
QoS-enabled Distributed Mutual Exclusion in
Public Clouds

James Edmondson1, Doug Schmidt1, and Aniruddha Gokhale1

Dept. of EECS, Vanderbilt University, Nashville, TN 37212, USA
Email: {james.r.edmondson,doug.schmidt,a.gokhale}@vanderbilt.edu

Abstract. Popular public cloud infrastructures tend to feature central-
ized, mutual exclusion models for distributed resources, such as file sys-
tems. The result of using such centralized solutions in the Google File
System (GFS), for instance, reduces scalability, increases latency, creates
a single point of failure, and tightly couples applications with the under-
lying services. In addition to these quality-of-service (QoS) and design
problems, the GFS methodology does not support generic priority pref-
erence or pay-differentiated services for cloud applications, which public
cloud providers may require under heavy loads.
This paper presents a distributed mutual exclusion algorithm called Pri-
oritizable Adaptive Distributed Mutual Exclusion (PADME) that we de-
signed to meet the need for differentiated services between applications
for file systems and other shared resources in a public cloud. We analyze
the fault tolerance and performance of PADME and show how it helps
cloud infrastructure providers expose differentiated, reliable services that
scale. Results of experiments with a prototype of PADME indicate that it
supports service differentiation by providing priority preference to cloud
applications, while also ensuring high throughput.
keywords: mutual exclusion, public cloud, QoS, file systems

1 Introduction

The Google File System (GFS) was designed to support the sustained file through-
put capacities of the Google search engine [1–3]. GFS provides high throughput
in a single cluster of thousands of computers, each servicing the Google search
engine. Although the GFS scaled well to hundreds of terabytes and a few million
files in append-mode (GFS does not support overwriting a file), other quality-
of-service (QoS) properties (e.g., latency, throughput of small files—which is
common in many applications, and differentation amongst applications) were
not the focus of its initial design.

Scalability problems with GFS began appearing when the centralized master
server was forced to process tens of petabytes worth of data requests and ap-
pends [2]. As a short-term solution, Google engineers used a centralized master
server to manage a cell of the overall cluster. Although this approach provided
some fault tolerance against the single master failing, some failures still occurred,
and throughput and scalability suffered [1].



As Google grew, so did its list of services and applications. Since GFS fo-
cused on throughput rather than latency and scalability, performance issues
appeared with certain applications, such as GMail, Youtube, and Hadoop [1].
Google’s temporary solution to overcome this problem was the BigTable appli-
cation, which was layered atop GFS and packed small files into the large 64
MB file metadata that had been in place since their Internet crawler was first
deployed [1, 2].

For cloud applications (such as Youtube) that can be buffered, the latency of
the GFS system has mostly been acceptable. For applications with file accesses
and writes on the cloud, however, Google is looking into replacements for GFS
that provide better QoS [1]. Deferring these changes can be costly for applications
that have a GFS-like interface or these applications face mounting integration
issues.

Figure 1 shows the scalability problems of a centralized server for reading
and writing to a segregated file system. In this figure, the light-shaded lines rep-

Fig. 1. GFS Centralized Master Controller

resent the computational and bandwidth resources that are utilized and dark
represents the wasted resources. According to Google network engineers, the
major bottlenecks of the GFS system include the inability to provide native
overwrite operations (GFS supports only append mode and applications have
to work around this), the 64 MB metadata for even small files, and the central-
ized master controller that every request and write goes through in each cluster
cell. The centralized master controller provides mutual exclusion for read-write
operations, garbage collection, and replication and persistence. Even with ex-
tra computing resources, this controller reduces scalability and throughput, and
significantly increases latency due to queuing [1].



In addition to the latency bottleneck, reduced overall throughput, and lack of
fault tolerance, GFS’s centralized architecture also treats all application requests
equally. Applying this system to cloud providers with scarce resources and steady
client application deployments means there is no built-in differentiation between
client priorities according to their payscale or other factors.

In general, a cloud file system should address the following challenges:

1. Avoid centralized bottlenecks, such as a master controller which restricts
file throughput, and increases latency due to queuing and limited bandwidth
through a single host.

2. Handle failures of nodes and applications, e.g., GFS requires that
master controllers be manually reset by an engineer when they fail [1].

3. Support aggregated priorities, e.g., based on expected cost, payment,
etc. of cloud applications.

This paper presents a distributed mutual exclusion algorithm called Prior-
itizable Adaptive Distributed Mutual Exclusion (PADME) that can be used to
address these challenges in cloud file systems by decentralizing the mutual exclu-
sion problem, as shown in Figure 2. As with Figure 1, the decentralized PADME

Fig. 2. Scalability of a Decentralized Methodology

algorithm still has a certain amount of overhead (shown in dark) due to the
replicas and clients working together and coming to a consensus. In contrast,
however, the overall capacity of the decentralized PADME approach scales with
the number of participating nodes, rather than being limited by a single master
controller.

The remainder of this paper is organized as follows: Section 2 describes the de-
sign and capabilities of of PADME algorithm; Section 3 evaluates results from ex-
periments conducted on a simulated message-oriented prototype of the PADME
algorithm over shared memory; Section 4 compares our work on PADME with
related research; and Section 5 presents concluding remarks and lessons learned.



2 Distributed Mutual Exclusion in Public Clouds

This section presents an algorithm called Prioritizable Adaptive Distributed Mu-
tual Exclusion (PADME) that we developed to meet the cloud file system chal-
lenges described in Section 1. The PADME algorithm performs two main oper-
ations:

1. It maintains a spanning tree of the participants (e.g., applications, cus-
tomers, or anything that wants access to the file system) in the network.
The spanning tree is based upon the customer or application priorities and
the root of the spanning tree will be the highest priority entity in the sys-
tem. Depending on the network topology and customer demands this root
can and will change during runtime operations.

2. It enforces mutual exclusion according to user-specified models and prefer-
ences for messaging behavior. The models supported by the PADME algo-
rithm include priority differentiation and special privileges for intermediate
nodes in the spanning tree (intermediate nodes are nodes between requesting
nodes). Each model may be changed during runtime if required by the cloud
provider, applications, or users.

Below we describe the PADME algorithm and show how it can be imple-
mented efficiently in cloud middleware platforms or cloud applications, wherever
the distributed mutual exclusion is appropriate.

2.1 Building the Logical Spanning Tree

PADME builds a logical spanning tree by informing a cloud participant (e.g., an
application that is using the cloud infrastructure to manage the file system) of
its parent. Under ideal circumstances, all the spanning tree construction should
be performed in the cloud infrastructure without affecting user applications.

A participant need not be informed of its children as they will eventually try
to contact their parent, establishing connections on-demand. PADME uses this
same mechanism to reorder the tree when optimizing certain high priority par-
ticipants. Each participant is responsible for reconnecting to its parent through
the cloud API, middleware, or however the cloud offers file system services.

To establish which parent to connect to, PADME’s joining process multicasts
its priority and waits for responses during a (configurable) timeout period. The
closest priority above the joining process becomes the parent. The process can
arbitrarily connect to a different parent later, in which case the parent will need
to remove pending requests from the child. This step can be postponed until the
file access permission returns to this node for the specific requester to eliminate
the need for a parent to care about children moving to other parents. If the
connection no longer exists the token is sent back up to higher priority processes
in the logical spanning tree of cloud participants.

Cloud middleware developers could decide to let each cluster form its own
priority-based spanning tree and connect roots of each tree to form the cloud file



system mutual exclusion tree. The PADME algorithm presented in Section 2.2
will work with any spanning tree as long as connected nodes can communicate.
Section 2.3 covers PADME’s fault tolerance support. Figure 3 shows the con-
struction of such a spanning tree out of priority information. In this case, the

Fig. 3. Building a Balanced Spanning Tree

tree is balanced, though it need not be. During runtime, an application or user
may add or remove a participant, rename participants, or conduct other such
operations to organize the intended tree and dynamically respond to changes in
request load or priority changes.

PADME’s tree building phase requires updating affected participants with
parent information (i.e., informing them of the direction of the logical root of
the tree). The messaging overhead of maintaining a logical spanning tree is not
included in our algorithm details because cloud providers can simply build a
spanning tree once manually if desired. For example, the cloud provider may
know that the application deployments are static, or the provider is anticipating
a specific scenario like spikes of file access during a major sporting event and
wants to give preference to this activity during the championship match.

Even in statically assigned spanning trees, higher priority cloud participants
should be pushed towards the root to give them preferential service. The logical
token will be passed back to the root of the tree before continuing on to the next
participant in our algorithm. Participants at higher levels of the tree experi-
ence lower message complexity, faster synchronization delay, better throughput,
and even higher QoS for the target system and a preference for high priority
customers, as shown in Section 2.3.

2.2 Models and Algorithm for Distributed Mutual Exclusion

Before accounting for faults, PADME requires just three types of messages: Re-
quest, Reply, and Release. A Request message is made by a participant that



wants to acquire a shared resource, such as cloud file system access. A Request
message traverses up the spanning tree from the participant node to the root via
its parent and ancestor nodes. A Reply message is generated by the root after
access to the resource is granted. The Reply message traverses from the root to
the requesting participant node. The Release message traverses up the tree from
the node that holds the shared resource towards the root once the node is ready
to release the resource. The interaction of these messages is shown in Figure 4.

Fig. 4. PADME Messages for Mutual Exclusion

PADME supports four models (Priority Model, Request Model, Reply Model,
and Release model) that describe the semantics of actions performed by any par-
ticipant in the spanning tree that receives one of the three types of messages, as
well as QoS differentiation that must be supported. The latter three models are
named according to whether an intermediate participant can enter its own crit-
ical section, i.e., exclusive access to the cloud’s distributed file system resource,
upon receipt of the message type. These models stem from our approach to
distributed mutual exclusion and optimizations that allow shorter synchroniza-
tion delay between critical section entries and improved QoS via user-specified
requirements to middleware.

The configurations of the Request, Reply, and Release models may be changed
at runtime to yield different QoS, including

– Higher critical section throughput – i.e., the number of file accesses
possible to the cloud’s distributed file system,

– Changes in fairness – e.g., going from preferring higher priority partici-
pants to giving everyone a chance at the critical section – a requirement of
our motivating scenario in Section 1,

– Fewer priority inversions – i.e., alleviating the situation where a low
priority participant gets a critical section entry before a high priority partic-
ipant, even though a critical section request from a higher priority participant
exists, and



– Lower average message complexity – i.e., fewer messages being required
per critical section entry.

These four models are described below and each are integral components in the
algorithm that may be tweaked to affect performance, usually at the cost of
possible priority inversions.

Request Models PADME provides two Request Models: Forward and Re-
place. The Forward Request Model requires a parent to immediately forward
all requests to its own parent. The Replace Request Model requires a parent to
maintain a priority queue of child requests, which should have the same Priority
Model as the root participant. Under the Replace Request Model, a node only
sends a Request to its parent if there are no Request messages in its priority
queue, or if the new Request is of higher priority than the last one that was
sent. The Replace Request Model is slightly harder to implement, but it results
in messages only being sent when appropriate and may alleviate strain on the
root node. It also will result in less message resends if a parent node fails.

Reply Models PADME provides two Reply Models: Forward and Use. The
Forward Reply Model requires a parent to immediately forward a reply to its
child without entering its own critical section, regardless of whether or not it has
a request pending. The Use Reply Model allows a parent Pc to enter its critical
section upon receiving a Reply message from its parent Pp, if Pc currently has a
Request message outstanding.

Release Models PADME provides two Release Models: Forward and Use. The
Forward Release Model requires a participant to immediately forward a Release
message to its parent without entering its own critical section, regardless of
whether it has a request pending. The Use Release Model allows a participant
to enter its critical section when it receives a Release message from one of its
children, if the participant has an outstanding Request pending.

When applying the Use model, the participant must append its identifier
onto the Release message if it entered its critical section (as shown in Figure 5,
where each participant appends their release information to their parents when

Fig. 5. Appending Identifier to Release Message



the critical sections have already been entered), which may result in a Release
message containing multiple instances of the participant identifier. Consequently,
appropriate data structures should be used to allow for these duplicates (e.g.,
multisets). These duplicates enable proper bookkeeping along the token path
since up to two Request messages may require removal from each affected priority
queue.

Priority Models PADME provides two Priority Models: Level and Fair. The
Level Priority Model means that one Request of the tuple form Request <
Im, Pm, Cm > should be serviced before Request < In, Pn, Cn > if Pm < Pn. Px

stands for the priority of the participant identified by Ix, and Cx refers to the
request id or clock. If a tie occurs, the clocks Cx are compared first and then the
identifiers. This ordering does not guarantee the absence of priority inversions,
and priority inversions may happen when the token is in play (walking up or
down the tree).

The Fair Priority Model means that one Request of the form Request <
Im, Pm, Cm > should be serviced before Request < In, Pn, Cn > if Cm < Cn.
Upon a tie, the priority levels are compared, followed by the identifiers. The
Fair Priority Model will result in all participants eventually being allowed into a
critical section (assuming bounded critical section time and finite time message
delivery), whereas the Level Priority Model makes no such guarantees.

Overview of PADME’s Mutual Exclusion Algorithm When a participant
needs to enter its critical section (e.g. an agent is requesting exclusive access for
writing to a cloud file system), it sends a Request message to its parent, who
then forwards this Request up to its parent, until eventually reaching the root
node. The Request message is a tuple of the form Request < I, P,C,D >, where
I is the identifier of the requesting participant, P is the priority level (level),
C is a timer or request id, and D is a user data structure that indicates the
shared resource id (e.g., the name of the file that will be accessed in the cloud
file system) and any other data relevant to business logic. There is no reason
that any of these variables be limited only to integers. For more information on
the election of cloud entity and volume identifiers that may be useful for a cloud
file system implementation, please see the Renaming Problem [4].

The choice of a timer mechanism (also known as a request id) may result
in varying ramifications on the Fair Priority Model, discussed in Section 2.3.
A timer should be updated (1) only when sending a Request or (2) any time
a Request, Reply, or Release message with the highest time that of the agent
who is receiving message or the time indicated in the message sent. The latter
method will result in time synchronization across agents which can be helpful
in synchronizing fairness in late joining agents or when switching from Level
Priority Model to Fair Priority Model. Resending a Request does not increase
the local request count. A Request may be resent if the parent participant faults
or dies to ensure that a Request is serviced eventually by the root.



The root participant decides which Request to service according to a priority
mechanism. After determining who gets to enter their critical section next, a
Reply message is sent of the form Reply < I,C > or < I,C,D > where I is once
again the identifier of the requesting participant, C is the count of the Request,
and D is an optional parameter that may indicate business logic information, e.g.,
the name of the file to be overwritten. Once a Reply message reaches the intended
requesting participant, the requesting participant enters its critical section.

Upon exiting the critical section, the requesting participant must send a
Release message to its parent participant, who forwards this Release message
to its parent until the root receives the message. Release messages have the
form Release < I0, I1, . . . In > or < I0, D0, I1, D1, . . . In, Dn > where I0, I1,
. . . In is a list of participant identifiers that used their critical section along
this token path, and D0, D1, . . .Dn is a parameter that may indicate business
logic information e.g., the frequency that is being released. The root participant
and any participant along the token path should remove the first entry of each
identifier in< I0, I1, . . . In > before forwarding the Release to its parent for
proper bookkeeping.

2.3 QoS Properties of the PADME Algorithm

PADME’s Request, Reply, Release, and Priority Models described in Section 2.2
are orthogonal and may be interchanged by the user to accomplish different QoS,
higher fault tolerance, reduced message complexity at key contention points, or
critical section throughput during runtime. Each combination has certain QoS
properties that may fit an application’s needs better than the others, e.g., each
has certain synchronization delay characteristics, throughput, and even message
complexity differences during fault tolerance. To simplify understanding of the
different combinations of these models, we created a system of model combina-
tions that we call Request-Grant-Release settings that codify these combinations.

Non-fault Tolerance Case PADME’s most robust Request-Reply-Release set-
ting is the Replace-Use-Use model, which corresponds to the Replace Request
Model, Use Reply Model, and Use Release Model. The Replace-Use-Use setting
requires each participant to keep a priority queue for child Requests (described
further in Section 2.2), but its primary purpose is to limit the number of message
resends during participant failures or general faults to only the most important
Requests in the queue. Replace-Use-Use is consequently very useful when reduc-
ing the number of messages in the network is a high priority.

PADME’s Use Reply Model of the Replace-Use-Use combination allows a
participant to enter its critical section before forwarding on a Reply message
to an appropriate child. The Use Release Model allows a similar mechanism
in the opposite direction, on the way back to root. Both of these use models
work well in conjunction with the Fair Priority Model to not only decrease
synchronization delay (and thus increase critical section throughput) but also
favor higher priority participants, as those higher priority participants will be



closer to root and may have up to two chances of entering a critical section along
a token path from root to a requestor and back to root.

Even when the Forward-Forward-Forward combination is used, the higher
priority participants closer to root will still have lower message complexity and
lower average synchronization delay than lower priority participants (e.g., leaf
nodes). This results from the token path being longer from the leaf nodes to root.
Consequently, placing frequently requesting participants closer to the root node
in the logical routing network can result in increased performance (Section 2.3
analyzes message complexity and synchronization delay).

All of PADME’s Fair Priority Model-based settings inherently may lead to
priority inversions. PADME’s Level Priority Model by itself, however, does not
eliminate priority inversions. To eliminate priority inversions from occuring in
PADME, the Level Priority Model must be used in combination with *-Forward-
Forward.

If the settings contain Use Models for either the Reply or Release Models
when the virtual token progresses towards an entity, it is possible that a higher
priority request may be delayed at the root node that arrived after permission
was granted to a lower priority entity. In practice, completely eliminating prior-
ity inversions is typically not as important as throughput. Settings that enable
the Use Model for both Reply and Release models therefore have much higher
throughput proportional to the depth of the spanning tree.

Fault Tolerance Case There are several options for fault tolerance that can be
supported by PADME, but we focus on the most straightforward to implement
and still be robust to failures. We use a classic approach called a Byzantine view
change [5] whenever a root node faults (i.e., becomes unavailable). A Byzantine
view change is a type of consensus that requires a majority agreement for electing
a primary node. The only time this would be initiated would be when a non-root
participant detects that its parent is unresponsive, attempts to connect to a new
parent using the protocol discussed in Section 2.1, and receives no response from
a higher priority entity.

Upon electing a new root node, the children of former root push all pending
requests up to the new root, and the system resumes operation. When a token is
believed to be lost by the root node, e.g., after a configurable timeout based on
a query of the participants for any outstanding tokens, a new token is generated.

If the root did not die—but believes a token has been lost—it can either
multicast a query for the outstanding tokens and regenerate, or it can use tar-
geted messages along the path the token took. In the latter case, the token will
either pass normally with a release message or the root will have to regenerate
a token. This process is shown in Figure 6. The root participant knows it sent a
permission token to D and that it went through child B to get there. There is
no reason to send a recovery message to anyone other than B and let it perco-
late down to D unless multicast or broadcast is being used and the operation is
inexpensive for the network.



Fig. 6. Targeted Recovery of an Outstanding Token

Any time a parent connection is lost, the orphaned child establishes a new
parent with the protocol outlined in Section 2.1 and resends all pending requests
from itself and its children.

3 Evaluating the PADME algorithm

This section evaluates results from experiments conducted on a simulated message-
oriented prototype of the PADME algorithm over shared memory. We simulate
critical section time (the time a participant uses its critical section), message
transmission time between participants (the time it takes to send a Request, Re-
ply, or Release message between neighboring cloud participants in the spanning
tree), and critical section request frequency (how often a participant will request
a critical section if it is not already in a critical section or blocking on a request
for a critical section). Our experiments focus on the following goals:

1. Quantifying the degree of QoS differentiation. The goal of these ex-
periments is to gauge whether or not the PADME algorithm provides QoS
differentiation for participants in a public cloud (see Section 1) and whether
or not the Request-Reply-Release models described in Section 2.2 have any
tangible effects on QoS differentiation and throughput. Our hypothesis is
that the PADME algorithm will provide significant differentiation based on
proximity to the root participant.

2. Measuring critical section throughput. The goal of these experiments
is to measure the critical section throughput of the PADME algorithm. Our
hypothesis is that the PADME algorithm will provide nearly optimal critical
section throughput for a distributed system, which is the situation where
synchronization delay is tm—the time it takes to deliver one message to
another participant.

We created a simulator that allowed us to configure the Priority, Reply, and
Release Models for several runs of 360 seconds. The experiments ran on a 2.16



GHZ Intel Core Duo 32 bit processor system with 4 GB RAM. The experiments
were conducted on a complete binary tree with seven participants and a depth
of 3 on a simulated network of seven participants: one high importance, two
medium importance, and four low importance.

3.1 Quantifying the Degree of QoS Differentiation

The QoS Differentiation experiments quantified the ability of the PADME algo-
rithm to differentiate between cloud customers and applications based on their
priority—a derived metric that may directly correlate to money paid by the users
of the system or a service’s importance in serving cloud customers. We present
the results as they relate to algorithm configurations and the tradeoffs between
reducing priority inversions and increasing file access throughput.

Setup Two experiments are presented here. The first has a message transmit
time of 1 sec and a critical section entry time of 1 sec. The second experiment
has a transmit time (tm) of 0.5 sec and a critical section entry time of 1 sec.
The latter experiment more accurately emulates network and Internet traffic
since transmit time is rarely 1 sec. We use a convention of referencing models
as Priority-Request-Reply-Release when describing PADME settings for brevity.
Our PADME prototype does not yet include the Replace Request Model, so no

Fig. 7. Priority Differentiation with CS time of 1s and Message latency of 1ms

configurations with the Replace Request Model are included in this section. We
expect, however, that throughput and latency for this model should be identical
to the Forward Request Model.



Analysis of Results Figure 8 and Figure 7 outline the results for this test.
The root participant had high priority, the participants on the second level had
medium priority, and the leaf nodes on the third level had low priority.

Fig. 8. Priority Differentiation with CS time of 0.5s and Message latency of 0.5ms

In the analysis below we reference the PADME model configurations as
Priority-Request-Reply-Release for brevity. Differentiation increases under cer-
tain models as the message time is decreased. This result appears to occur in
Fair-Forward-Forward-Use, but is likely true of Forward-Use-Forward. Of the
Request-Reply-Release combinations that appear to show the best differentia-
tion amongst priority levels, those with Level Priority Model differentiate the
best. Those with any type of Level Priority Model differentiate according to
priority levels, which makes sense.

More interesting, however, is how the Fair-Forward-Use-Use, Fair-Forward-
Forward-Use, and Fair-Forward-Use-Forward model combinations allow for bet-
ter QoS in comparison to Fair-Forward-Forward-Forward. Although we are being
fair in priority policy, this policy shows favoritism to the lower priority levels,
which have more participants, and consequently get more critical section en-
tries under a fair priority policy. Forward-Use-Use, Forward-Forward-Use, and
Forward-Use-Forward offset these policy decisions by allowing critical section
entries as the Reply and Release messages pass through participants, to allow
for higher critical section entries than would have been possible with the more
intuitive Forward-Forward-Forward. If we increased the number of high prior-
ity and medium priority participants, we would have even better differentiation
during Fair Priority Policy because less time is spent in pure overhead states
where the token is percolating back up the tree and not being used.



3.2 Measuring Critical Section Throughput

Differentiation can be useful, but if the system becomes so bogged down with
messaging or algorithm overhead that file system or other shared resource through-
put is greatly reduced, then no real benefits are available in the system. The
experiments in this section guage the performance of the PADME algorithm
in delivering file system access to customers, cloud applications, or persistent
services.

Setup Two experiments are presented here. The first experiment sets the mes-
sage transmission time (tm) to 1 ms, critical section usage time to 1 s, and we
generate a new request once every 1 ms (when not using or blocking on a critical
section request). The second experiment has a fast message transmission time of
0.5 ms (i.e., more in line with a local area network transmit for a cluster within
a cloud) and generates a new request every 0.5 ms (unless blocking on or using
a critical section).

Our PADME prototype does not yet include the Replace Request Model,
so no configurations with the Replace Request Model are included in this sec-
tion. We expect, however, that throughput and latency for this model should be
identical to the Forward Request Model.

Fig. 9. Throughput with CS time of 1s and Message latency of 1ms

Analysis of Results Figure 9 and 10 show the results for these tests. These
results are above our proposed theoretical max where synchronization delay =



tm, because participants are able to enter their critical sections (e.g., access a
file) both on a release and reply using the Use models.

Fig. 10. Throughput with CS time of 0.5s and Message latency of 0.5ms

Each model equals or outperforms a centralized solution. A centralized so-
lution would have required a critical section entry (1 sec) plus two message
transmissions—Release (1 sec) and Reply (1 sec)—per access resulting in only
120 critical section entries in a 360s test. The only configuration that performs
worse than this one is the Fair-Forward-Forward-Forward combination. A cen-
tralized solution would have required a critical section entry (1 sec) plus two
message transmissions—Release (0.5 sec) and Reply (0.5 sec)—per access result-
ing in just 170 critical section entries in a 360 sec test. Every model outperforms
or equals a centralized solution in this scenario.

Some settings of the Priority-Request-Reply-Release models allow for the
root participant (the highest priority participant) and medium priority partici-
pants to enter a critical section twice upon Reply or Release messages. This fea-
ture causes an additional critical section entry being possible during Use-Release
with a synchronization delay = 0. This result occurs when a new request occurs
in cloud applications on the root during or just after the root participant is
servicing a separate request.

4 Related Work

This section compares our work on PADME with key types of mutual exclusion
solutions in networks, grids, and clouds. We begin with discussions on central
token authorities and end with descriptions of distributed techniques in clouds.



A basic form of mutual exclusion is a central authority that delegates re-
sources based on priority or clock-based mechanisms. When a participant needs
a shared resource, it sends a request with a priority or local timestamp to this
central authority, and the central authority will queue up requests and service
them according to some fairness or priority-based scheme. The Google File Sys-
tem (GFS) [2] uses such central authorities (called masters) and has tried to
address these issues by creating a master per cell (i.e., cluster). The GFS ap-
proach only masks the problems with the centralized model, however, and has a
history of scaling problems [1].

The Lithium file system [13] uses a fork-consistency model with partial order-
ing and access tokens to synchronize writes to file meta data. These access tokens
require a primary replica (centralized token generator) to control a branching
system for volume ownership. Recovery of access tokens when primary replicas
die requires a Byzantine view change of O(n) messages before another access
token can be generated, and this can be initiated by almost anyone. In PADME,
the view change should only be requested by someone along the token path.
When the root node dies with a token still in it, the immediate children of the
root would be in the token path and could request a view change. If there are no
pending writes or reads, no change may even be necessary, and the root could
resolve its fault and continue operations.

Distributed mutual exclusion algorithms have been presented throughout
the past five decades and have included token and message passing paridigms.
Among the more widely studied early distributed algorithms are Lamport [6] and
Ricart-Agrawala [7], which both require O(n2) messages, and Singhal [8], which
uses hotspots and inquire lists to localize mutual exclusion access to processes
that frequently enter critical sections. These algorithms are not applicable to
cloud computing, where faults are expected. Singhal’s algorithm also does not
differentiate between priorities since it prefers frequent accessors (which might
be free or reduced-payment deployments).

Message complexity has been further reduced via quorum-based approaches.
In quorum-based approaches, no central authority exists and the application pro-
grammer is responsible for creating sets of participants that must be requested
and approved for the critical section to be granted. For the Maekawa quorum
scheme to function [9], each set must overlap each other set or it will be possible
for multiple participants to be granted a critical section at the same time. If
the sets are constructed correctly, each participant has a different quorum set
to get permission from, and mutual exclusion is guaranteed. The problem is au-
tomatable and involves finding the finite projection plane of N points, but suffers
performance and starvation problems (potentially of high priority participant)
with faults.

More recently, a distributed mutual exclusion algorithm was presented by Cao
et. al. [10]. This algorithm requires consensus voting and has a message com-
plexity of O(n) for normal operation (i.e., no faults). In contrast, our PADME
algorithm requires O(d) where d is tree depth—O(logbn) where b is the branch-
ing factor of the spanning tree discussed in Section 3. The Cao et. al. algorithm



also appears to require a fully connected graph to achieve consensus, and does
not support configurable settings for emulating many of PADME’s QoS modes
(such as low response time for high priority participants).

Housni and Trehel [11] presented a grid-specialized token-based distributed
mutual exclusion technique that forms logical roots in local cluster trees, which
connect to other clusters via routers. Each router maintains a global request
queue to try to solve priority conflicts. Bertier et. al. [12] improved upon Housni
and Trehel’s work by moving the root within local clusters according to the
last critical section entry. This improvement, however, could result in additional
overhead from competing hot spots, where two or more processes constantly
compete for critical sections. Both algorithms treat all nodes and accesses as
equals and are susceptible to the problems in Singhal [8] and consequently are
non-trivial to implement for a public cloud where paying customers should have
differentiation. Moreover, tokens can become trapped in a cluster indefinitely.

5 Concluding Remarks

This paper presented an algorithm called Prioritizeable Adaptive Distributed
Mutual Exclusion (PADME) that addresses the need to provide differentiation
in resource acquisition in distributed computing scenarios. We demonstrated
its usefulness in cloud computing environments without requiring a centralized
controller. Although we motivated PADME in the context of cloud file systems,
it can be used for any shared cloud resource.

The following are lessons learned from the development of this mutual exclu-
sion algorithm:

1. High critical section throughput with differentiation is possible.
PADME provides differentiation based on participant priority levels and prox-
imity to the logical root participant of the network. It also provides cloud ap-
plication developers with four orthogonal models for variety and tighter control
of critical section entry. The benefits of the PADME algorithm are high criti-
cal section throughput and low synchronization delay between critical section
entries, especially when there is high contention for a shared resource.

2. The cost of differentiation is felt by those farthest from the root.
In certain settings of the PADME algorithm—especially those using a Level
Priority Model—the wait for access to the file system or shared resource could be
indefinite. This situation will occur when the cloud is under heavy stress loads,
and there is high contention for the shared resource, e.g., when high priority
cloud users or applications are constantly accessing the system

3. Fault tolerance should be built-in. Retrofitting fault tolerance into a
complex distributed system is hard. The Google File System attempted to solve
this with redundant master controllers, but this caused the issue with faulty
cloud hardware to just be harder to deal with. Building fault tolerance into a
cloud solution from the inception helps reduce time and effort across the lifecycle.

4. Distributed mutual exclusion is still an important topic in Com-
puter Science. We presented results and analysis that show clear differentiation



based on priority level and high critical section throughput. Additional research
challenges remain, however, including priority differentiation during tree rebuild-
ing in heavy fault scenarios, reducing message complexity during root consensus
changes, virtual overlay networks for individual resources or high priority file
system volumes, and secure information flow across the spanning tree to prevent
applications or users from snooping file information.

Our ongoing work is empirically evaluating PADME in the context of real
public cloud platforms, such as Amazon EC2 and off-the-shelf hypervisors. We
are also considering new Request, Reply, and Release Models, as well as more
fault tolerance options, to PADME. The open-source PADME algorithm Java
code and tests/simulator used in Section 3 are available for download at qosmu-
tex.googlecode.com.

References

1. McKusick, M.K., Quinlan, S.: Gfs: Evolution on fast-forward. Queue 7 (August
2009) 10:10–10:20

2. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings of
the nineteenth ACM symposium on Operating systems principles. SOSP ’03, New
York, NY, USA, ACM (2003) 29–43

3. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. SIGOPS Oper.
Syst. Rev. 37 (October 2003) 29–43

4. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. 1 edn. Cambridge University Press, New York, NY, USA (2008)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Third Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS (February
1999)

6. Lamport, L.: Ti clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21 (July 1978) 558–565

7. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24 (January 1981) 9–17

8. Singhal, M.: A dynamic information-structure mutual exclusion algorithm for
distributed systems. IEEE Trans. Parallel Distrib. Syst. 3 (January 1992) 121–125

9. Maekawa, M.: A n algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst. 3 (May 1985) 145–159

10. Cao, J., Zhou, J., Chen, D., Wu, J.: An efficient distributed mutual exclusion
algorithm based on relative consensus voting. Parallel and Distributed Processing
Symposium, International 1 (2004) 51b

11. Housni, A., Trehel, M.: Distributed mutual exclusion token-permission based by
prioritized groups. In: Proceedings of the ACS/IEEE International Conference
on Computer Systems and Applications, Washington, DC, USA, IEEE Computer
Society (2001) 253–

12. Bertier, M., Arantes, L., Sens, P.: Distributed mutual exclusion algorithms for grid
applications: A hierarchical approach. J. Parallel Distrib. Comput. 66 (January
2006) 128–144

13. Hansen, J.G., Jul, E.: Lithium: virtual machine storage for the cloud. In: Proceed-
ings of the 1st ACM symposium on Cloud computing. SoCC ’10, New York, NY,
USA, ACM (2010) 15–26


