
Adaptive Failover for Real-time Middleware with Passive Replication

Jaiganesh Balasubramanian†, Sumant Tambe†, Chenyang Lu‡, Aniruddha Gokhale†,
Christopher Gill‡, and Douglas C. Schmidt†

†Department of EECS, Vanderbilt University, Nashville, TN, USA
‡Department of CSE, Washington University, St. Louis, USA

Abstract

Supporting uninterrupted services for distributed soft
real-time applications is hard in resource-constrained and
dynamic environments, where processor or process failures
and system workload changes are common. Fault-tolerant
middleware for these applicationsmust achieve high service
availability and satisfactory response times for client appli-
cations. Although passive replication is a promising fault
tolerance strategy for resource-constrained systems, con-
ventional client failover approaches are non-adaptive and
load-agnostic, which can cause system overloads and sig-
nificantly increase response times after failure recovery.
This paper presents four contributions to the study of

passive replication for distributed soft real-time applica-
tions. First, it describes how our Fault-tolerant Load-
aware and Adaptive middlewaRe (FLARe) dynamically ad-
justs failover targets at runtime in response to system load
fluctuations and resource availability. Second, it describes
how FLARe’s overload management strategy proactively
enforces desired CPU utilization bounds by redirecting
clients from overloaded processors. Third, it presents the
design and implementation of FLARe’s lightweight mid-
dleware architecture that manages failures and overloads
transparently to clients. Finally, it presents experimental
results on a distributed Linux testbed that demonstrate how
FLARe adaptively maintains soft real-time performance for
clients operating in the presence of failures and overloads
with negligible runtime overhead.

1 Introduction

Distributed real-time middleware, such as Real-time
CORBA [22] and Distributed Real-time Java [18], has been
used to develop a range of distributed soft real-time appli-
cations, such as online stock trading systems and supervi-
sory control and data acquisition (SCADA) systems. Such
applications operate in dynamic environments where sys-
tem loads and resource availabilities fluctuate significantly
at runtime due to service request arrivals and processor fail-

ures. In such environments, it is important for applications
to maintain both system availability and desired soft real-
time performance. For example, in SCADA systems for
power grid monitoring, remote terminal units must continue
to process updates from sensors monitoring power grid fail-
ures, even when load fluctuations and failures occur.

ACTIVE and PASSIVE replication [17] are two common
approaches for building fault-tolerant distributed applica-
tions. In ACTIVE replication [25], client requests are mul-
ticast and executed at all replicas. Failure recovery is fast
because if any replicas fail, the remaining replicas can con-
tinue to provide the service to the clients. ACTIVE replica-
tion imposes high communication and processing overhead,
however, which may not be viable in resource-constrained
systems [8].

In PASSIVE replication [6] only one replica—called the
primary—handles all client requests, and backup replicas
do not incur runtime overhead, except for receiving state
updates from the primary. If the primary fails, a failover is
triggered and one of the backups becomes the new primary.
Due to its low resource consumption, PASSIVE replication is
appealing for soft real-time applications that cannot afford
the cost of maintaining active replicas and need not assure
hard real-time performance.

Although PASSIVE replication is desirable in resource-
constrained systems, it is challenging to deliver soft real-
time performance for applications based on PASSIVE repli-
cation. In particular, conventional client failover solu-
tions [4, 23] in PASSIVE replication are non-adaptive and
load-agnostic, which can cause post-recovery system over-
loads and significantly increase response times for clients.
Moreover, the middleware must dynamically handle over-
load conditions caused by workload fluctuations and con-
current failures. Therefore, a lightweight middleware ar-
chitecture is needed that can handle failures and overloads
transparently from the applications.

To address this need, we have developed the Fault-
tolerant, Load-aware and Adaptive middlewaRe (FLARe)
which maintains service availability and soft real-time per-
formance in dynamic environments. This paper evaluates

the following contributions to developing distributed soft
real-time applications:

• A Load-aware Adaptive Failover (LAAF) strat-
egy, which dynamically adjusts failover targets in re-
sponse to load fluctuations and processor/process fail-
ures based on current CPU utilization.

• A Resource Overload Management rEdirector
(ROME) strategy, which dynamically enforces
schedulable utilization bounds by proactively redirect-
ing clients from overloaded processors.

• A lightweight adaptive middleware architecture,
which handles failures and overloads transparently
from applications.

FLARe has been implemented atop the TAO Real-
time CORBA middleware (www.dre.vanderbilt.edu/
TAO) and evaluated empirically in the ISISlab testbed (www.
dre.vanderbilt.edu/ISISlab). The experimental re-
sults reported in this paper demonstrate how FLARe can
dynamically maintain both system availability and desired
soft real-time performance for clients, while incurring neg-
ligible run-time overhead.

The remainder of this paper is organized as follows:
Section 2 describes the system and fault models that form
the basis for our work on FLARe; Section 3 describes the
structure and functionality of FLARe; Section 4 empirically
evaluates FLARe in the context of distributed soft real-time
applications with dynamic application arrivals and failures;
Section 5 compares FLARe with related research; and Sec-
tion 6 presents concluding remarks.

2 System and Fault Models

FLARe supports distributed systems where application
servers provide multiple long-running services on a clus-
ter of computing nodes. The services in a system are in-
voked by clients periodically via remote operation requests.
Further, these types of systems experience dynamic work-
loads when clients start and stop services at runtime. Clients
demand both soft real-time performance as well as system
availability despite workload fluctuations and processor and
process failures.

The end-to-end delay of a remote operation request com-
prises delays on the server, the client, and the network.
FLARe is designed to bound server latencies, which of-
ten dominate in distributed real-time systems (e.g., SCADA
systems) equipped with high-speed networks. To meet de-
sired server latencies FLARe allows users to specify a uti-
lization bound for each CPU on the servers. The utiliza-
tion bound can be set to below the schedulable utilization
bound of the real-time scheduling policy (e.g., rate mono-
tonic) supported by the middleware scheduling service. At
run time FLARe maintains desired server latencies by dy-

namically enforcing the utilization bounds on the servers 1.
Processors and processes may experience fail-stop [25]

failures and concurrent failures in multiple processors or
processes can occur. To provide lightweight fault-tolerance,
FLARe employs PASSIVE replication [7], where services
are replicated and deployed across multiple processors. We
assume that networks provide bounded communication la-
tencies and do not fail or partition. This assumption is rea-
sonable for many soft real-time systems, such as SCADA
systems, where nodes are connected by highly redundant
high-speed networks. Relaxing this assumption through in-
tegration of our middleware with network-level fault toler-
ance and QoS management techniques [1] is an area of fu-
ture work.

3 Design and Implementation of FLARe

This section describes the design and implementation
of FLARe. The key design goals of FLARe are to (1)
mask clients from processor and process failures through
transparent client failover, (2) alleviate post recovery over-
load through load-aware failover target selection, and (3)
maintain desired soft real-time performance by dynamically
enforcing suitable CPU utilization bounds on the servers
through overload management.

3.1 FLARe Middleware Architecture

FLARe’s architecture, shown in Figure 1, has four
main components: themiddleware replication manager, the
client failover manager for each client process, the moni-
tor on each processor hosting servers, and the state trans-
fer agent on each process hosting servers. FLARe achieves
fault-tolerance through PASSIVE replication of CORBA ob-
jects, where the primary and backup replicas are deployed
across different processors in the distributed system.
Middleware replication manager. FLARe’s middleware
replication manager (MRM) allows server objects to pro-
vide information about (1) the processors and processes
in which their primaries and backups are hosted, (2) the
CPU utilization that they will require to serve client requests
should they become primary, and (3) their interoperable ob-
ject reference (IOR) so that clients can invoke remote op-
erations on them when the server objects are added to the
system. To manage the primary and backup replicas—and
to make adaptive failover target decisions—FLARe’s MRM
uses a monitor on each processor to track failures and CPU
utilizations of all processors hosting the primary and backup
replicas of each server object.

As highlighted by label A in Figure 1, FLARe’s MRM
employs a Load-Aware and Adaptive Failover (LAAF) tar-

1FLARe is targeted at soft real-time applications and does not provide
hard guarantees on meeting every deadline

get selection algorithm (described in Section 3.2) to pre-
pare an rank-ordered list of failover targets for each pri-
mary object in the system. The rank list includes mul-
tiple failover targets in order to handle multiple failures
of the same server object. In some situations the current
primary replica can become overloaded, e.g., due to sud-
den workload fluctuations and multiple failures. FLARe’s
MRM employs the Resource Overload Management rEdi-
rector (ROME) algorithm (described in Section 3.3) to redi-
rect clients from overload processors to maintain the desired
soft real-time performance. The LAAF and ROME strate-
gies are detailed in Section 3.2 and Section 3.3, respectively.
Finally, MRM could be co-located with server objects (i.e.,
Host 1 or Host 2 in Figure 1) as the computation load of
the LAAF and ROME algorithms implemented in MRM is
relatively low compared to that of the server objects.

Figure 1: The FLARe Middleware Architecture

Monitors. The liveliness of the processes hosting the server
objects and CPU utilization of the hosts is probed by mon-
itors co-located with the server objects. Failures of pro-
cesses, if any, are communicated instantaneously to the
MRM whereas the CPU utilization is communicated at a
configurable sampling rate. We do not, however, require
fine-grained time synchronization since the sampling period
is typically longer than the task periods. For instance, the
task periods in the experiments described in Section 4 vary
from one second to one-tenth of a second whereas the mon-
itor sampling period is greater than one second.
Client failover manager. As highlighted by label B in Fig-
ure 1, FLARe’s client failover manager contains a redirec-
tion agent that is updated with failover and redirection tar-
gets so clients can recover transparently from failures and
overloads, respectively. To handle failures, as highlighted
by label C in Figure 1, FLARe’s client request interceptor

catches failure exceptions and instead of propagating the ex-
ception to the client application, the client request intercep-
tor redirects the client invocation to the appropriate failover
target provided by the redirection agent.
State transfer agent. As highlighted by label D in Figure 1,
FLARe’s state transfer agent allows server objects to in-
form it about changes to application states. The state trans-
fer agent is updated with per-server-object failover targets
by FLARe’s MRM. When a primary replica in a process
informs it about application state change, the state trans-
fer agent utilizes interfaces provided by the server object
to obtain the new state. The state transfer agent synchro-
nizes the state of the backup replicas with the new state, by
making remote invocations on the backup replicas using the
provided failover target references as highlighted by label E
in Figure 1.

FLARe schedules state update propagations from the pri-
mary replica to the backup replicas using remote operation
requests, from the state transfer agent on the primary replica
to one of the backup replicas. The period of the state update
task is equal to the period of the primary task. In the current
implementation, each state update task is scheduled on the
processor hosting the backup replicas at the priority deter-
mined by the rate-monotonic scheduling algorithm.

To support distributed soft real-time applications in
FLARe, the primary replica updates the states of its backup
replicas after it sends its response to the client. This design
choice significantly reduces the response times for clients,
but supports only “best effort” guarantees for state synchro-
nization. Replica consistency may be lost if the primary
replica crashes after it responds to the client, but before it
propagates its state update to the backup replicas. This de-
sign tradeoff is desirable in many distributed soft real-time
applications where state can be reconstructed using sub-
sequent (e.g., sensor) data updates at the cost of transient
degradation of services.

3.2 Load-aware and Adaptive Failover

As described in Section 3.1, FLARe’s MRM collects pe-
riodic measurement updates from the monitors about CPU
utilizations and liveness of processors/processes. FLARe
provides a load-aware, adaptive failover (LAAF) target se-
lection algorithm that uses these measurements to select
per-object failover targets. LAAF uses the following inputs:
(1) the list of processors and the list of processes in each
processor, (2) the list of primary object replicas operating
in each process, (3) the list of backup replicas for each pri-
mary object replica and the processors hosting those repli-
cas, and (4) the current CPU utilizations of all processors in
the system. This algorithm is executed whenever there is a
change in the CPU utilization by a threshold (e.g., ± 10%)
in any of the processors in the system since FLARe must

react to such dynamic changes.
The output of LAAF is a ranked list of failover targets for

each primary object replica in the system. To deal with con-
current failures, FLARe maintains an ordered list of failover
targets, instead of only the first one. When both the primary
replica and some of its backup replicas fail concurrently,
the client can failover to the first backup replica in the list
that is still alive. LAAF estimates the post-failover CPU
utilizations of processors hosting backup replicas for a pri-
mary object, assuming the primary object fails. The backup
replicas are then ordered based on the estimated CPU uti-
lizations of the processors hosting them, and the backup
replica whose host has the lowest estimated CPU utiliza-
tion is the first failover target of the replica. To balance the
load after a processor failure, LAAF redirects the clients
of different primary objects located on the same processor
to replicas on different processors. Finally, the references
(IORs) to those replicas are collected in a list and provided
to the redirection agents for use during failure recovery. To
reduce the failover delay, MRM proactively updates a client
whenever its failover target list changes.

Algorithm 1 LAAF Target Selection Algorithm
1: Pi : Set of processes on processor i
2: Oj : Set of primary replica objects in process j
3: Rk : list of processors hosting backup replicas for a pri-

mary object k
4: cui : current utilization of processor i
5: eui : expected utilization of processor i after failovers
6: lk : CPU utilization attributed to primary object k
7: for every processor i do
8: eui = cui // reset expected utilization
9: for every process j in Pi do

10: for every primary object k in O j do
11: sort Rk in increasing order of expected CPU uti-

lization
12: eux += lk, where processor x is the head of the

sorted list Rk
13: end for
14: end for
15: end for

Algorithm 1 depicts the steps in the LAAF target selec-
tion algorithm. For every processor in the system (line 7),
LAAF iterates through all hosted processes (line 9), and the
primary replicas that are hosted in those processes (line 10).
For every primary replica, the algorithm determines the pro-
cessors hosting its backup replicas and the least loaded of
those processors (line 11). The algorithm then adds the load
of the primary object replica (known to FLARe’s MRM be-
cause of the registration process as explained in Section 3.1)
to the load of least loaded processor and defines that as the
expected utilization of that processor (line 12) were such a

failover to occur.
The algorithm repeats the process described above for

every other primary replica object hosted in the same pro-
cess (Lines 10–12). The least loaded failover processor is
determined by considering the expected utilizations of the
processors (line 11). This decision allows the algorithm to
consider the failover of co-located primary replica objects
within a processor while determining the failover targets of
other primary replica objects hosted in the same processor.
The failover target selection algorithm therefore makes de-
cisions not only based on the dynamic load conditions in
the system (which are determined by the monitors), but also
based on load additions that may be caused by failovers of
co-located primary objects. The failover targets are then
used for redirecting a client if any failure occurs before the
next time LAAF is run.

LAAF is optimized for multiple process failures or single
processor failures. It may result in suboptimal failover tar-
gets, however, when multiple processors fail concurrently.
In this case, clients of objects located on different failed
processors may failover to a same processor, thereby over-
loading it. Similarly, LAAF may also result in suboptimal
failover targets when process/processor failures and work-
load fluctuation occur concurrently, i.e., before FLARe’s
MRM receives the updated CPU utilization from the mon-
itors. To handle such overload situations FLARe employs
the ROME algorithm (described next in Section 3.3) to redi-
rect clients of overloaded processors, proactively to less
loaded processors.

3.3 Resource Overload Management and Redi-
rection

FLARe’s MRM employs the Resource Overload Man-
agement and rEdirection (ROME) algorithm to enforce de-
sired CPU utilization and service delay bounds. FLARe
allows users to specify a per-processor utilization bound
based on the schedulable utilization bound of the real-time
scheduling policy (e.g., rate monotonic) supported by the
middleware scheduling service. A processor whose CPU
utilization exceeds the utilization bound is considered over-
loaded.

In the case of failures, the clients are redirected to appro-
priate failover targets based on decisions made by LAAF,
as described in Section 3.2. In the case of overloads, clients
of the current primary replicas are redirected automatically
to the chosen new backup replicas. We refer to this load re-
distribution mechanism as lightweight migration since we
migrate the loads (through client redirection) of objects as
opposed to the less efficient alternative of migrating the ob-
jects themselves.

Algorithm 2 depicts the steps ROME uses to handle CPU
overload and load imbalance, respectively.

Algorithm 2 Determine Load-redistributing Targets
1: Oi : list of primary objects in an overloaded processor i
2: Rj : list of processors hosting object j’s replicas
3: cui : current utilization of processor i
4: eui : expected utilization of processor i after migrations
5: l j : CPU utilization of primary object j
6: ti : upper bound for processor i’s CPU utilization
7: eui = cui, for every processor i
8: for every overloaded processor i do
9: sort Oi in decreasing order of their CPU utilizations

10: for every object j in the sorted list Oi do
11: min : processor i in R j with lowest CPU utilization
12: if (l j + eumin) < tmin then
13: migrate the load of object j to j’s replica in min
14: eumin += l j
15: eui -= l j
16: end if
17: if eui < ti then
18: processor i is no longer overloaded; stop
19: else
20: migrate another primary object j in the proces-

sor i
21: end if
22: end for
23: end for

Handling overloads. When the CPU utilization at any of
the processor crosses the utilization bound, FLARe’s MRM
triggers ROME to react to the overloads. FLARe deter-
mines the primary objects whose clients need to be redi-
rected, and their target hosts, using ROME. Given an over-
loaded processor (i.e., whose CPU utilization exceeds the
utilization bound), ROME considers the primary objects on
the processor in decreasing order of CPU utilization (line 9),
and attempts to migrate the load generated by those objects
to the least-loaded processor hosting their backup replicas
(lines 11 through 15). The attempt fails if the least-loaded
processor of the backup replicas would exceed the utiliza-
tion bound if the migration occurs. ROME attempts migra-
tions until (1) the processor is no longer overloaded or (2)
all clients of primary objects in the overloaded processor
have been considered for redirection.

Similar to LAAF, ROME also uses the expected CPU
utilization to spread the load of multiple objects on an over-
loaded processor to different hosts. The expected CPU uti-
lization accounts for the load change due to the redirection
decisions affecting the overloaded processor. After new re-
configurations are identified, redirection agents are updated
to redirect existing clients from the current primary replica
to the selected backup replica at the start of the next remote
invocation. Clients are thus redirected to new targets with
less perturbations.

3.4 Implementation of FLARe

FLARe has been implemented atop the TAO Real-time
CORBA middleware. It is implemented in ∼9,000 lines of
C++ source code (excluding the code in TAO). Below we
highlight several key aspects of the FLARe implementation
(a more detailed description of FLARe appears in [2]).
Monitoring CPU utilization and processor failures.

On Linux, FLARe’s monitor process uses the /proc/stat
file to estimate the CPU utilization (i.e., the fraction of time
when the CPU is not idle) in each sampling period. We
chose to measure the CPU utilization online, rather than re-
lying on the estimated CPU utilization provided by users to
account for estimation errors and for other activities in the
middleware and OS kernel.

To detect the failure of a process quickly, each applica-
tion process on a processor opens up a passive POSIX local
socket (also known as a UNIX domain socket) and registers
the port number with the monitor. The monitor connects to
the socket and performs a blocking read. If an application
process crashes, the socket and the opened port will be in-
validated, in which case the monitor receives an invalid read
error on the socket that indicates the process crash. Fault
tolerance of the monitor processes is also achieved through
passive replication. If the primary monitor replica fails to
send updated information or to respond to FLARe’s middle-
ware replication manager (described below) within a time-
out period, FLARe suspects that the processor has crashed.
Middleware replication manager. FLARe’s middle-

ware replication manager is designed using the Active Ob-
ject pattern [26] to decouple the reporting of a load change
or a failure from the process. This decoupling allows sev-
eral monitors to register with FLARe’s middleware repli-
cation manager while allowing synchronized access to its
internal data structures. Moreover, FLARe can be config-
ured with the LAAF and ROME algorithms via the Strategy
pattern [11]. FLARe’s middleware replication manager is
replicated using SEMI_ACTIVE replication [14] (provided
by the TAO middleware), with regular state updates to the
backup replicas.
Client failover manager. As shown in Figure 1, the

client’s failover manager comprises a CORBA portable
interceptor-based client request interceptor [27] and a redi-
rection agent, which together coordinate to handle fail-
ures in a manner transparent to the client application
logic. Whenever a primary fails, the interceptor catches the
CORBA COMM_FAILURE exception. Since portable inter-
ceptors are not remotely invocable objects, it was not fea-
sible for an external entity (such as a MRM) to send the
rank list information to the interceptor, which is necessary
to determine the next failover target. The redirection agent
is therefore a CORBA object that runs in a separate thread
from the interceptor thread. The interceptor consults the

redirection agent for the failover target from the rank list it
maintains. The interceptor will then reissue the request to
the new target. The rank list is propagated to the redirection
agent proactively by FLARe’s MRM whenever the failover
target list changes.

4 Empirical Evaluation of FLARe

We empirically evaluated FLARe at ISISlab (www.dre.
vanderbilt.edu/ISISlab) on a testbed of 14 blades.
Each blade has two 2.8 GHz CPUs, 1GB memory, a 40
GB disk, and runs the Fedora Core 4 Linux distribution.
Our experiments used one CPU per blade and the blades
were connected via a CISCO 3750G switch into a 1 Gbps
LAN. 12 of the blades ran Real-time CORBA applications
on FLARe. FLARe’s MRM and its backup replicas ran in
the other 2 blades. To emulate distributed soft real-time ap-
plications, the clients in these experiments used threads run-
ning in the Linux real-time scheduling class to invoke oper-
ations on server objects at periodic intervals. All operations
and state updates on the servers were executed according to
the rate monotonic scheduling policy supported by the TAO
scheduling service.

4.1 Evaluating LAAF

The first experiment was designed to evaluate FLARe’s
LAAF algorithm (described in Section 3.2) and compare it
with the optimal static client failover strategy. In the static
client failover strategy, the client middleware is initialized
with a static list of IORs of the backup replicas, ranked
based on the CPU utilization of their processors at deploy-
ment time. The list is not updated at run-time based on the
current CPU utilizations in the system (the failover targets
are optimal at deployment time, but any static failover tar-
get can become suboptimal at run-time in face of dynamic
workloads). In contrast, LAAF dynamically recomputes
failover targets whenever there is a change in the CPU uti-
lization by a threshold (e.g.,± 10%) in any of the processors
in the system.
Experiment setup. Figure 2 and Table 1 illustrate our

experimental setup. The experiment ran for 300 seconds.
To evaluate FLARe in the presence of dynamic workload
changes, at 50 seconds after the experiment was started,
we introduced dynamic invocations on two server objects
DY-1 and DY-2, using client objects, CL-5, and CL-6, re-
spectively. The static failover strategy selects failover tar-
gets that are optimal at deployment time, as follows: if A-1
fails, contact A-3 followed by A-2; if B-1 fails, contact B-3
followed by B-2.

We emulated a process failure 150 seconds after the
experiment started. We used a fault injection mecha-
nism, where when clients CL-1 or CL-2 make invoca-

tions on server objects A-1 or B-1, respectively, the server
objects calls the exit (1) command, crashing the process
hosting server objects A-1 and B-1 on processor TANGO.
The clients receive COMM_FAILURE exceptions, and then
failover to replicas chosen by the failover strategy.

Figure 2: Load-aware Failover Experiment Setup

Analysis of results. Figure 3a shows the CPU utiliza-
tions at all the processors, when clients used the static client
failover strategy. At 50 seconds, servers DY-1 and DY-2
were invoked by clients CL-5 and CL-6 causing the CPU
utilizations at processors LAMBADA and CHARLIE to in-
crease from 0% to 50%.

At 150 seconds when process hosting both A-1 and B-
1 fails on the processor TANGO, clients CL-1 and CL-2
failover to the statically configured replicas A-3 at processor
LAMBADA and B-3 at processor CHARLIE respectively. As
a result, the CPU utilizations at processors LAMBADA and
CHARLIE increase to 90% and 80% respectively. Note that
90% CPU utilization is highly undesirable in middleware
systems because it is close to saturating the CPU which may
result in kernel starvation and system crash [21]. The high
CPU utilizations on processors CHARLIE and LAMBADA
occur, because the static client failover strategy did not ac-
count for dynamic system loads while determining client
failover targets.

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

Static Loads
CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 20%
CL-4 D-1 1 10%

Dynamic Loads
CL-5 DY-1 5 50%
CL-6 DY-2 10 50%

Table 1: Experiment setup for LAAF

In contrast, FLARe’s MRM triggers LAAF to recom-
pute the failover targets in response to load changes. At
50 seconds, LAAF changed the failover target of the pri-
mary replica A-1 from A-3 to A-2, in response to the load

 0

 20

 40

 60

 80

 100

25020015010050

Pr
oc

es
so

r U
til

iz
at

io
n

(%
)

Time (sec)

Static Strategy With Dynamic Load

(TANGO)

(LAMBADA, CHARLIE)

(LAMBADA)

(CHARLIE)

(ALPHA)

(BETA)

(a) Utilization with static strategy

 0

 20

 40

 60

 80

 100

25020015010050

Pr
oc

es
so

r U
til

iz
at

io
n

(%
)

Time (sec)

Adaptive Strategy With Dynamic Load

(TANGO)

(LAMBADA, CHARLIE)

(BETA)

(ALPHA)

(ALPHA)

(BETA)

(b) Utilization with adaptive strategy

Figure 3: CPU utilizations with static and adaptive failover strategies

increase on processor LAMBADA (host of A-3). Similarly,
LAAF also changed the failover target of B-1 from B-3 to
B-2 in response to the load increase on processor CHAR-
LIE (host of B-3). At 150 seconds, clients CL-1 and CL-2
failover to backup replicas A-2 and B-2 respectively. As
shown in Figure 3b, none of the processor utilizations is
greater than 60% after the failover of clients CL-1 and CL-
2. This result shows that LAAF effectively alleviates pro-
cessor overloads after failure recovery, due to its adaptive
and load-aware failover strategy.

4.2 Evaluating ROME

We designed two more experiments to evaluate the
ROME algorithm described in Section 3.3. We stress-
tested ROME under overloads caused by dynamic workload
changes and multiple failures.

Figure 4: Overload Redirection Experiment Setup

Experiment setup. Figure 4 and Table 2 show the ex-
perimental setup. The utilization bound on every processor
was set to 70%, which is below the schedulable utilization
bound (based on the number of tasks) for the rate mono-
tonic policy supported by the middleware scheduling ser-

vice. The required server delay for each task equalled its
invocation period.

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

Static Loads
CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 30%
CL-4 D-1 1 10%

Dynamic Loads
CL-5 H-1 10 50%

Table 2: Experiment setup for ROME

Concurrent Workload Change and Process Failure.
We emulated a failure 50 seconds after the experiment
started. We used a fault injection mechanism, where when
client CL-1 makes invocations on server object A-1, the
server object calls the exit (1) command, crashing the pro-
cess hosting server object A-1 on the processor TANGO. The
client CL-1 receives a COMM_FAILURE exception due to
the failure of A-1, and then consults its rank list to make a
failover decision, which is A-2. At the same time, a client
CL-5 starts making invocations on a new service H-1.

As a result of the concurrent failure and workload
change, the load on the processor BETA rises to 90% (high-
lighted by point A in the Figure 5a), which exceeds the
specified utilization bound (70%) and consequently trig-
gers ROME. ROME then performs a lightweight migration
of the clients of A-2 and redirects all of its clients to A-
3, which is hosted in the least loaded of all the processors
hosting a replica of A-1. Within 1 second, the utilization of
processor BETA decreases to 50%, while the utilization of
processor LAMBADA increases to 40% due to A-3 becom-

 0

 20

 40

 60

 80

 100

30025020015010050

Pr
oc

es
so

r U
til

iz
at

io
n

(%
)

Time (sec)

Overload Management

(TANGO)

(PRINCE, CHARLIE)

(CHARLIE, LAMBADA = 0%)(TANGO = 0%)

(ALPHA)

(PRINCE)

(ALPHA)

(BETA)

(LAMBADA)

(B)

(A)

(a) Utilizations with overload management

250

200

150

100

50

30025020015010050

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

Time (sec)

Overload Management

(CL-3)

(CL-2)(CL-2)

(CL-1)

(CL-4) (CL-4)

(A)

(B)

(CL-5)

(b) Client response times with overload management

Figure 5: Evaluation of ROME

ing the new primary replica.
At this stage, the CPU utilizations of all processors are

below 70%. We also plot the measured end-to-end re-
sponse times perceived by the clients in Figure 5b. After
ROME redirected the client’s requests, the end-to-end re-
sponse times of all the clients drop below the required server
delays, indicating that every server object achieved its re-
quired server delay (which is a part of the corresponding
end-to-end response times). This result demonstrated that
ROME can handle overload effectively and efficiently.
Concurrent Failures. We then stress-tested ROME fur-

ther with concurrent failures. Since the CPU utilizations in
the system have changed dynamically, FLARe’s MRM also
employs LAAF to redetermine the failover targets for all the
primary objects in the system. The recomputed failover tar-
gets are as follows: (1) for A-1, it is 〈A-4,A-2〉 (2) for B-1,
it is 〈B-2,B-3〉, and (3) for D-1, it is 〈D-2〉

We emulated a failure 150 seconds after the experiment
started. We used a fault injection mechanism, where when
clients CL-1 and CL-2 make invocations on server objects
A-3 and B-1, respectively, the server objects call the exit (1)
command, crashing the process hosting server objects A-3
on processor LAMBADA and B-1 on processor CHARLIE.
The clients receive COMM_FAILURE exceptions, and then
fail over to replicas chosen by the failover strategy. Using
the failover targets computed by LAAF, client CL-1 fails
over to A-4 while client CL-2 fails over to B-2, both of
which end up starting on the same processor ALPHA, which
is already hosting a primary D-1.

As a result, the CPU utilization of the processor ALPHA
jumps to 80% (as highlighted by point B in Figure 5a), while
the clients CL-1, CL-2, and CL-4 see an increase in response
times (as shown in Figure 5b). FLARe’s MRM triggers
ROME once again to resolve the overload, starting with the
most heavily loaded service, A-4, but clients of A-4 cannot

be moved, as that would again overload the processor BETA.
Hence, ROME redirects all clients of B-2 (which is the next
most heavily loaded object) to its replica B-3 on processor
PRINCE. As a result, the CPU utilizations of all the proces-
sors settle below 70% as shown by point (B in Figure 5a),
while the end-to-end response times (and hence the server
delays) drop below the required server delays.

This experiment demonstrates that ROME can effec-
tively enforce the specified utilization bound and server de-
lays by dynamically handling overloads caused by concur-
rent failures and workload changes.

4.3 Failover Delay

To empirically evaluate the failover delays under the
static and the adaptive failover strategies, we ran an exper-
iment with client CL-1 invoking 10,000 requests on server
object A-1. No other processes operated in the processor
hosting A-1, so that the response time will equal the exe-
cution time of the server. A fault was injected to kill the
server while executing the 5,001st request. The clients then
failover to backup server objects A-2, which execute the re-
maining 5,000 requests (including the one experiencing the
failure).

The left side of Figure 6 shows the different response
times perceived by client C-1 in the presence of server ob-
ject failures. The failover delays for the static and adaptive
failover strategies are similar because under the static strat-
egy the client knows the failover decision a priori, while
under the LAAF strategy, FLARe’s MRM proactively sends
the updated failover targets to the client so they are also
readily available when a failover occurs. Our results indi-
cate that FLARe’s proactive failover strategy achieves fast
failover with a failover delay comparable to the static strat-
egy.

 0

 10

 20

 30

 40

 50

Runtime OverheadFailover Delay

m
ill

is
ec

on
ds

15.07 15.23

39.25 39.26

Without FLARe
With FLARe

Figure 6: Failover delay and run-time overhead

4.4 Overhead under Fault-Free Conditions

FLARe uses a CORBA client request interceptor to
catch COMM_FAILURE exceptions and transparently redi-
rect clients to suitable failover targets. To evaluate the run-
time overhead of these per-request interceptions during nor-
mal failure free conditions, we ran a simple experiment with
client CL-1 making invocations on server object A-1 with
and without client request interceptors.

We ran this experiment for 50,000 iterations and mea-
sured the average response time perceived by CL-1. The
right side of Figure 6 shows that the average response time
perceived by CL-1 increased by only 8 microseconds when
using the client request interceptor. This result shows that
interceptors add negligible overhead to the normal opera-
tions of an application.

5 Related Work

Fault-tolerance in non-real-time middleware. Prior re-
search has focused on designing fault-tolerant middleware
systems using CORBA [10, 3, 4]. A survey of different ar-
chitectures, approaches, and strategies using CORBA-based
fault-tolerance capabilities is presented in [23]. Research
has also focused on non-CORBA based fault-tolerant mid-
dleware. For example, IFLOW [8] uses fault-prediction
techniques to increase or decrease the frequency of backup
replica state synchronizations to optimize state transfer dur-
ing failure recovery. These prior middleware platforms,
however, were not designed for real-time applications. In
contrast, FLARe can maintain desired soft real-time perfor-
mance in face of dynamic workload and failures.
Fault-tolerance in real-time systems based on active
replication. Prior research has focused on developing mid-
dleware systems that provide fault-tolerance for real-time
systems using ACTIVE replication. AQUA [20] dynamically
adapts the number of replicas receiving a client request in
an ACTIVE replication scheme so that slower replicas do not

affect the response times received by clients. Eternal [19]
dynamically changes the locations of active replicas by mi-
grating soft real-time objects from heavily loaded proces-
sors to lightly loaded processors, thereby providing better
response times for clients. In the past decade, research
has also focused on task partitioning algorithms [16, 9, 13]
that allocate tasks and their ACTIVE replicas on appropri-
ate processors at deployment time while satisfying timing
and dependability constraints. We recognize that hard real-
time systems require predictable performance despite the
occurence of failures, and hence require ACTIVE replica-
tion. In contrast, FLARe focuses on PASSIVE replication,
which is more suitable for resource-constrained distributed
soft real-time applications due to its low resource usage.
Fault-tolerance in real-time systems based on passive
replication. MEAD [24] reduces fault detection and client
failover time by determining the possibility of a primary
replica failure using simple failure prediction mechanisms
and redirects clients to alternate servers before failures oc-
cur. [28] presents a real-time primary backup replication
scheme that uses scheduling algorithms such as rate mono-
tonic scheduling algorithm for providing temporal consis-
tency guarantees for operations as well as update transmis-
sions. The key contributions of FLARe are its adaptive
failover target selection and overload management approach
for handling dynamic soft real-time applications.

Prior research has also focused on deployment-time
scheduling and task partitioning algorithms that deploy
tasks and their PASSIVE replicas in their appropriate pro-
cessors. [5] analyzes first-fit assignments for periodic real-
time tasks scheduled using rate monotonic priority assign-
ments with both passive and active instances. To provide
fault-tolerance for aperiodic tasks in multiprocessor sys-
tems, [12] introduces backup overbooking techniques that
allocate multiple passive replicas to the same processor as-
suming that only some passive replicas must be activated at
the same time. Likewise, [15] proposes adaptive fault toler-
ance mechanisms to choose a suitable redundancy strategy
for dynamically arriving aperiodic tasks based on system re-
source availability and supports both PASSIVE and ACTIVE
replication. FLARe can benefit from such work for deploy-
ing long-running periodic tasks and their PASSIVE replicas
at their most appropriate processors. The novelty of FLARe
lies its capability to adapt to dynamic workloads through
load-aware failover and overload management.

6 Concluding Remarks

This paper presents the Fault-tolerant Load-aware and
Adaptive middlewaRe (FLARe) for distributed soft real-
time applications. FLARe features (1) the Load-aware and
Adaptive Failover (LAAF) strategy that adapts failover tar-
gets based on system load; (2) the Resource Overload Man-

agement Redirector (ROME) strategy that dynamically en-
forces CPU utilization bounds to maintain desired server
delays in face of concurrent failures and load changes; and
(3) an efficient fault-tolerant middleware architecture that
supports transparent failover to passive replicas. FLARe
has been implemented on top of the TAO RT-CORBA mid-
dleware as open-source software. Empirical evaluation on
a distributed testbed demonstrates FLARe’s capability to
maintain system availability and soft real-time performance
in the face of dynamic workload and failures while intro-
ducing only negligible run-time overhead.
Acknowledgments: This work has been supported in part

by NSF CAREER Award CNS-0448554.

References

[1] J. Balasubramanian, S. Tambe, B. Dasarathy, S. Gadgil,
F. Porter, A. Gokhale, and D. C. Schmidt. Netqope:
A model-driven network qos provisioning engine for dis-
tributed real-time and embedded systems. In RTAS’ 08,
pages 113–122, 2008.

[2] J. Balasubramanian, S. Tambe, A. Gokhale, C. Lu, C. Gill,
and D. C. Schmidt. FLARe: a Fault-tolerant Lightweight
Adaptive Real-time Middleware for Distributed Real-time
and Embedded Systems. Technical Report ISIS-08-812, In-
stitute for Software Integrated Systems, Vanderbilt Univer-
sity, Nashville, TN, October 2008.

[3] R. Baldoni and C. Marchetti. Three-tier replication for ft-
corba infrastructures. Softw. Pract. Exper., 33(8):767–797,
2003.

[4] T. Bennani, L. Blain, L. Courtes, J. C. F. M. O. Killijian,
E. Marsden, and F. Taiani. Implementing Simple Replica-
tion Protocols using CORBA Portable Interceptors and Java
Serialization. In Proc. of DSN. (2004).

[5] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-
tolerant rate-monotonic first-fit scheduling in hard-real-time
systems. IEEE Trans. Parallel Distrib. Syst., pages 934–945,
1999.

[6] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
The Primary-backup Approach. In Distributed systems (2nd
Ed.), pages 199–216. 1993.

[7] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
The Primary-backup Approach. In Distributed systems (2nd
Ed.), pages 199–216. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 1993.

[8] Z. Cai, V. Kumar, B. F. Cooper, G. Eisenhauer, K. Schwan,
and R. E. Strom. Utility-Driven Proactive Management of
Availability in Enterprise-Scale Information Flows. In Pro-
ceedings of ACM/Usenix/IFIP Middleware, pages 382–403,
2006.

[9] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng. Real-
Time Task Replication for Fault Tolerance in Identical Mul-
tiprocessor Systems. In RTAS ’07, pages 249–258, 2007.

[10] R. Friedman and E. Hadad. Fts: A high-performance corba
fault-tolerance service. In Proc. of WORDS.(2002).

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[12] S. Ghosh, R. Melhem, and D. Mossé. Fault-tolerance
through scheduling of aperiodic tasks in hard real-time mul-
tiprocessor systems. IEEE Trans. Parallel Distrib. Syst.,
8(3):272–284, 1997.

[13] S. Ghosh, R. R. Rajkumar, J. Hansen, and J. Lehoczky. Scal-
able resource allocation for multi-processor qos optimiza-
tion. In ICDCS ’03, page 174, Providence, RI, USA, 2003.

[14] A. S. Gokhale, B. Natarajan, D. C. Schmidt, and J. K. Cross.
Towards real-time fault-tolerant corba middleware. Cluster
Computing, 7(4):331–346, 2004.

[15] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ra-
mamritham. Adaptive fault tolerance and graceful degra-
dation under dynamic hard real-time scheduling. In RTSS
’97, page 79, San Francisco, CA, USA, 1997.

[16] S. Gopalakrishnan and M. Caccamo. Task partitioning with
replication upon heterogeneous multiprocessor systems. In
RTAS ’06, pages 199–207, 2006.

[17] R. Guerraoui and A. Schiper. Software-Based Replication
for Fault Tolerance. IEEE Computer, 30(4):68–74, Apr.
1997.

[18] E. D. Jensen. Distributed Real-time Specification for
Java. java.sun.com/aboutJava/communityprocess/
jsr/jsr_050_drt.html, 2000.

[19] V. Kalogeraki, P. M. Melliar-Smith, L. E. Moser, and
Y. Drougas. Resource Management Using Multiple Feed-
back Loops in Soft Real-time Distributed Systems. Journal
of Systems and Software, 2007.

[20] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An Adap-
tive Quality of Service Aware Middleware for Replicated
Services. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1112–1125, 2003.

[21] C. Lu, X. Wang, and C. Gill. Feedback Control Real-time
Scheduling in ORB Middleware. In Proc. of RTAS. (2003).

[22] Object Management Group. Real-time CORBA Specifica-
tion v1.2 (static), OMG Document formal/05-01-04 edition,
Nov. 2005.

[23] Pascal Felber and Priya Narasimhan. Experiences, Ap-
proaches and Challenges in building Fault-tolerant CORBA
Systems. Computers, IEEE Transactions on, 54(5):497–
511, May 2004.

[24] S. Pertet and P. Narasimhan. Proactive recovery in dis-
tributed corba applications. In DSN ’04, pages 357–366,
2004.

[25] R. D. Schlichting and F. B. Schneider. Fail-stop Processors:
An Approach to Designing Fault-tolerant Computing Sys-
tems. ACM Trans. Comput. Syst., 1(3):222–238, 1983.

[26] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[27] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran.
Evaluating Meta-Programming Mechanisms for ORB Mid-
dleware. IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Tech-
nologies, 39(10):102–113, Oct. 2001.

[28] H. Zou and F. Jahanian. A real-time primary-backup replica-
tion service. Parallel and Distributed Systems, IEEE Trans-
actions on, 10(6):533–548, 1999.

