its load balancing strategies,
whose interactions are shown in Figure 3. Each interaction in

5See [23] for the rationale behind CORBA’s object identity semantics.

Client Load Balancer

1. send_request()

3. get_replica()

4. LOCATION_FORWARD()

9. issue_control()

5. send_request()

6. get_load()

7. is_overloaded()

8. load_advisory()

10. LOCATION_FORWARD()

Load Monitor and Replica
are at the same location.

2. send_request()

Replica Locator Load Analyzer Load Monitor Replica

Figure 3: TAO Load Balancer Interactions

Figure 3 is outlined below.

1. A client obtains an object reference to what appears to be
a replica and invokes an operation. In actuality, however,
the client transparently invokes the request on the load
balancer itself.

2. After the request is received from the client, the load bal-
ancer’s POA dispatches the request to its servant locator,
i.e., the replica locator component.

3. Next, the replica locator queries its load analyzer for an
appropriate server replica.

4. The replica locator then transparently redirects the client
to the chosen replica.

5. Requests will continue to be sentdirectly to the chosen
replica until the load balancer detects a high load on that
replica. The additional indirection and overhead incurred
by per-request load balancing architectures is eliminated
since the client communicates with the replica directly.

6. The load balancer monitors the replica’s load. Depending
on the load reporting policy (seeload monitordescription
in Section 3.1) that is configured, the load monitor will
either report the load to the balancer or the load balancer
will query the load monitor for the replica’s load.

7. As loads are collected by the load balancer, the load ana-
lyzer analyzes the load on the replica.

8. If a replica becomes overloaded the load balancer can
dynamically forward the client to another less loaded
replica. To achieve the transparency requirements out-
lined in Section 2, TAO’s load balancer does not com-
municate with the client application when forwarding it
to another replica. Instead, TAO’s load balancer issues a
load advisory to the replica’s load monitor.
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9. The load monitor issues a control message to the replica.
Depending on the contents of the load advisory issued
by the load balancer, this control message will cause the
replica to either accept or redirect requests.

10. When instructed by the load monitor, the replica uses the
GIOPLOCATION FORWARDmessage to redirect the next
request sent by a client back to the load balancer.

11. At this point the load balancing cycle starts again.

4 Design Challenges and Their Solu-
tions

The following design challenges were identified prior to and
during the development of TAO’s load balancing service:

1. Implementing portable load balancing

2. Enhancing feedback and control

3. Supporting modular load balancing strategies

4. Coping with adaptive load balancing hazards

5. Identifying objects uniquely

6. Integrating all the load balancing components effectively

These challenges and the solutions we applied to address them
are discussed below. The solutions to each design challenge
manifest themselves within the load balancing service compo-
nents described in Section 3.1.

4.0.1 Challenge 1: Implementing Portable Load Balanc-
ing

Context: A CORBA load balancing service is being imple-
mented in accordance with the requirements outlined in Sec-
tion 2.

Problem: Changing application code–particularly client
applications–to support load balancing can be tedious, error-
prone, and costly. Changing the middleware infrastructure
to support load balancing is also problematic since the same
middleware may be used in applications that do not require
load balancing, in which case extra overhead and footprint
may be unacceptable. Likewise, usingad hocor proprietary
interfaces to add load balancing to existing middleware can
increase maintenance effort and may be unattractive to appli-
cation developers who fear “vendor lock-in” from features that
are unavailable in other middleware.

So, how can we implement load balancing transparently
without changing applications, middleware or using propri-
etary features?

Solution ! the Interceptor pattern: The Interceptor pat-
tern [22] allows a framework to transparently add services that
are triggered automatically when certain events occur. This
pattern enhances extensibility by exposing a common inter-
face implemented by aconcrete interceptor. Methods in this
interface are invoked by adispatcher.

The Interceptor pattern can be implemented via standard
CORBA POA [1] features. For example, the role of the in-
terceptor is played by aservant locator6 and the role of the
dispatcher is played by aPOA. In particular, areplica locator
can implement the standard CORBAServantLocator [1]
interface provided by the POA.

Figure 4 illustrates how load can be balanced transparently
using standard CORBA features. Initially, clients are given

: Client : Replica

: Load Balancer

1. s
end_re

quest(
) 2. send_request()

: Client : Replica

: Load Balancer

1. s
end_re

quest(
)

    
2. L

OCATIO
N_FORW

ARD()

3. send_request()

(a)

(b)

Figure 4: Load Balancing Transparency in Applications: (a)
request forwarded by the client and (b) request forwarded on
behalf of the client.

an object reference to the load balancer, so they first issue re-
quests to the load balancer. The load balancer’s servant loca-
tor intercepts those requests and forwards them transparently
to the appropriate replicas. Depending on the type of client
binding granularity selected by the application, one of the fol-
lowing actions will occur:

� The client will forward requests to the appropriate
replica, as shown in Figure 4(a); or

� The load balancer will forward requests to the appropriate
replica on behalf of the client, as shown in Figure 4(b).

6Servant locators are a meta-programming mechanism [24] that allows
CORBA server application developers to obtain custom object implementa-
tions dynamically, rather than using the POA’s active object map [13].
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Applying the solution in TAO: In TAO, each replica regis-
ters itself with the load balancer. Each replica then becomes a
potential candidate to handle a request intercepted by the load
balancer. The interception is performed by a servant locator.

TAO’s load balancer implements its own servant locator,
which is registered with the load balancer’s POA. When a new
request arrives, the POA delegates the task of locating a suit-
able servant to the servant locator, rather than using the ser-
vant lookup mechanism in the POA’s active object map [13].
Thus, the load balancer can use the servant locator to forward
requests to the appropriate replica transparently,i.e., without
affecting server application code.

After receiving a request, the replica locator obtains a ref-
erence to the replica chosen by the load analyzer (see Sec-
tion 4.0.3) and throws aForwardRequest exception ini-
tialized with a copy of that reference. The server ORB catches
this exception and then returns aLOCATION FORWARD GIOP
message. When the client ORB receives this message, the
CORBA specification requires it to

1. Re-issue the request to the new location specified by the
object references embedded in theLOCATION FORWARD

response; and

2. To continue using that location until either the communi-
cation fails or the client is redirected again.

Thus, a server application and an ORB can forward client re-
quests to other serverstransparently, portably, andinteroper-
ably.

4.0.2 Challenge 2: Enhancing Feedback and Control

Context: An adaptive load balancing service must deter-
mine the current load conditions on replicas registered with
it. A load balancer should not need to know the type of load
metric beforehand, however. Moreover, a load balancer must
take steps to ensure that loads across its registered replicas are
balanced. These steps include (1) forcing the replica to redi-
rect the client back to the load balancer when its load is high
and (2) forcing the replica to once again accept client requests
when its load is nominal.

Problem: Sampling loads from replicas should be as trans-
parent as possible to the replicas. If load sampling was not
transparent, a load balancer would have to sample loads from
server replicas directly, which is undesirable since it would
require replicas to collect loads. If replicas collect loads, how-
ever, application developers must modify existing application
code to support load balancing. Such an obtrusive design does
not scale well from a deployment point of view, nor is it always
feasible to alter existing application code.

Moreover, a load balancer should not be tightly coupled to a
particular load metric. Only themagnitudeof the load should

be considered when making load balancing decisions, so that
a load balancer can support any type of load metric, rather
than just one type of metric. The same deployment scalability
issues encountered for load sampling transparency also apply
here. If a load balancer were load-metric specific it would be
costly to deploy load balancers for distributed applications that
require balancing based on several load metrics. For example,
a separate load balancer would be needed to balance replicas
based on various metrics, such as CPU, I/O, memory, network,
and battery power utilization.

In addition, a load balancer must react to various replica
load conditions to ensure that loads across replicas are bal-
anced. For example, when high load conditions occur, a
replica must be instructed to forward the client request back
to the load balancer so subsequent requests can be reassigned
to a less loaded replica.

So, how can we implement a flexible load balancing service
that can be extended to support new load metrics, as well as
different policies to collect such metrics?

Solution ! the Strategy and Mediator patterns: The
Strategy [25] design pattern allows the behavior of frameworks
and components to be selected and changed flexibly. For ex-
ample, the same interface can be used to obtain different types
of loads on a given set of resources. Only object implementa-
tions must change since load measuring techniques may differ
for each type of load. Each implementation is called a “strat-
egy” and can be embodied in an object called aload monitor.

A load monitor implements a strategy for monitoring loads
on a given resource. The interface for reporting loads to the
load balancer or to obtain loads from the load monitor re-
mains unchanged for each load monitoring strategy. Strategiz-
ing load monitoring makes it possible to use a load balancer
that is not specific to a particular type of load, such as CPU
load or battery power utilization. Thus, a load balancer need
not be specialized for a given type of load. This design sim-
plifies deployment of a load balanced distributed system since
one load balancer can balance many different types of load.

The Mediator [25] design pattern defines an object that en-
capsulates how objects will interact. In addition to playing the
role of a strategy, a load monitor acts as a mediator between the
load balancer and a given replica. This pattern ensures there
is a loose coupling between the load balancer and the server
replicas. Thus, the load balancer need not have any knowl-
edge of the interface exported by the replica.

In its capacity as a mediator, a load monitor responds to load
balancing requests sent by the load balancer. Depending on the
type of request the load balancer sends to the load monitor, the
replica will either continue accepting client requests or redirect
the client back to the load balancer. Note that the load balancer
never interacts with the replica directly – all interaction occurs
via the load monitor. Similarly, the replica never interacts with
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the load balancer directly. Instead, it interacts with the load
balancer indirectly through the load monitor.

Applying the solution in TAO: When registering a replica
with TAO’s load balancer, its corresponding load monitor is
also registered. As shown in Figure 5, the load balancer

: Load Balancer : Load Monitor : Replica

3. reject_requests()
1. get_load()

2. load_advisory()

Figure 5: Feedback and Control when Balancing Loads

queries the load monitor for the load on the current replica, as-
suming that pull-based load monitoring is being used (see Sec-
tion 3.1). In other words, the load balancer receivesfeedback
from the load monitor. Load balancing control messages–
calledload advisories–are then sent to the load monitor from
the load balancer and set the state of the current replica load to
one of the following values:

� Nominal– When the load is nominal, the replica contin-
ues to accept requests.

� High – A high load advisory causes the replica to redi-
rect client requests by forwarding them back to the load
balancer, at which point the load balancer forwards the
request to a less loaded replica.

These two state values are the defaults provided by TAO. Users
can define their own customized load states, however, by cus-
tomizing the load analyzer and load monitor component im-
plementations.

TAO’s load balancer isadaptivedue to the bi-directional
feedback/control channel between the load monitor and the
load balancer, which allows TAO’s load balancer to admin-
ister control. Since the load monitor is decoupled from the
load balancer it is also possible to balance loads across repli-
cas based on various types of load metrics. For instance, one
type of load monitor could report CPU loads, whereas another
could report I/O resource load. The fact that the type of load
presented to the load balancer is opaque allows the same load
balancer–specifically the load analysis algorithm–to be reused
for any load metric.

4.0.3 Challenge 3: Supporting Modular Load Balancing
Strategies

Context: A distributed system employs a load balancing
service to improve overall throughput by ensuring that loads
across replicas are as uniform as possible. In some applica-
tions, loads may peak in a predictable fashion, such as at cer-
tain times of the day or days of the week. In other applications,
loads cannot be predicted easilya priori.

Problem: Since certain load analysis techniques are not suit-
able for all use-cases, it may be useful to analyze a set of
replica loads in different ways depending on the situation. For
example, to predict future replica loads it may be useful to an-
alyze the history of loads for a given object group, thereby an-
ticipating high load conditions. Conversely, this level of anal-
ysis may be too costly in other use-cases,e.g., if the duration
of the analysis exceeds the time required to complete client
request processing.

In some applications it may even be necessary to change the
load analysis algorithm dynamically,e.g., to adapt to new ap-
plication workloads. Moreover, bringing the system down to
reconfigure the load balancing strategy may be unacceptable
for applications with stringent 24�7 availability requirements.
Likewise, application developers may be interested in evaluat-
ing several alternative load balancing policies, in which case
requiring a full recompilation or relink cycle would unduly in-
crease system development effort. A load balancing service
cannot simply implement all possible load balancing strate-
gies, however,e.g., application developers may wish to define
application-specific orad-hocload balancing algorithms dur-
ing testing or deployment.

So, how can we allow dynamic (re)configurations of the
load balancing service, such as the load monitor and load an-
alyzer, without requiring expensive system recompilations or
interruptions of service?

Solution ! the Component Configurator pattern: The
Component Configuratordesign pattern [22] allows applica-
tions to link and unlink components into and out of an applica-
tion at run-time. In TAO’s load balancing service this pattern
can be used to change the replica selection strategy dynami-
cally. Thus, a load balancer can use this pattern to adapt to
different load balancing use-cases, without being hard-coded
to handle just those use-cases.

At times it may be necessary to load balance only a few
replicas, in which case a simple load balancing strategy may
suffice. In other situations, such as during periods of peak ac-
tivity during the workday, a load balancing strategy may need
modifications to account for increased load. In such cases,
a more complex strategy may be necessary. The Component
Configurator pattern makes it easy to dynamically configure
load balancing algorithms appropriate for different use-cases
withoutstopping and restarting the load balancer.

Applying the solution in TAO: TAO’s load analyzer uses
the Component Configurator pattern to customize the load bal-
ancing algorithm used when making load balancing decisions,
as depicted in Figure 6. TAO’s load balancing service can be
configured dynamically to support the following strategies:

� Round-robin: This non-adaptive strategy is straightfor-
ward and does not take load into account. Instead, it simply
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: Load Balancer

: Component Configurator

references : object(idl)

Group 1 : Object Group

Round Robin : Balancing Strategy

Balancing Strategy

Minimum Dispersion : Balancing Strategy

Dynamically loaded
load balancing

strategies.

: Load Analyzer

Figure 6: Applying the Component Configurator Pattern to
TAO’s Load Balancing Service

causes a request to be forwarded to the next replica in the ob-
ject group being load balanced [18].

� Minimum dispersion: This adaptive strategy is more
sophisticated than the round-robin algorithm described above.
The goal of this strategy is to ensure load differences fall
within a certain tolerance,i.e., it attempts to ensure that the
average difference in load between each replica is minimized.
The following steps are used in this on-demand adaptive strat-
egy:

1. The average load across all replicas within a given ob-
ject group is updated each time a load balancing decision
occurs.

2. The instantaneous load on each replica is then compared
to the average load.

3. If the difference between the average load and the instan-
taneous load is larger than the tolerance set by themini-
mum dispersionload balancing strategy, the load balancer
will attempt to decrease the difference so that they fall
within the tolerance.

Note that a set of replicas balanced via this strategy will not
necessarily have the same load on each of them, but over time
the loaddispersionbetween the replicas will be minimized.

A large amount of work on load balancing strategies [26]
has already been done. Many of those same strategies can
be integrated in to the CORBA-based load balancing service
via the Component Configurator pattern implementation de-
scribed above.

4.0.4 Challenge 4: Coping With Adaptive Load Balanc-
ing Hazards

Context: A customized adaptive load balancing strategy is
under development by a distributed application developer.
This load balancing strategy will be used to balance loads
across a group of replicas.

Problem: Adaptive load balancing has the potential to im-
prove system responsiveness. It is hard to ensure the stability
of loads across replicas when the overall state of distributed
systems changes quickly due to the following hazards:

� Thundering herd: When a less loaded replica suddenly
becomes available, a “thundering herd” phenomenon may oc-
cur if the load balancer forwards all requests to that replica
immediately. If the rate at which the loads are reported and an-
alyzed is slower than the rate at which requests are forwarded
to the replica, it is possible that the load on that replica will
increase rapidly. Ideally, the rate at which requests are for-
warded to replicas should be less than or equal to the rate at
which loads are reported and analyzed. Satisfying this condi-
tion can eliminate the thundering herd phenomenon.

� Balancing paroxysms: The smaller the number of
replicas, the harder it can be to balance loads across them
effectively. For example, if only two replicas are available
then one replica may be more loaded than the other. A naive
load balancing strategy will attempt to shift the load to the less
loaded replica, at which point it will most likely become the
replica with the greater load. The entire process of shifting the
load may begin again, causing system instability.

So, how can we adapt to dynamic changes in load, but with-
out overreacting transient, short lived or sample errors in the
load metric?

Solution ! Dampening load sampling rates and request
redirection: The minimum dispersionload balancing strat-
egy described in Section 4.0.3 can be employed to alleviate the
thundering herd phenomenon and balancing paroxysms since
it will not attempt to shift loads the moment an imbalance oc-
curs. Specifically, by relaxing the criteria used to decide when
loads across a group of replicas is balanced, a load balancer
can adjust to large load discrepancies with less probability of
experiencing the hazards discussed above. The criteria for de-
ciding when to shift loads can also change dynamically as the
number of replicas increases.

Using control theory terminology, this behavior is called
dampening, where the system minimizes unpredictable be-
havior by reacting slowly to changes and waiting for defi-
nite trends to minimize over-control decisions. TAO’s mini-
mum dispersion balancing strategy does not react to changes
in load immediately because its default load balancing strategy
averages instantaneous load samples with older load values.
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The empirical results presented in [30] illustrate the effects of
TAO’s dampening mechanisms.

4.0.5 Challenge 5: Identifying Objects Uniquely

Context: A load balancing service that manages multiple
objects is responsible for collecting and analyzing informa-
tion, such as the state, health, and environmental conditions,
throughout the lifetime of each object it manages. This in-
formation is obtained from the load monitor, as described in
Section 4.0.2. In some applications using apull modelto ac-
quire the load information may not scale well and can be hard
to optimize. In contrast,push modelscan resubmit load infor-
mation when it has changed beyond a pre-set threshold or after
a fixed period of time.

Problem: When receiving information about the load in one
replica the load balancing service should determine the source
of the load information efficiently and uniquely. This goal can
be achieved easily via pull models, but it is harder to imple-
ment via push models. CORBA does not provide a lightweight
mechanism to determine the source of a request.7 Moreover,
as described in Section 3.1, CORBA providesweak identityfor
objects, relying on the replica object reference to distinguish
them would not be portable.

So, how can we portably and efficiently determine the
source of the load information?

Solution! the Asynchronous Completion Token pattern:
This pattern is used to efficiently dispatch processing tasks that
result from responses to asynchronous operations invoked by
a client [22]. In the load balancing service, the replica proxy
plays the role of an asynchronous completion token (ACT).
Load monitors communicate load updates via their replica
proxy objects, as shown in Figure 7. The load balancing ser-
vice creates a unique replica proxy for each monitor. When
the replica proxy implementation creates and caches the iden-
tity of the replica ACT and load monitor that will later use
the replica proxy. This design allows the replica proxy to de-
termine the identity of the remote replica efficiently whenever
new load information is received.

Applying the solution in TAO: TAO uses a CORBA
Object to play the role of an asynchronous completion to-
ken. The load balancing service creates a different CORBA
Object –called aReplicaProxy –for each replica. This
proxy is created when the replica registers itself with the load
balancing service initially. All future communication with the
load balancing service is performed through the proxy. The
Asynchronous Completion Token pattern allows the load bal-
ancing service to process the requests from each replica effi-
ciently and unambiguously.

7The CORBA Security Service [27] can authenticate client requests, but
this is a much more expensive mechanism than required for many applications.

: Load Monitor A

: Load Monitor B

: Load Balancer

report_load()

Which load monitor
is the load report

coming from?

: Load Monitor A

: Load Monitor B

: Load Balancer

report_load()

The load balancer
assigns a replica

proxy to each load
monitor.

: Replica Proxy A

: Replica Proxy B

Figure 7: Identifying the Source of a Message Uniquely

As each load is reported to theReplicaProxy , the load
analyzer is notified that a new load is available for analysis.
Since theReplicaProxy caches the object reference of its
corresponding replica, the load balancer can redirect the client
to a nominally loaded replica using the cached replica object
reference.

4.0.6 Challenge 6: Integrating All the Load Balancing
Components Effectively

Context: As illustrated above, a load balanced distributed
system has many components that interact with each other.
For example, clients issue requests to replicas. Load moni-
tors measure loads on replicas continuously and control client
access to the replicas. Load analyzers decide if loads on repli-
cas are nominal or high. Finally, replica locators bind clients
to replicas.

Problem: All the components mentioned above must col-
laborate effectively to ensure that a distributed system is load
balanced. Direct interaction between some of those compo-
nents may complicate the implementation of distributed appli-
cations, however, since certain functionality may be exposed
to a given component unnecessarily.

So, how can we integrate the functionality of all the load
balancing components without unduly coupling all of them?

Solution ! the Mediator pattern: The Mediator pattern
provides a means to coordinate and simplify interactions be-
tween associated objects. This pattern shields the objects from
relationships and interactions that are not needed for their ef-
fective operation.
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A load balancercomponent can be used to tie together all
the components listed above. It coordinates all interactions
between other components,i.e., it is a mediator. For example,
it shields the client from the component interactions necessary
to conduct load balancing. Thus, clients can remain unaware
of the interactions mediated by the load balancer, which helps
to satisfy application transparency requirements.

Applying the solution in TAO: As shown in Figure 1, the
load balancer in TAO mediates the following types of compo-
nent interactions:

� Client binding interactions: Rather than binding itself
to a specific replica that may be highly loaded, TAO’s load
balancer binds the client to a suitable replica. The load bal-
ancer creates an object reference that corresponds to a group
of replicas–called anobject group–being load balanced. In-
stead of using an object reference that directly refers to a given
replica, the client uses the object reference created by the load
balancer that represents the appropriate object group. This de-
sign causes the client to invoke a request on the load balancer
initially, at which point the client is re-bound to a replica cho-
sen by the load balancer.

It is important to note that the CORBA object model was
intentionally designed to decouple the object implementation
from the object references that clients use to access the im-
plementations. In TAO’s load balancing service we exploit
this feature of CORBA to hide the particular location, num-
ber, and characteristics of the replicas behind an object refer-
ence that points clients to the load balancing service. Clients
applications are shielded by this extra level of indirection by
their ORBs, and use a load balanced object just like any other
CORBA object, unaware of the situation except perhaps for
the difference in performance.

The load balancer also rebinds the client to another replica
by using other components, such as the load monitor. In that
case, a client is forwarded back to the load balancer so that the
client binding process can be begin again. Thus, load balanc-
ing remains completely transparent to client applications.

� Load monitor and load analyzer interactions: The
load balancer allows the load analyzer to be completely decou-
pled from load monitors. Load monitors are registered with
the load balancer. This design allows the load balancer to re-
ceive load reports from each registered load monitor. These
load reports are then delegated to the load analyzer for analy-
sis. The means by which these loads were obtained is hidden
from the load analyzer.

5 Concluding Remarks and Future
Work

This paper describes the design of an adaptive middleware-
based load balancing service developed for the TAO ORB [3].
TAO’s load balancing service makes it easier to develop dis-
tributed applications in heterogeneous environments by pro-
viding application transparency, high flexibility, scalability,
run-time adaptability, and interoperability. TAO’s load balanc-
ing service is based entirely on standard features in CORBA.
This implementation demonstrates that CORBA technology
has matured to the point where many higher-level services can
be developed effectively without requiring extensions to the
ORB or its communication protocols.

Exploiting the rich set of primitives available in CORBA
still requires specialized skills, however, along with the use of
poorly understood features, such as location forwarding. We
believe that further research on effective architectures, strate-
gies, and patterns to implement CORBA load balancing ser-
vices is necessary to advance the state of the art. Below, we
outline future work that we are conducting to improve our
CORBA load balancing service.

Server transparency: It is non-trivial to achieve transparent
server load balancing since obtaining feedback from a given
replica and controlling it without altering server application
code is hard. Fortunately, CORBA-based distributed systems
can achieve server transparency by taking advantage of the fol-
lowing recently standardized CORBA features:

� Portable Interceptors: Portable interceptors [28, 24]
can capture client requests transparently before they are dis-
patched to an object replica. For example, aserver request
interceptorcould be added to the ORB where a given replica
runs. Since interceptors reside within the ORB no modifica-
tion to server application code is necessary, other than regis-
tering the interceptor with the ORB when it starts running.

� CORBA Component Model (CCM): The CCM [21]
introduces containers to decouple application component
logic from the configuration, initialization, and administra-
tion of servers. In the CCM, a container creates the POA
and interceptors required to activate and control a component.
These are the same CORBA mechanisms used to implement
the server components in TAO’s load balancing service. The
standard CCM containers can be extended to implement auto-
matic load balancinggenericallywithout changing application
component behavior.

Decentralized load balancing models: The CORBA-based
load balancing architecture described in this paper is based on
a centralizedload balancing model. Specifically, it assumes
that one load balancer performs all load balancing tasks for a
particular distributed system. This model simplifies the design
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and implementation of the load balancer, but introduces a sin-
gle point of failure, which can impede system reliability and
scalability.

One solution is to implement acooperativeload balancing
service. In this model, load balancing is facilitated through a
distributed set of load balancers that collectively form a single
logical load balancing service. This model has the advantage
that a single point of failure does not exist, and that no single
bottleneck point exists either. Load balancing decisions would
be made cooperatively,i.e., each load balancer could commu-
nicate with other balancers to decide how best to balance loads
across a given group of replicas.

Stateful replicas: Another issue we will address in future
work involves load balancing of stateful replicas. To load bal-
ance replicas that retain state, some means of maintaining state
consistency between replicas is necessary. Techniques used to
achieve this consistency include (1) using reliable multicast to
share the current state efficiently between multiple replicas, (2)
providing hooks within a replica that allow a load balancer to
perform state transfers explicitly to another less loaded replica
so that request servicing can continue there, or (3) a combi-
nation of both (1) and (2). Efficient load balancing of stateful
replicas is non-trivial, however, due to the additional load in-
curred by ensuring state consistency between replicas.

Load monitoring granularity: A server can have multiple
objects running in it. If there are a many objects in the server
then instantiating a load monitor (see Section 4.0.2) for each
object may not scale. For example, load monitor resources,
such as memory, CPU, and network bandwidth, can starve ob-
jects or processes running on the same server.

To improve the scalability of the load balancing system, we
plan to support a more scalable load monitoring granularity.
Rather than instantiating a load monitor for each object on the
server, a single load monitor could be associated with a group
of objects that share a common load metric. For example, de-
spite the fact that objects may implement different interfaces,
all are load balanced based on CPU utilization.

We believe this design can significantly reduce the amount
of resources imposed by adding server load balancing support,
i.e., load monitors for a large number of objects residing in the
same server. However, it also introduces some complexities
to the load monitor implementation. For example, suppose a
load balancer detects a high load and issues a load advisory
to the shared load monitor. The load monitor must now decide
which objects sharing that load monitor should shed their load,
e.g., by forcing the client to contact the load balancer so that it
can be re-bound to another replica.

Other problems can occur when multiple object groups re-
side on a single server. Load balancing decisions for one ob-
ject group may actually interfere with load balancing decisions

for another object group. Suppose both object groups are bal-
anced based on CPU load. The load balancer detects low load
conditions for the first object group, causing requests to be sent
to that object group, which causes the CPU load to increase on
the given server. Since the second object group is load bal-
anced based on CPU load, the load balancer will detect a high
load on the server due to the increased load caused by the re-
quests sent to the first object group. At this point, the load
balancer will cause the second object group to reject requests.
Thus, the second object group is starved by the first object
group. In this scenario, the two object groups must be load
balanced collectively, which implies a common load monitor
must be used for both object groups.

Fault tolerant load balancing: By using the adaptive
CORBA-based load balancing architecture described in this
paper, clients that have not been forwarded to replicas can still
be denied service. Some form of fault tolerance is therefore
needed to prevent this situation. Fortunately, CORBA defines
a standardFault Tolerance[20] service to address these types
of failures.

Making a load balancing service fault tolerant by means of
Fault Tolerant CORBA can alleviate one of the inherent prob-
lems with centralized load balancing: its single point of fail-
ure. It can also ensure that state within replicas is consistent, in
the case of stateful replicas. This capability can simplify a load
balancer implementation since the load balancer can delegate
the task of ensuring state consistency between replicas to the
Fault Tolerance service. One implementation of the CORBA
Fault Tolerance service is DOORS [10, 29]. Since DOORS
itself is a CORBA service implemented using TAO integrating
it with TAO’s load balancer should be straightforward.

Improved quality of service support: As mentioned in
Section 4.0.4, it is hard to ensure that loads across replicas stay
balanced evenly when the overall state of distributed systems
changes rapidly. For example, several new replicas may be
added to an object group dynamically, which cannot be pre-
dicted by a load balancer. Likewise, a poorly designed load
balancing strategy cannot handle degenerate load balancing
conditions, such as unstable replica loads.

Some approaches that can be used to improve the effective-
ness of a given load balancing strategy are:

� Take into account past load trends in an effort to antici-
pate future load conditions.

� Take advantage of sophisticated algorithms based on con-
trol theory that are designed specifically to restore system
equilibrium when it is perturbed by external forces. In
the case of load balancing, external forces could be addi-
tional client requests or transient loads generated by other
applications running over the network and end-systems.
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These approaches can improve the stability of adaptive load
balancing strategies so that they perform better under heavy
loads or loads that change rapidly.

Advanced replica management: It is common practice to
design a service that balances loads across a group of repli-
cas supplied to it by applications explicitly. In particular,
TAO’s load balancing service described in this paper makes
no attempt to control replica lifetime. More advanced solu-
tions, however, can determine how replicas are created and
destroyed.

For example, suppose there are only two replicas in a replica
group and that their loads are high. Without additional repli-
cas, it may be hard to maintain balanced loads. A load balanc-
ing service with the ability to create and destroy replicas on-
demand may provide more flexible load balancing strategizes,
e.g., a load balancer could create a replica at a third location in
an effort to decrease the workload on the two initial replicas.

Those familiar with fault tolerance services may recognize
a similarity between their replica management strategies and
those of load balancing services. Both types of services can
control replica lifetimes,e.g., by creating replicas on-demand.
A fault tolerance service requires sufficient replicas to provide
fault recovery, while a load balancing service requires enough
replicas to provide balanced loads. Although the underlying
functionality for each type of service is different, the interface
exposed by each service can be similar. Therefore, the IDL in-
terfaces exposed by TAO’s next-generation load balancing ser-
vice under development currently is based largely on the IDL
interfaces standardized by the Fault Tolerant CORBA specifi-
cation [20].

TAO and TAO’s load balancing service have been applied
to a wide range of distributed applications, including many
telecommunication systems, aerospace/military systems,
online trading systems, medical systems, and manufacturing
process control systems. All the source code, examples,
and documentation for TAO, its load balancing service,
and its other CORBA services is freely available from URL
http://www.cs.wustl.edu/ �schmidt/TAO.html .
A paper describing the performance of TAO’s load balancing
service appeared in [30].
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