
1

CHARIOT: Goal-driven Orchestration Middleware for
Resilient IoT Systems

SUBHAV PRADHAN∗, ABHISHEK DUBEY†, SHWETA KHARE, SAIDEEP NANNAPANENI,
ANIRUDDHA GOKHALE, SANKARAN MAHADEVAN, and DOUGLAS C SCHMIDT, Van-
derbilt University, USA
MARTIN LEHOFER, Siemens Corporate Technology, USA

An emerging trend in Internet of Things (IoT) applications is to move the computation (cyber) closer to the
source of the data (physical). This paradigm is often referred to as edge computing. If edge resources are pooled
together they can be used as decentralized shared resources for IoT applications, providing increased capacity
to scale up computations and minimize end-to-end latency. Managing applications on these edge resources is
hard, however, due to their remote, distributed, and (possibly) dynamic nature, which necessitates autonomous
management mechanisms that facilitate application deployment, failure avoidance, failure management, and
incremental updates. To address these needs, we present CHARIOT, which is orchestration middleware capable
of autonomously managing IoT systems consisting of edge resources and applications.

CHARIOT implements a three-layer architecture. The topmost layer comprises a system description
language, the middle layer comprises a persistent data storage layer and the corresponding schema to store
system information, and the bottom layer comprises a management engine that uses information stored
persistently to formulate constraints that encode system properties and requirements, thereby enabling the
use of Satisfiability Modulo Theories (SMT) solvers to compute optimal system (re)configurations dynamically
at runtime. This paper describes the structure and functionality of CHARIOT and evaluates its efficacy as the
basis for a smart parking system case study that uses sensors to manage parking spaces.

CCS Concepts: • Computer systems organization → Reliability; • Software and its engineering →
Software reliability; Domain specific languages;

Additional Key Words and Phrases: Autonomous management, Orchestration middleware, Resilience at the
edge, Cyber-Physical Systems

ACM Reference Format:
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale, Sankaran
Mahadevan, Douglas C Schmidt, and Martin Lehofer. 2017. CHARIOT: Goal-driven Orchestration Middleware
for Resilient IoT Systems. ACM Transactions on Cyber-Physical Systems 1, 1, Article 1 (January 2017), 37 pages.
https://doi.org/10.1145/3134844

∗This work was performed by the first author as a graduate student at Vanderbilt University. The author has since graduated.
†This is the corresponding author.

Authors’ addresses: Subhav Pradhan; Abhishek Dubey; Shweta Khare; Saideep Nannapaneni; Aniruddha
Gokhale; Sankaran Mahadevan; Douglas C Schmidt, Vanderbilt University, Nashville, TN, 37235, USA,
subhavpradhan@gmail.com,abhishek.dubey@vanderbilt.edu,shweta.p.khare@vanderbilt.edu,saideep.nannapaneni@
vanderbilt.edu,a.gokhale@vanderbilt.edu,sankaran.mahadevan@vanderbilt.edu,d.schmidt@vanderbilt.edu; Martin Lehofer,
Siemens Corporate Technology, Princeton, NJ, 08540, USA, martin.lehofer@siemens.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
2378-962X/2017/1-ART1 $15.00
https://doi.org/10.1145/3134844

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/3134844
https://doi.org/10.1145/3134844

1:2
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

1 INTRODUCTION
Emerging trends and challenges. Popular IoT ecosystem platforms, such as Beaglebone Blacks,
Raspberry Pi, Intel Edison, and other related technologies like SCALE [Benson et al. 2015] and
Paradrop[Willis et al. 2014], provide new capabilities for data collection, analysis, and processing
at the edge [Vaquero and Rodero-Merino 2014] (also referred to as Fog Computing [Bonomi et al.
2012]). When pooled together, edge resources can be used as decentralized shared resources that
host the data collection, analysis, and actuation loops of IoT applications.

Examples of IoT applications include air quality monitoring, parking space detection, and smart
emergency response. In this paper, we refer to the combination of remote edge resources and appli-
cations deployed on them as IoT systems. IoT systems provide the capacity to scale up computations,
as well as minimize end-to-end latency, thereby making them well-suited to support novel use
cases for smart and connected communities.

While the promise of the IoT paradigm is significant, several challenges must be resolved before
they become ubiquitous and effective. Conventional enterprise architectures use centralized servers
or clouds with static network layouts and a fixed number of devices without sensors and actuators to
interact with their physical environment. In contrast, edge deployment use cases must address key
challenges not encountered in cloud computing, including (1) handling the high degree of dynamism
arising from computation and communication resource uncertainty and (2) managing resource
constraints imposed due to the cyber-physical nature of applications and system hardware/software
components.

Computation resource uncertainty in IoT systems stems from several factors, including increased
likelihood of failures, which are in turn caused by increased exposure to natural and human-caused
effects, as well as dynamic environments where devices can join and leave a system at any time.
Communication resource uncertainty is caused by network equipment failure, interference, or due
to the mobile nature of some systems (e.g., swarms of drones or fractionated satellites). Unlike
traditional enterprise architectures (whose resource constraints narrowly focus on only CPU,
memory, storage and network), IoT systems must be able to express and satisfy more stringent
resource constraints due to their cyber-physical nature, such as their deployment on resource-
limited sensors and actuators.
Even under the uncertainties and constraints outlined above, IoT systems must be capable of

managing their applications to ensure maximum availability, especially since these applications are
often mission-critical. Each application deployed for a mission has specific goal(s) that must be
satisfied at all times. IoT systems should therefore be equipped with mechanisms that ensure all
critical goals are satisfied for as long as possible, i.e., they must be resilient by facilitating failure
avoidance, failure management, and operations management to support incremental hardware
and software changes over time. Moreover, since IoT systems comprising edge resources are
often deployed remotely, resilience mechanism should be autonomous to ensure availability and
cost-effective management.
Solution approach→ Autonomous resilience management mechanisms. To address the chal-
lenges described above, IoT systems need autonomous mechanisms that enable the analysis and
management of (1) the overall system goals describing the required applications, (2) the compo-
sition and requirements of applications, and (3) the constraints governing the deployment and
(re)configuration of applications. This paper describes a holistic solution called Cyber-pHysical
Application aRchItecture with Objective-based reconfiguraTion (CHARIOT), which is orchestration
middleware that supports the autonomous management of remotely deployed IoT systems1.

1CHARIOT is available at https://github.com/visor-vu/chariot

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://github.com/visor-vu/chariot

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:3

CHARIOT uses the analysis and management capabilities outlined above to provide services
for initial application deployment, failure avoidance, failure management, and operations manage-
ment. CHARIOT’s three-layered architecture stack consists of a design layer, a data layer, and a
management layer, as shown in Figure 1 and described in the summary of its four primary research
contributions below.

Fig. 1. The Layered Architecture of CHARIOT.

Contribution 1: A generic system description language.At the top of CHARIOT’s stack is a design layer
implemented via a generic system description language. This layer captures system specifications
in terms of different types of available hardware resources, software applications, and the resource
provided/required relationship between them. CHARIOT implements this layer using a domain-
specific modeling language (DSML) called CHARI-OT-ML whose goal-based system description
approach yields a generic means of describing complex IoT systems. This approach extends our
prior work [Pradhan et al. 2016a,b, 2015] by (1) using the concept of component types (instead of
specific implementations) to enhance flexibility and (2) supporting a suite of redundancy patterns.
It is further described in Section 3.1.
Contribution 2: A schema for persistent storage of system information. In the middle of CHARIOT’s
stack is a data layer implemented using a persistent data store and the corresponding schema to
characterize system information, which includes a design-time system description and a runtime
representation of the system. This layer canonicalizes the format in which information about an
IoT system is represented. We describe this contribution further in Section 3.2.
Contribution 3: A management engine to facilitate autonomous resilience. The bottom of CHARIOT’s
stack is a management layer the supports monitoring and deployment mechanisms, as well as a
novel management engine that facilitates application (re)configuration as a means of supporting
autonomous resilience. This management engine uses IoT system information stored in CHARIOT’s
data layer to formulate Satisfiability Modulo Theories (SMT) constraints that encode system proper-
ties and requirements, enabling the use of SMT solvers (such as Z3 [de Moura and Bjørner 2008]) to
dynamically compute optimal system (re)configuration at runtime. We describe this contribution
further in Section 3.3.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

Contribution 4: Distributed implementation and evaluation of CHARIOT. CHARIOT uses Mon-
goDB [MongoDB Incorporated 2009] as a persistent storage service, ZooKeeper [The Apache
Software Foundation [n. d.]] as a coordination service to facilitate group-membership and failure
detection, and ZeroMQ [Hintjens 2013] as a high-performance communication middleware. We
describe this contribution further in Section 4, which also describes a smart-parking application that
serves as a case study to present experimental evaluation that shows how CHARIOT’s orchestration
middleware capabilities are suitable to manage edge computing for IoT systems.
Paper organization. The remainder of this paper is organized as follows: Section 2 describes the
research problem addressed by our work on CHARIOT; Section 3 explains our first three contribu-
tions by describing the CHARIOT solution in detail; Section 4 explains our fourth contribution by
describing an implementation of CHARIOT and evaluating this implementation; Section 5 compares
our work on CHARIOT with related work; and Section 6 presents concluding remarks and future
work.

2 PROBLEM DESCRIPTION
This section describes the research problem addressed by our work on CHARIOT presented in
this paper. We focus on IoT systems comprising clusters of heterogeneous nodes that provide
computation and communication resources, as well as a variety of sensors and actuators. Cluster
membership can change over time due to failures, or addition and removal of resources.

This distributed platform supports the needs of IoT applications, which may span multiple nodes
due to the availability of resources, e.g., some nodes may have sensors, some may have actuators,
some may have the computing or storage resources, and some need more than the processing
power available on one node. These IoT applications are composed of loosely connected, interacting
components [Heineman and Councill 2001], running on different processes, as shown in Figure 2.

Fig. 2. A Component-based IoT Application Model.

A component provides a certain functionality and may require one or more functionalities2 via
its input and output ports. The same functionality can be provided by different components. These
provided and required relations between components and functionalities establish dependencies
between components. IoT applications can thus be assembled from components that provide specific
services. Likewise, components may be used (or reused) by many active applications. Moreover,
the cluster of computing nodes can host multiple applications concurrently.

An IoT system running in a CHARIOT-based distributed platformmust manage the resources and
applications to ensure that functionalities provided by application components are always available.
2In this context, functionalities are synonymous to services or capabilities associated with a component.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:5

This capability is important since IoT applications are often mission-critical, so functionalities
required to satisfy mission goals must be available as long as possible. This notion of functionality
requirement can also be hierarchical, i.e., high-level functionality may be further divided into
sub-functionalities.

The possibility of having hierarchical functionalities results in a functionality tree, which distin-
guishes between functionalities that can be divided into sub-functionalities and functionalities that
cannot be decomposed further. The latter represents a leaf of the tree and should always map to
one or more application components. Although each component provides a single functionality,
the same functionality can be provided by multiple components.
The requirement relationship between each parent and its children at every level of this func-

tionality tree can be expressed using a boolean expression [Kurtoglu et al. 2010; Nannapaneni et al.
2016] that yields an and-or tree. Additional resource and implicit dependency constraints between
components may arise due to system constraints. Examples of these system constraints include
(1) availability of memory and storage capacity for components to use, (2) availability of devices
and software artifacts (libraries) for components to use, and (3) network links between nodes of a
system, which restricts deployment of component instances with inter-dependencies.

2.1 A Representative IoT System Case Study
Consider an indoor parking management system installed in a garage. This case study focuses on
the vacancy detection and notification functionality. This system is designed to simplify clients’
use of parking facilities by tracking the availability of spaces in a parking lot and servicing client
parking requests by determining available parking spaces and assigning a specific parking space
to a client. We use this system as a running example throughout the rest of this paper to explain
various aspects of CHARIOT.

Fig. 3. The Parking Management System Case Study.

Figure 3 visually depicts this IoT system, which consists of a number of pairs of camera nodes
(wireless camera) and processing nodes (Intel Edison module mounted on Arduino board)3 placed
on the ceiling to provide coverage for multiple parking spaces. Each pair comprising a camera and
3https://www.arduino.cc/en/ArduinoCertified/IntelEdison

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://www.arduino.cc/en/ArduinoCertified/IntelEdison

1:6
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

a processing node is connected via a wired connection. In addition, the parking lot has an entry
terminal node that drivers interact with as they enter the parking lot.

In addition to the hardware devices that comprise the system, Figure 3 also shows a distributed
application consisting of five different types of components deployed on the hardware outlined
above and described below:

• ImageCapture component, which runs on a camera node and periodically captures an image
and sends it to an OccupancyDetector component that runs on a processing node.

• OccupancyDetector component, which detects vehicles in an image and determines occupancy
status of parking spaces captured in the image.

• LoadBalancer component, which keeps track of the different OccupancyDetector components
available. Before an ImageCapture component can send images to an OccupancyDetector
component, it must first find the OccupancyDetector by using the LoadBalancer component,
which also runs on a processing node.

• ParkingManager component, which keeps track of occupancy status of the entire parking lot.
After an OccupancyDetector component analyses an image for occupancy status of different
parking spaces, it sends the result to the ParkingManager component, which also runs on a
processing node.

• Client component, which runs on the entry terminal and interacts with users to allow them
to use the smart parking application.

2.2 Problem Statement
As mentioned before, IoT systems are dynamic; the degree of dynamism can vary from one system
to another. For example, the smart parking example presented in Section 2.1 is an example of a less
dynamic system since the physical resources are spatially static and any dynamism is related to
system update associated with addition or removal of resources. A cluster of drones or fractionated
satellites, however, is an example of highly dynamic systems. Regardless of the degree of dynamism,
support for autonomous resilience is of high importance to every IoT system. For example, it is
essential to ensure that the ParkingManager component is not a single point of failure, i.e., the
smart parking system should not fail if the ParkingManager component fails.
Addressing the problems described above requires orchestration middleware that holistically

addresses both (1) the design-time challenges of capturing the system description and (2) the
runtime challenges of designing and implementing a solution that facilitates failure avoidance,
failure management, and operations management.

(1) Avoiding System Failures is necessary for scenarios where component failures must be tol-
erated as long as possible without having to manage them4. This capability is important
for systems that cannot withstand reconfiguration downtime. Although failures cannot be
avoided altogether, we require mechanisms to avoid failure management.

(2) Failure management is needed to minimize downtime due to failures that cannot be avoided,
including failures caused by unanticipated changes. The desired solution should ensure all
application goals are satisfied for as long as possible, even after failures.

(3) Operations management is needed to minimize the challenges faced when intentionally
changing or evolving an existing IoT system, i.e., these are anticipated changes. A solution
for this should consider changes in hardware components, as well as software applications
and middleware components.

4Avoiding component failures cascading to a system level failure.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:7

Fig. 4. Overview of the CHARIOT Orchestration
Middleware.

Fig. 5. Reconfiguration Triggers Associated with Fail-
ure Management and Operations Management.

3 CHARIOT: ORCHESTRATION MIDDLEWARE FOR IOT SYSTEMS
This section presents detailed description of CHARIOT, which is orchestration middleware we
developed to address the challenges and requirements identified in Section 1. As shown in Figure 4
the design-time aspect of CHARIOT includes a modeling language and associated interpreters. The
runtime aspect includes entities that comprise a self-reconfiguration loop, which implements a
sense-plan-act closed-loop to (1) detect and diagnose failures, (2) compute reconfiguration plan(s),
and (3) reconfigure the system. With respect to the different layers of CHARIOT (see Section 1), the
design layer is part of the design-time aspect, the management layer is part of the runtime aspect,
and the data layer cross cuts across both aspects.
CHARIOT handles failure avoidance via functionality redundancy and optimal distribution

of redundant functionalities. It tolerate failures by strategically deploying redundant copies of
components that provide critical functionalities, so more failures are avoided/tolerated without
having to reconfigure the system. CHARIOT’s failure avoidance mechanisms are described further
in Section 3.1.2.

CHARIOT handles failure management via the sense-plan-act loop outlined above. ItsMonitoring
Infrastructure is responsible for detecting failures, which is the sensing phase. We use capabilities
supported by ZooKeeper [Hunt et al. 2010] to implement a monitoring infrastructure (see Sec-
tion 4.2). After failure detection and diagnosis, the Management Engine determines the actions
needed to reconfigure the system so that failures are mitigated, which is the planning phase and is
based on the Z3 [de Moura and Bjørner 2008] open-source Satisfiability Modulo Theories (SMT)
solver (see Section 3.3). Once reconfiguration actions are computed, the Deployment Infrastructure
uses them to reconfigure the system, which is the acting phase.
CHARIOT handles anticipated changes (i.e., planned update or evolution) via operations man-

agement. These changes include both hardware changes (e.g., addition of new nodes and removal
of existing nodes) and software changes (e.g., addition of new applications, and modification or
removal of existing applications) performed at runtime.

Figure 5 depicts detection and reconfiguration triggermechanisms associatedwith failuremanage-
ment and operations management. As shown in this figure, reconfiguration for failure management

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

and hardware update (operations management) is triggered by the monitoring infrastructure. Con-
versely, reconfiguration for software update (operations management) is triggered manually after
the system model is updated.

3.1 Design Layer
This section describes the CHARIOT design layer, which addresses the requirements of a design-time
entity to capture system descriptions. CHARIOT’s design layer allows implicit and flexible system
description prior to runtime. An IoT system can be described in terms of required components
or it can be described in terms of functionalities provided by components. The former approach
is inflexible since it tightly couples specific components with the system. CHARIOT therefore
supports the latter approach, which is more generic and flexible since it describes the system
in terms of required functionalities, where different components can be used to satisfy system
requirements, depending on their availability.
A key challenge faced when creating CHARIOT was to devise a design-time environment

whose system description mechanism can capture system information (e.g., properties, provisions,
requirements, and constraints) without explicit management directives (e.g., if node A fails, move
all components to node B). This mechanism enables CHARIOT to manage failures by efficiently
searching for alternative solutions at runtime. Another challenge faced when creating CHARIOT
was how to devise abstractions that ensure both correctness and flexibility so it can easily support
operations management.

Tomeet the challenges described above, CHARIOT’s design layer allows application developers to
model IoT systems using a generic system description mechanism. This mechanism is implemented
using a goal-based system description approach. The key entities modeled as part of a system’s
description are (1) resource categories and templates, (2) different types of components that provide
various functionalities, and (3) goal descriptions corresponding to different applications that must
be hosted on available resources. CHARIOT defines a goal as a collection of objectives, where each
objective is a collection of functionalities that can have inter-dependencies.
CHARIOT’s design layer concretizes the functionality tree described in Section 2. It enforces

a two-layer functionality hierarchy, where objectives are high-level functionalities that satisfy
goals and functionalities are leaf nodes associated with component types. When these component
types are instantiated, each component instance provides associated functionalities. To maximize
composability and reusability, a component type can only be associated with a single functionality,
though multiple component types can provide the same functionality.
To further explain CHARIOT’s design layer the remainder of this section presents the system

description of the smart parking system summarized in Section 2.1. Figure 6 shows the correspond-
ing functionality tree, which is used below to describe the different entities comprising the IoT
system’s description using snippets of models built using CHARIOT-ML, which is our design-time
modeling environment. A detailed description of the modeling language appears in [Pradhan et al.
2015].

3.1.1 Node Categories and Templates. Since physical nodes are part of an IoT system, CHARIOT-
ML models them using categories and templates. The nodes are not explicitly modeled since the
group of nodes comprising a system can change dynamically at runtime. CHARIOT thus only
models node categories and node templates. A node category is a logical concept used to establish
groups of nodes; every node that is part of a IoT system belongs to a certain node category.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:9

Fig. 6. Parking System Description for the Example Shown in Figure 3.

Fig. 7. Snippet of Node Categories and Node Templates Declarations.

Since CHARIOT does not explicitly model nodes at design-time, it uses the concept of node
template to represent the types of nodes that can belong to a category. A node category5 is thus a
collection of node templates, where a node template is a collection of generic information, such as
specifications of memory, storage, devices, available software artifacts, supported operating system,
and available communication middleware. A node template can be associated with any node that
is an instance of the node template. When a node joins a cluster at runtime the only information

5The concept of node categories becomes important when assigning a per-node replication constraint (discussed in
Section 3.1.2), which requires that a functionality be deployed on each node of the given category.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

it needs to provide (beyond node-specific network information) is which node template it is an
instance of.

Figure 7 presents the node categories and templates for the smart parking system.There are three
categories of nodes shown in this figure: CameraNode (line 3-10), ProcessingNode (line 12-18), and
TerminalNode (line 20-26). Each category contains one template each. The CameraNode category
contains awifi_cam template that represents aWi-Fi enabled wireless IP camera. The ProcessingNode
category contains an Edison template that represents an Edison board. The TerminalNode category
contains an entry_terminal template that represents a parking control station placed at an entrance
of a parking space. This scenario is consistent with the smart parking system described in Section 2.1.
For simplicity, we only model memory and storage specifications for each node template.

3.1.2 Functionalities, Compositions and Goals. Functionalities in CHARIOT-ML are modeled as
entities with one or more input and output ports, whereas compositions are modeled as a collection
of functionalities and their inter-dependencies. Figure 8 presents four different functionalities
(parking_manager, image_capture, load_balancer, and occupancy_detector) and the corresponding
composition (occupancy_checking) that is associated with the OccupancyChecking objective (see
line 6 in Figure 9). This figure also shows that composition is a collection of functionalities and
their inter-dependencies, which are captured as connections between input and output ports of
different functionalities.

Fig. 8. Snippet of Functionalities and Corresponding Composition Declaration.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:11

Fig. 9. Snippet of Smart Parking Goal Description Comprising Objectives and Replication Constraints.

The goal description for the smart parking application is shown in Figure 9. The goal itself is
declared as SmartParking (line 3). Following the goal declaration is a list of the objectives required
to satisfy the goal (line 5-6). Two objectives are defined in this example: the ClientInteraction
objective and the OccupancyChecking objective. The ClientInteraction objective is related to the
task of handling client parking requests, whereas the OccupancyChecking objective is related to the
task of determining the occupancy status of different parking spaces.

(a) Voter pattern with factor = 3. (b) Consensus pattern with factor = 4. (c) Cluster pattern with factor =
2.

Fig. 10. Example Redundancy Patterns for Functionality F1. TheCSn_m Entities Represent Consensus Service
Providers.

In CHARIOT-ML, objectives are instantiations of compositions. The ClientInteraction objective is
an instantiation of the client_ineraction composition (line 5) and the OccupancyChecking objective
is an instantiation of the occupancy_checking composition (line 6).

Support for Redundant Deployment Patterns: CHARIOT-ML also supports redundant de-
ployment patterns as a result of which functionalities can be associated with replication constraints.
For example, Figure 9 shows the association of the image_capture functionality with a per-node
replication constraint (line 9-10), which means this functionality should be present on each node
that is an instantiation of any node template belonging to CameraNode category. Similarly, the
parking_client functionality is also associated with a per-node replication constraint (line 11-12)
for TerminalNode category. Finally, the occupancy_detector functionality is associated with a cluster
replication constraint (line 13-14), which means this functionality should be deployed as a cluster
of at-least 2 and at-most 4 instances.
CHARIOT-ML supports functionality replication using four different redundancy patterns: the

(1) voter pattern, (2) consensus pattern, (3) cluster pattern, and (4) per-node pattern, as shown in
Figure 10. The per-node pattern (as described above for the image_capture functionality) requires
that the associated functionality be replicated on a per-node basis. Replication of functionalities

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

associated with the other three redundancy patterns is based on their redundancy factor, which
can be expressed by either (1) explicitly stating the number of redundant functionalities required or
(2) providing a range. The latter (as previously described for the occupancy_detector functionality)
requires the associated functionality to have a minimum number for redundancy and a maximum
number for redundancy, i.e., if the number of functionalities present at any given time is within the
range, the system is still valid and no reconfiguration is required.

Figure 10 presents a graphical representation of voter, consensus, and cluster redundancy patterns
(the case of the consensus pattern, CS represents consensus services). Different redundancy factors
are used for each. As shown in the figure, the voter pattern involves a voter in addition to the
functionality replicas, the consensus pattern involves a consensus service each for the functionality
replicas and these consensus services implement a consensus ring, and the cluster pattern only
involves the functionality replicas. Implementing the consensus service is beyond the scope of
this paper. In practice, CHARIOT uses existing consensus protocols, such as Raft [Ongaro and
Ousterhout 2014], for this purpose.

3.1.3 Component Types. CHARIOT-ML does not model component instances, but insteadmodels
component types. Each component type is associated with a functionality. When a component
type is instantiated, the component instance provides the functionality associated with its type. A
component instance therefore only provides a single functionality, whereas a functionality can be
provided by component instances of different types. Two advantages of modeling component types
instead of component instances include the flexibility it provides with respect to (1) the number of
possible runtime instances of a component type and (2) the number of possible component types
that can provide the same functionality.

Fig. 11. Snippet of Component Type Declaration.

Figure 11 shows how the ParkingManager component type is modeled in CHARIOT-ML. As
part of the component type declaration, we first model the functionality that is provided by the
component (line 4). After the functionality of a component type is modeled, we model various
resource requirements (Figure 11 only shows memory requirements in line 6) and the launch script
(line 8), which can be used to instantiate an instance of the component by spawning an application
process.

CHARIOT supports two different types of component types: hardware components and software
components. The component type presented in Figure 11 is an example of a software component.
Hardware components are modeled in a similar fashion, though we just model the functionality
provided by a hardware component and nothing else since a hardware component is a specific type
of component whose lifecycle is tightly coupled to the node with which it is associated. A hardware
component is therefore never actively managed (reconfigured) by the CHARIOT orchestration
middleware. The only thing that affects the state of a hardware node is the state of its hosting
node, i.e., if the node is on and functioning well, the component is active and if it is not, then the
component is inactive.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:13

In context of the smart parking system case study, the ImageCapture component is a hardware
component that is associated with camera nodes. As a result, an instance of the ImageCapture
component runs on each active camera node. We model this requirement using the per-node
redundancy pattern (see line 32-33 in Figure 9). Likewise, the failure of a camera node implies
failure of the hosted ImageCapture component instance, so this failure cannot be mitigated.

3.1.4 Summary of the Design Layer. CHARIOT-ML is a Domain Specific Modeling Language
(DSML) built using the Xtext framework [The Eclipse Foundation [n. d.]] that comprises CHARIOT’s
design layer. This DSML is a textual modeling language designed using the Xtext framework [The
Eclipse Foundation [n. d.]]. Currently, CHARIOT-ML allows modeling of resources such as software
artifacts, devices, memory, storage, operating system, and communication middleware. Although
this is an extensive list of resource types for most IoT systems, it might not be sufficient for all
possible IoT systems. Therefore, it might require modifications and extensions depending on the
domain in which it is being used. For example, in order to model self-degrading systems that rely
on monitoring of QoS parameters, CHARIOT-ML must facilitate modeling of QoS thresholds at
different levels of abstractions.

Furthermore, the language currently only facilitates replication constraints, which are a type of
deployment constraint that specifies the number of certain functionality that must be deployed.
There are other scenarios, however, where replication constraints are not sufficient andmore specific
deployment constraints are required, such as deploy-on-same-node, deploy-on-different-node, and
deploy-only-on-a-specific-resource-category.
Due to the modular nature of the Xtext framework, introducing these changes will not be

difficult. However, we must ensure that the new concepts do not violate any existing rules already
implemented. Furthermore, the data schema defined in Section 3.2 ensures that the extensions
introduced at design layer can be supported by the underlying management layer, assuming that
the functionalities are only being added in and not modifying existing concepts.

3.2 Data Description Layer
This section presents the CHARIOT data layer, which defines a schema that forms the basis for
persistently storing system information, such as design-time system description and runtime system
information. This layer codifies the format in which system information should be represented. A
key advantage of this codification is its decoupling of CHARIOT’s design layer (top layer) from
its management layer (bottom layer), which yields a flexible architecture that can accommodate
varying implementations of the design layer, as long as those implementations adhere to the data
layer schema described in this section.

Figure 12 presents UML class diagrams as schemas used to store design-time system description
and runtime system information. These schemas are designed for document-oriented databases.
An instance of a class that is not a child in a composition relationship therefore represents a root
document. Below we describe CHARIOT’s design-time and runtime schemas in detail.

3.2.1 Design-time System Description Schema. The schema for design-time system description
comprises entities to store node categories, component types, and goal descriptions, as shown in
Figure 12a. These concepts have been previously described in Section 3.1. Neither node categories
nor component types are application-specific since multiple applications can be simultaneously
hosted on nodes of an IoT system and a component type can be used by multiple applications.
In addition to other attributes, the ComponentType class also captures scripts that can be used to
start and stop an instance of a component type; this information is used at runtime to instantiate
components.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

(a) Schema to Store Design-time System Descriptions.

(b) Schema to Store Runtime System Representations.

Fig. 12. UML Class Diagrams for Schemas Used to Store System Information.

As shown in Figure 12a, a goal description comprises objectives, which are composed of function-
alities, and replication constraints. The ReplicationConstraint class represents replication constraints
and consists ofmaxInstances,minInstance, and numInstances attributes that are related to the degree
of replication. The latter attribute is used if a specific number of replicas are required, whereas the
former two attributes are used to describe a range-based replication. The nodeCategories attribute is
used for per-node replication constraints. The serviceComponentType attribute is related to specific
component types that provide special replication services, such as a component type that provides
a voter service or a consensus service.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:15

3.2.2 Runtime Information Schema. The schema for runtime system information comprises
entities to store functionality instances, nodes, deployment actions, reconfiguration events, and
look-ahead information, as shown in Figure 12b. Since functionalities can be replicated, the Function-
alityInstance class is used to store information about functionality instances. The ComponentType
attribute is only relevant for voter and consensus service providing functionality instances as
they are not associated with functionalities that are part of a goal description. Furthermore, the
alwaysDeployOnNode attribute ties a functionality instance to a specific node and is only relevant
for functionality instances related to per-node replication groups. Finally, the mustDeploy boolean
attribute indicates whether a functionality instance should always be deployed.

TheNode class represents compute nodes, the Process class represents processes running on nodes,
and the ComponentInstance class represents component instances hosted on processes. As shown
in Figure 12b, these three classes have containment relationship. The functionalityInstanceName
attribute inComponentInstance class represents the name of the corresponding functionality instance
as a component instance is always associated with a functionality instance (see Section 3.3.3).
The DeploymentAction class represents runtime deployment actions that are computed by the

CHARIOT management engine to (re)configure a system. The DeploymentAction class consists of
an action, a completed boolean flag to indicate if an action has been taken, process affected by the
action, node on which the action should be performed, and scripts to perform the action. CHARIOT
supports two kinds of actions: start actions and stop actions. The LookAhead class represents
precomputed solutions (see Section 3.3.6). It consists of attributes that represent a failed entity, and
a set of recovery actions (deployment actions) that must be performed to recover from the failure.
The ReconfigurationEvent class represents runtime reconfiguration events. It is used to keep

track of failure and update events that trigger system reconfiguration. It consists of detectionTime,
solutionFoundTime, and reconfiguredTime to keep track of when a failure or update was detected,
when a solution was computed, and when the computed solution was deployed. It also consists
of a completed attribute to indicate whether a reconfiguration event is complete or not and an
actionCount attribute to keep track of number of actions required to complete a reconfiguration
event.

3.2.3 Summary of the Data Description Layer. Although not a novel contribution by itself,
the data layer described in this section is critical to the overall CHARIOT ecosystem. This layer
addresses the challenge of providing a generic and uniform system state that can be queried by the
rest of the system at runtime. Having a well-defined model for system information not only helps
the CHARIOT ecosystem remain flexible by decoupling the design and management layers, it also
aids in future extensions when required.
For example, as previously discussed in Section 3.1.4, let us assume that a set of deployment

constraints needs to be added. This requires us to extend the current design-time system description
(shown in Figure 12a) in such a way that the deployment constraints modeled at design-time
can be easily stored in the data layer and retrieved by the management layer without affecting
any existing code. This could be achieved by adding a DeploymentConstraint class similar to the
ReplicationConstraint class and have it be part of the GoalDescription class.

3.3 Runtime Management Layer
The CHARIOT runtime management layer comprises a monitoring and deployment infrastructure,
as well as a management engine, as previously outlined in Figure 4. The monitoring and deployment
of distributed applications is covered in prior work [Pradhan et al. 2016b]; CHARIOT implements
these capabilities using existing technologies described in Section 4. This section focuses on
CHARIOT’s management engine that facilitates self-reconfiguration of IoT systems by (1) adding

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

the capability to compute exact component instances from available component types, (2) encoding
redundancy patterns using SMT constraints, and (3) using a finite horizon look-ahead strategy
that pre-computes solutions to significantly improve the performance of CHARIOT’s management
engine.

3.3.1 Configuration Space and Points. The general idea behind CHARIOT’s self-reconfiguration
approach relies on the concepts of configuration space and configuration points. If a system’s state
is represented by a configuration point in a configuration space, then reconfiguration of that
system entails moving from one configuration point to another in the same configuration space. A
configuration space includes (1) goal descriptions of different applications, (2) replication constraints
corresponding to redundancy patterns associated with different applications, (3) component types
that can be used to instantiate different component instances and therefore applications, and (4)
available resources, which includes different nodes and their corresponding resources, such as
memory, storage, and computing elements.

Fig. 13. A Configuration Space with different Configuration Points. This figure depicts two faults that disable
parts of the system resulting in two reconfigurations.

At any given time a configuration space of an IoT system can represent multiple applications
associated with the system. A configuration space can therefore contain multiple configuration
points, as shown in Figure 13. These configuration points represent valid configurations of all
applications that are part of the IoT system represented by the configuration space.

A valid configuration point represents component-instance-to-node mappings (i.e., a deployment)
for all component instances needed to realize different functionalities essential for the objectives
required to satisfy goals of one or more applications. The initial configuration point represents
the initial (baseline) deployment, whereas, current configuration point represents the current
deployment.

3.3.2 Computing the Configuration Point. Given above definition of configuration space and
points, a valid reconfiguration mechanism entails moving from one configuration point to another
in the same configuration space (see Figure 13). When a failure occurs, the current configuration
point is rendered faulty. Moreover, parts of the configuration space may also be rendered faulty,
depending on the failure. For example, consider a scenario where multiple configuration points
map one or more components to a node. If this node fails then all aforementioned configuration
points are rendered faulty. In addition to failure, hardware and software updates can also result in
reconfiguration, as discussed earlier.

Specifically, reconfiguration in CHARIOT happens by identifying a new valid configuration point
and determining the set of actions required to transition from current (faulty) configuration point to
the new (desired) configuration point. Configuration points and their transitions thus form the core
of CHARIOT’s reconfiguration mechanism. For any reconfiguration, several valid configuration
points might be available. From the available configuration points, an optimal configuration point

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:17

that satisfies the system requirements can be obtained based on several criteria, such as transition
cost, reliability, operation cost, and/or utility. The Configuration Point Computation (CPC) algorithm
serves this purpose and thus defines the core of CHARIOT’s self-reconfiguration mechanism. The
CPC algorithm can be decomposed into three phases: the (1) instance computation phase, (2)
constraint encoding phase, and (3) solution computation phase, as described next.

3.3.3 Phase 1: Instance Computation. The first phase of a CPC computes required instances of
different functionalities and subsequently components, based on the system description provided
at design-time. Each functionality can have multiple instances if it is associated with a replication
constraint. Each functionality instance should have a corresponding component instance that
provides the functionality associated with the functionality instance. Depending upon the number
of component types that provide a given functionality, a functionality instance can have multiple
component instances. Only one of the component instances will be deployed at runtime, however, so
there is always a one-to-one mapping between a functionality instance and a deployed component
instance.
The CPC algorithm first computes different functionality instances using Algorithm 1, which

is invoked for each objective. Every functionality is initially checked for replication constraints
(line 3). If a functionality does not have a replication constraint, a single functionality instance is
created (line 32). For every functionality that has one or more replication constraints associated
with it, each constraint is handled depending on the type of the constraint. A per-node replication
constraint is handled by generating a functionality instance and an assign constraint each for
applicable nodes (line 6-11). An application node is a node that is alive and belongs to the node
category associated with the per-node replication constraint.

Unlike a per-node replication constraint, the voter, consensus, and cluster replication constraints
depend on an exact replication value or a replication range to determine the number of replicas
(line 13-19). In the case of a range-based replication, CHARIOT tries to maximize the number
of replicas by using maximum of the range, which ensures that maximum number of failures is
tolerated without having to reconfigure the system. After the number of replicas is determined,
CHARIOT computes the replica functionality instances (line 21), as well as special functionality
instances that support different types of replication constraint.

For example, for each replica functionality instance in a consensus replication constraint, CHAR-
IOT generates a consensus service functionality instance (line 23) (a consensus service functionality
is provided by a component that implements consensus logic using existing algorithms, such as
Paxos [Lamport 2001] and Raft [Ongaro and Ousterhout 2014]). For a voter replication constraint,
in contrast, CHARIOT generates a single voter functionality instance for the entire replication
group (line 27). In the case of a cluster replication constraint, no special functionality instance is
generated as a cluster replication comprises independent functionality instances that do not require
any synchronization (see Section 3.1.2).

In order to ensure propermanagement of instances related to functionalities with voter, consensus,
or cluster replication constraints, CHARIOT uses four different constraints: (1) implies, (2) collocate,
(3) atleast, and (4) distribute. The implies constraint ensures all replica functionality instances
associated with a consensus pattern require their corresponding consensus service functionality
instances (line 24). Similarly, the collocate constraint ensures each replica functionality instance
and its corresponding consensus service functionality instance are always collocated on the same
node (line 25). The atleast constraint ensures the minimum number of replicas are always present
in scenarios where a replication range is provided (line 28-29). Finally, the distribute constraint
ensures that the replica functionalities are distributed across different nodes (line 30). CHARIOT’s

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

Algorithm 1 Functionality Instances Computation.
Input: objective (ob j), nodes (nodes_l ist), computed functionalities (computed_f unctionalit ies)
Output: functionality instances for ob j (r et_l ist)
1: for f unc in ob j .f unctionalit ies do
2: if f unc not in computed_f unctionalit ies then ▷ Make sure a functionality is processed only once.
3: if f unc has associated replication constraints then
4: constraints = all replication constraints associated with f unc
5: for c in constraints do
6: if c .kind == PER_NODE then ▷ Handle per node replication.
7: for node_cateдory in c .nodeCateдor ies do
8: nodes = nodes in nodes_l ist that are alive and belong to category node_cateдory
9: for n in nodes do
10: create functionality instance and add it to r et_l ist
11: add assign (functionality instance, n) constraint
12: else
13: r eplica_num = 0 ▷ Initial number of replicas, which will be set to max value if range given.
14: ranдe_based = False ▷ Flag to indicate if a replication constraints is range based.
15: if c .numInstances , 0 then
16: r eplica_num = c .numInstances
17: else
18: ranдe_based = T rue
19: r eplica_num = c .maxInstances
20: for i = 0 to r eplica_num do ▷ Create replica functionality instances.
21: create replica functionality instance and add it to r et_l ist
22: if c .kind == CONSENSU S then ▷ Handle consensus replication.
23: create consensus service functionality instance and add it to r et_l ist
24: add implies (replica functionality instance, consensus service functionality instance) constraint
25: add collocate (replica functionality instance, consensus service functionality instance) constraint
26: if c .kind == VOT ER then ▷ Handle voter replication.
27: create voter functionality instance and add it to r et_l ist
28: if ranдe_based == T rue then ▷ If replication range is given, add atleast constraints.
29: add atleast (c.rangeMinValue, replica functionality instances) constraint
30: add distribute (replica functionality instances) constraint
31: else
32: create functionality instance and add it to r et_l ist
33: add f unc to computed_f unctionalit ies

ability to support multiple instances of functionalities and distribute them across different nodes is
the basis of the failure avoidance mechanism.
After functionality instances are created, CHARIOT next creates the component instances

corresponding to each functionality instance. In general, it identifies a component type that provides
the functionality associated with each functionality instance and instantiates that component type.
As explained in Section 3.1.3, component types are modeled as part of the system description.
Different component types can provide the same functionality, in which case multiple component
types are instantiated, but a constraint is added to ensure only one of those instances is deployed and
running at any given time. In addition, all constraints previously created in terms of functionality
instances are ultimately applied in terms of corresponding component instances. We describe the
constraints next.

3.3.4 Phase 2: Constraint Encoding. The second phase of the CPC algorithm is responsible for
constraint encoding and optimization. These constraints are summarized below:
(1) Since reconfiguration involves transitioning from one configuration point to another, con-

straints that represent a configuration point are of utmost importance.
(2) Constraints to ensure component instances that must be deployed are always deployed.
(3) Constraints to ensure component instances that communicate with each other are either

deployed on the same node or on nodes that have network links between them.
(4) Constraints to ensure the resources’ provided-required relationships are valid.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:19

(5) Constraints encoded in the first phase of the CPC algorithm for proper management of
component instances associated with replication constraints.

(6) Constraints to represent failures, such as node failure or device failures.
The remainder of this section describes how CHARIOT implements the constraints listed above

as SMT constraints.
Representing the configuration points: A configuration point in CHARIOT is therefore

presented using a component-instance-to-node (C2N) matrix, as shown below. A C2N matrix
comprises rows that represent component instances and columns that represent nodes; the size of
this matrix is α × β , where α is the number of component instances and β is the number of available
nodes (Equation 1). Each element of the matrix is encoded as a Z3 integer variable whose value can
either be 0 or 1 (Equation 2). A value of 0 for an element means that the corresponding component
instance (row) is not deployed on the corresponding node (column). Conversely, a value of 1 for
an element indicates deployment of the corresponding component instance on the corresponding
node. For a valid C2N matrix, a component instance must not be deployed more than once, as
shown in Equation 3.

C2N =

c2n00 c2n01 c2n02 . . . c2n0β
c2n10 c2n11 c2n12 . . . c2n1β
c2n20 c2n21 c2n22 . . . c2n2β
. .
c2nα0 c2nα1 c2nα2 . . . c2nα β

c2ncn : c ∈ {0 . . . α },n ∈ {0 . . . β}, (α , β) ∈ Z+ (1)

∀c2ncn ∈ C2N : c2ncn ∈ {0, 1} (2)

∀c :
β∑

n=0
c2ncn ≤ 1 (3)

Now that we have constraints defined to represent a configuration point (i.e., a valid component-
instance-to-node mapping). A constraint is needed to ensure component instances that should
be deployed are always deployed. At this point it is important to recall range-based replication
described in Section 3.1.2. This approach results in a set of instances where a certain number (at
least the minimum) should always be deployed, but the remaining (difference between maximum
and minimum) are not always required, even though all of them are deployed initially. At any
given time, therefore, a configuration point can comprise some component instances that must be
deployed and others that are not always required be deployed. In CHARIOT we encode the "must
deploy assignment" constraint as follows:

Capturing the Must Deploy Constraint: The “must deploy assignment” constraint is used
to ensure all component instances that should be deployed are in fact deployed. This constraint
therefore uses the C2N matrix (Equation 1) and a set of component instances that must be deployed,
as shown in Equation 4.

LetM be a set of all component instances that must be deployed.

∀m ∈ M :
β∑

n=0
c2nmn == 1 (4)

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

The third set of constraints ensure that component instances with inter-dependencies (i.e., that
communicate with each other) are either deployed on the same node or on nodes that have network
links between them. CHARIOT encodes this constraint as follows:

Capturing the dependencies between components: This constraint ensures that interacting
component instances are always deployed on resources with appropriate network links to support
communication. This constraint is encoded in terms of a node-to-node (N2N) matrix, which is a
square matrix that represents existence of network links between nodes. This N2N matrix thus
comprises rows and columns that represents different nodes (Equation 5). Each element of the N2N
matrix is either 0 or 1, where 0 means there does not exist a link between the two corresponding
nodes and 1 means there exists a link between the two corresponding nodes. The constraint is
presented in Equation 6.

N 2N =

n2n00 n2n01 n2n02 . . . n2n0β
n2n10 n2n11 n2n12 . . . n2n1β
. .
n2nβ0 n2nβ1 n2nβ2 . . . n2nββ

n2nn1n2 : (n1,n2) ∈ {0 . . . β}, β ∈ Z+ (5)

Let cs and cd be two component instances that are dependent on each other.

∀n1,∀n2 : ((c2ncsn1 × c2ncdn2 , 0) ∧ (n1 , n2)) =⇒
(n2nn1n2 == 1) (6)

Capturing the Resource Constraints: The fourth set of constraints ensure the validity of the
resources’ provided-required relationships, such that essential component instances of one or more
applications can be provisioned. In CHARIOT these constraints are encoded in terms of resources
provided by nodes and required by component instances. Moreover, resources are classified into
two categories: (1) cumulative resources and (2) comparative resources. Cumulative resources have
a numerical value that increases or decreases depending on whether a resource is used or freed.
Examples of cumulative resources include primary memory and secondary storage. Comparative
resources have a boolean value, i.e., they are either available or not available and their value does
not change depending on whether a resource is used or freed. Examples of comparative resources
include devices and software artifacts. These two constraints can be encoded as follows:
The “cumulative resource” constraint is encoded using a provided resource-to-node (CuR2N)

matrix and a required resource-to-component-instance (CuR2C) matrix. The matrix CuR2N com-
prises rows that represent different cumulative resources and columns that represent nodes; the
size of this matrix is γ × β , where γ is the number of cumulative resources and β is the number of
available nodes (Equation 7). The CuR2C matrix comprises rows that represent different cumulative
resources and columns that represent component instances; the size of this matrix is γ × α , where
γ is the number of cumulative resources and α is number of component instances (Equation 8).
Each element of these matrices are integers. The constraint itself ensures that for each available
cumulative resource and node, the sum of the amount of the resource required by the component
instances deployed on the node is less than or equal to the amount of the resource available on the
node, as shown in Equation 9.

CuR2N =

r2n00 r2n01 r2n02 . . . r2n0β
r2n10 r2n11 r2n12 . . . r2n1β
. .
r2nγ 0 r2nγ 1 r2nγ 2 . . . r2nγ β

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:21

r2nrn : r ∈ {0 . . .γ },n ∈ {0 . . . β}, (γ , β) ∈ Z+ (7)

CuR2C =

r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. .
r2cγ 0 r2cγ 1 r2cγ 2 . . . r2cγ α

r2crc : r ∈ {0 . . .γ }, c ∈ {0 . . . α }, (γ ,α) ∈ Z+ (8)

∀r ,∀n :

(
α∑
c=0

c2ncn × r2crc

)
≤ r2nrn (9)

The “comparative resource” constraint is encoded using a provided resource-to-node (CoR2N)
matrix and a required resource-to-component-instance (CoR2C) matrix. The matrix CoR2N com-
prises rows that represent different comparative resources and columns that represents nodes; the
size of this matrix is ϕ × β , where ϕ is the number of comparative resources and β is the number of
available nodes (Equation 10). Similarly, the CoR2C matrix comprises rows that represent different
comparative resources and columns that represent component instances; the size of this matrix is
ϕ × α , where ϕ is the number of comparative resources and α is number of component instances
(Equation 11). Each element of these matrices is either 0 or 1, where 0 means the corresponding
resource is not provided by the corresponding node (for CoR2N matrix) or not required by the
corresponding component instance (for CoR2C matrix) and 1 means the opposite. The constraint
itself (Equation 12) ensures that for each available comparative resource, node, and component
instance, if the component instance is deployed on the node and requires the resource, then the
resource must also be provided by the node.

CoR2N =

r2n00 r2n01 r2n02 . . . r2n0β
r2n10 r2n11 r2n12 . . . r2n1β
. .
r2nϕ0 r2nϕ1 r2nϕ2 . . . r2nϕβ

r2nrn : r ∈ {0 . . .ϕ},n ∈ {0 . . . β}, (ϕ, β) ∈ Z+ (10)

CoR2C =

r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. .
r2cϕ0 r2cϕ1 r2cϕ2 . . . r2cϕα

r2crc : r ∈ {0 . . .ϕ}, c ∈ {0 . . . α }, (ϕ,α) ∈ Z+ (11)

∀r ,∀n,∀c : Assiдned(c,n) =⇒ (r2nrn == r2crc) (12)
Assigned (c, n) function returns true if component c is deployed on node n, i.e., it returns true if

c2ncn == 1.
Handling the replication constraints: The fifth set of constraints ensures management of

component instances associated with replication constraints. As mentioned in Section 3.3.3, assign,
implies, collocate, atleast, and distribute are the five different kinds of constraints that must be
encoded. Each of these constraints is encoded as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

The “assign constraint” is used for component instances corresponding to functionalities as-
sociated with per-node replication constraint. It ensures that a component instance is only ever
deployed on a given node. In CHARIOT, an assign constraint is encoded, as shown in Equation 13.

Let c be a component instance that should be assigned to a node n.

Enabled(c) =⇒ (c2ncn == 1) (13)
Enabled(c) function returns true if component instance c is assigned to any node, i.e, it checks if∑β
n=0 c2ncn == 1.
The “implies” constraint is used to ensure that if a component depends upon other components

then its dependencies are satisfied. It is encoded using the implies construct provided by an SMT
solver like Z3.
A “collocate” constraint is used to ensure that two collocated component instances are always

deployed on the same node. In CHARIOT this constraint is encoded by ensuring the assignment of
the two component instances is same for all nodes, as shown in Equation 14.

Let c1 and c2 be two component instances that need to be collocated.

(Enabled(c1) ∧ Enabled(c2)) =⇒
(∀n : c2nc1n == c2nc2n)

(14)

An “atleast” constraint is used to encode a M out of N semantics to ensure that given a set of
components (i.e. N), a specified number of those components (i.e.M) is always deployed. CHARIOT
uses this constraint for range-based replication constraints only and its implementation is two fold.
First, during the initial deployment CHARIOT tries to maximize M and deploy as many component
instances as possible. The current implementation of CHARIOT uses the maximum value associated
with a range and initially deploys N component instances, as shown in Equation 15. This of course
assumes availability of enough resources. A better solution to this would be to use the maximize
optimization, as shown in Equation16. However, in Z3 solver, which is the SMT solver used by
CHARIOT, this optimization is experimental and does not scale well. Second, for subsequent non-
initial deployment CHARIOT relies on the fact that maximum possible deployment was achieved
during initial deployment, so it ensures the minimum number required is always met, as shown in
Equation 17.
Let S = {c1, c2 . . . cα ′} be a set of replica component instances associated with an atleast con-

straint;N is the size of this set. Also, letmin_value be the minimum number of component instances
required; this is synonymous to M.

∑
c ∈S

β∑
n=0

c2ncn ==max_value (15)

maximize(
∑
c ∈S

β∑
n=0

c2ncn) (16)

∑
c ∈S

β∑
n=0

c2ncn ≥ min_value (17)

A “distribute” constraint is used to ensure that a set of components is deployed on different
nodes. In CHARIOT this constraint is encoded by ensuring at most only one component instance
out of the set is deployed on a single node, as shown in Equation 18.

Let S = {c1, c2 . . . cα ′} be a set of components that needs to be distributed.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:23

∀n :
∑
c ∈S

c2ncn ≤ 1 (18)

Capturing failures as constraints: The final step (step 8) of the second phase of the CPC
algorithm encodes and adds failure constraints. Depending on the type of failure, there can be
different types of failure constraints. This sixth set of constraints handles failure representation,
which are encoded in CHARIOT as shown below:

A “node failure” constraint is used to ensure that no components are deployed on a failed node.
CHARIOT encodes this constraint as shown in Equation 19.

Let nf be a failed node.

α∑
c=0

c2ncnf == 0 (19)

Since components can fail for various reasons, there are different ways to resolve a component
failure. One approach is to ensure that a component is redeployed on any node other than the node
on which it failed (Equation 20). If a component keeps failing in multiple different nodes, then
CHARIOT may need to consider another constraint to ensure the component is not redeployed on
any node (Equation 21).

Let us assume component c1 failed on node n1.

c2nc1n1==0 (20)

β∑
n=0

c2nc1n == 0 (21)

3.3.5 Solution Computation Phase. The third and final phase of the CPC algorithm involves
computing a “least distance” configuration point, i.e., a configuration point that is the least distance
away from the current configuration point. This computation ensures that a system always under-
goes the least possible number of changes during reconfiguration. The distance is computed as the
number of changes required to transition to the new configuration point. Since a configuration point
is a component-instance-to-node mapping represented as C2N matrix (see Equation 1), the distance
between two configuration points is the distance between their corresponding C2N matrices. In
CHARIOT, the least distance constraint is encoded as shown below:

Least Distance Constraint The “least distance” constraint is used to ensure that we find a valid
configuration point that is closest to the current configuration point. The distance between two
configuration points is the distance between their corresponding C2N matrices. This distance is
computed as shown in Equation 22. The distance between two valid configuration points A and B
is the sum of the absolute difference between each element of the C2N matrices corresponding to
the two configuration points.

To ensure we obtain least distance configuration point, an ideal solution would be to use minimize
optimization (Equation 23), which is supported by SMT solvers like Z3. Like the Z3 maximize
optimization, however, the Z3 minimize optimization implementation is experimental and does not
scale well. In CHARIOT we therefore implement this constraint using an iterative logic, which upon
every successful solution computation adds the distance constraint (Equation 22) before invoking
the solver again to find a solution that is at a lesser distance compared to the previous solution.
This iteration stops when no solution can be found, in which case the previous solution is used as
the optimum (least distance away) solution.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

conf iд_distance =
β∑

n=0
|c2n_Acn − c2n_Bcn | (22)

minimize(conf iд_distance) (23)

At this point in the CPC algorithm, CHARIOT invokes the Z3 solver to check for a solution. If all
constraints are satisfied and a solution is found, the CPC algorithm computes a set of deployment
actions. CHARIOT computes deployment actions by comparing each element of the C2N matrix
that represents the current configuration point with the corresponding element of the C2N matrix
associated with computed solution, i.e., the target configuration point. If the value of an element in
the former is 0 and later is 1, CHARIOT adds a START action for the corresponding component
instance on the corresponding node. Conversely, if the value of an element in the former is 1 and
the latter is 0, CHARIOT adds a STOP action. Applying this operation to each element of the matrix
results in a complete set of deployment actions required for successful system transition.

3.3.6 The Look-ahead Reconfiguration. The CPC algorithm presented above yields a reactive
self-reconfiguration approach since the algorithm executes after a failure is detected. As such,
runtime reconfiguration incurs the time taken to compute a new configuration point and determine
deployment actions required to transition to a new configuration. This approach may be acceptable
for IoT systems consisting of non-real-time applications that can incur considerable downtime.
For IoT systems involving real-time mission-critical applications, however, predictable and timely
reconfiguration is essential. Since all dynamic reconfiguration mechanisms rely on runtime compu-
tation to calculate a reconfiguration solution, the time to compute a solution increases with the
scale of the IoT system. The CPC algorithm is no different, as shown by experimental results in our
prior work [Pradhan et al. 2016b].

To address this issue, we therefore extend the CPC algorithm by adding a configurable capability
to use a finite horizon look-ahead strategy that pre-computes solution and thus significantly
improves the performance of the management engine. We call this capability the Look-ahead
Re-Configuration (LaRC). The general goal of the LaRC approach is to pre-compute and store
solutions, so it just finds the appropriate solution and applies it when required. When the CPC
algorithm is configured to execute in the “look-ahead" mode, solutions are pre-computed every
time the system state (i.e., the current configuration point) changes.
The first pre-computation happens once the system is initially deployed using the default CPC

algorithm. After a system is initially deployed, CHARIOT pre-computes solutions to handle failure
events. These pre-computed solutions cannot be used for update events since these types of events
change the system in such a way that the previously pre-computed solutions are rendered invalid.
Once CHARIOT has a set of pre-computed solutions, therefore, failures are handled by finding the
appropriate pre-computed solution, applying the found solution, and pre-computing solutions to
handle future failure events. For update events, in contrast, the default CPC algorithm is invoked
again (same as during initial deployment) to compute a solution. After a solution for an update
event is computed, CHARIOT again pre-compute solutions to handle failure events.
To pre-compute solutions, CHARIOT currently uses Algorithm 2. Since this paper focuses on

node failures, Algorithm 2 only pre-computes solutions for node failures. Assuming that a system
is in a stable state, this algorithm first removes any existing look-ahead solutions (line 1) since it is
either invalid (update event) or already used (failure event). After this the algorithm iterates through
each available node (line 2-3) and for each node, the algorithm creates a temporary copy of the
configuration space (line 4), which includes the current (stable) configuration point. All subsequent

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:25

Algorithm 2 Solution Pre-computation.
Input: nodes (nodes_l ist)
1: remove existing look-ahead information from the configuration space
2: for node in node_l ist do
3: if node is alive then
4: tmp_conf iд_space = get configuration space
5: mark node as failed in tmp_conf iд_space
6: actions = CPC algorithm on tmp_conf iд_space
7: if actions ! = null then
8: l_ahead = new LookAhead instance
9: l_ahead .f ailedEntity = node .name
10: l_ahead .f ailureKind = NODE
11: l_ahead .deploymentActions = actions
12: store l_ahead in the configuration space

actions are taken with respect to the temporary configuration space copy, so the original copy is
not corrupted during the pre-computation computation process.
After a copy of the configuration space is made, the particular node is marked as failed (line

5) and the CPC algorithm is invoked (line 6). This pre-computation algorithm thus essentially
injects a failure and asks the CPC algorithm for a solution. If a solution is found, the injected
failure information and the solution is stored as an instance of the LookAhead class presented in
Section 3.2.2 (line 7-12).

3.3.7 Summary of management layer. The description of the LaRC approach in Section 3.3.6
yields interesting observations with regards to the pre computation algorithm. First, the current
version of the that algorithm only considers node failures. We will alleviate this limitation in
future work by adding system-wide capabilities to monitor, detect, and handle failures involving
application processes, components, and network elements.
Second, the pre-computation algorithm specifically pre-computes solutions only for the next

step, i.e., the algorithm only looks one step ahead. We believe that the number of steps to look-ahead
should be a configurable parameter as different classes of systemmight benefit from different setting
of this parameter. For example, consider highly dynamic IoT systems that are subject to frequent
failures resulting in bursts of failure events. For such systems, it is important to look-ahead more
than one step at a time, otherwise multiple failures that happen in short timespan cannot be handled.
However, for IoT systems that are comparatively more static, such as the smart parking system
presented in Section 2.1, a higher Mean Time To Failure (MTTF) is expected, so pre-computed
solutions need not look ahead more than one step at a time.

There is clearly a trade-off between time, space, and number of failures toleratedwhen considering
the number of pre-computation steps. Multi-step pre-computation takes more time and space to
store large number of solutions based on various permutation and combination of possible failures,
but can handle bursts of failures. Conversely, a single-step pre-computation will be much faster
and occupy less space, but it will be harder to handle bursts of failures.

An ideal solution would involve a dynamic solution pre-computation algorithm. The dynamism
is with respect to the configuration of the pre-computation steps parameter. For any given system,
however, we assume that there is an initial value that can change at runtime depending on the
system behavior. Further investigating and implementing such a solution is part of our future
work.

4 IMPLEMENTATION AND EVALUATION OF CHARIOT
This section describes and empirically evaluates the CHARIOT runtime implementation using the
Smart Parking System use-case scenario presented in Section 2.1. Figure 14 depicts CHARIOT’s

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

runtime implementation architecture, which consists of compute nodes comprising the layered
stack shown in figure 2.

Fig. 14. The CHARIOT Runtime Implementation Architecture.

Each CHARIOT-enabled compute node hosts two platform services: a Node Monitor and a
Deployment Manager. The Node Manager assesses the liveliness of its specific node, whereas the
Deployment Manager manages the lifecycle of applications deployed on a node. In addition to
compute nodes, CHARIOT’s runtime also comprises one or more instances of three different types
of server nodes: (1) Database Servers that store system information, (2) Management Engines that
facilitate failure avoidance, failure management, and operation management, and (3) Monitoring
Servers that monitor for failures.6

CHARIOT’s Node Manager is implemented as a ZooKeeper [Hunt et al. 2010] client that registers
itself with a Monitoring Server. In turn, the Monitoring Server is implemented as a ZooKeeper
server and uses ZooKeeper’s group membership functionality to detect member (node) additions
and removals (i.e., failure detection). This design supports dynamic resources, i.e., nodes that can
join or leave a cluster at any time. A group of Node Monitors (each residing on a node of a cluster)
and one or more instances of Monitoring Servers define the monitoring infrastructure described in
Section 3.

The Deployment Manager is implemented as a ZeroMQ [Hintjens 2013] subscriber that receives
management commands from a Management Engine, which is in turn implemented as a ZeroMQ
publisher. The Management Engine computes the initial configuration point for application deploy-
ment, as well as subsequent configuration points for the system to recover from failures. After a
Deployment Manager receives management commands from the Management Engine, it executes
those commands locally to control the lifecycle of application components. Application components
managed by CHARIOT can be in one of two states: active or inactive. A group of Deployment
Managers, each residing on a node of a cluster, represents the deployment infrastructure described
in Section 3.
A Database Server is an instance of a MongoDB server. For the experiments presented in

Section 4.4, we only consider compute node failures, so deploying single instances of Monitoring
Servers, Database Servers, and Management Engines fulfills our need. To avoid single points of
failure, however, CHARIOT can deploy each of these servers in a replicated scenario. In the case
of Monitoring Servers and Database Servers, replication is supported by existing ZooKeeper and
6Since failure detection and diagnosis is not the primary focus of this paper, our current implementation focuses on resolving
node failures, though CHARIOT can be easily extended to support mechanism to detect component, process, and network
failures.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:27

MongoDB mechanisms. Likewise, replication is trivial for Management Engines since they are
stateless. A Management Engine executes the CPC algorithm (see Section 3.3.2), with or without
the LaRC configuration (see Section 3.3.6), using relevant information from a Database Server.
CHARIOT can therefore have multiple replicas of Management Engines running, but only one
performs reconfiguration algorithms. This constraint is achieved by implementing a rank-based
leader election among different Management Engines. Since a Management Engine implements
a ZeroMQ server and since ZeroMQ does not provide a service discovery capability by default,
CHARIOT needs some mechanism to handle publisher discovery when a Management Engine fails.
This capability is achieved by using ZooKeeper as a coordination service for ZeroMQ publishers
and subscribers.

4.1 Application Deployment Mechanism
For initial application deployment, CHARIOT ML (see Section 3.1) is used to model the corre-
sponding system that comprises the application, as well as resources on which the application
will be deployed. This design-time model is then interpreted to generate a configuration space
(see Section 3.3.1) and store it in the Database Server, after which point a Management Engine
is invoked to initiate the deployment. When the Management Engine is requested to perform
initial deployment, it retrieves the configuration space from the Database Server and computes a
set of deployment commands. These commands are then stored in the Database Server and sent
to relevant Deployment Managers, which take local actions to achieve a distributed application
deployment. After a Deployment Manager executes an action, it updates the configuration space
accordingly.

4.2 Failure and Update Detection Mechanism
CHARIOT leverages capabilities provided by ZooKeeper to implement a node failure detection
mechanism, which performs the following steps: (1) each computing node runs a Node Manager
after it boots up to ensure that each node registers itself with a Monitoring Server, (2) when a node
registers with a Monitoring Server, the latter creates a corresponding ephemeral node,7 and (3)
since node membership information is stored as ephemeral nodes in the Monitoring Server, it can
detect failures of these nodes.

4.3 Reconfiguration Mechanism
After a failure is detected a Monitoring Server notifies the Management Engine, as shown in
Figure 14. This figure also shows that the Management Engine then queries the Database Server to
obtain the configuration space and reconfigure the system using relevant information from the
configuration space and the detected failure.

4.4 Experimental Evaluation
Although we have previously used CHARIOT to deploy and manage applications on an embedded
system comprising Intel Edison nodes (see chariot.isis.vanderbilt.edu/tutorial.html), this paper uses
a cloud-based setup to evaluate CHARIOT at a larger scale. Below we first describe our experiment
test-bed and then describe the application and set of events used for our evaluation. We next
present an evaluation of the default CPC algorithm and evaluate the CPC algorithm with the LaRC
algorithm. Finally, we present CHARIOT resource consumption metrics.

4.4.1 Hardware and Software Testbed. Our testbed comprises 45 virtual machines (VMs) each
with 1GB RAM, 1VCPU, and 10GB disk in our private OpenStack cloud. We treat these 45 VMs
7ZooKeeper stores information in a tree like structure comprising simple nodes, sequential nodes, or ephemeral nodes.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

chariot.isis.vanderbilt.edu/tutorial.html

1:28
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

Table 1. Sequence of Events Used for Evaluation of the CPC Algorithm.

Events Description
1 Initial deployment over 21 nodes (10 processing nodes, 10 camera nodes, and 1 terminal node) resulting in 23

component instances; 10 different component instances related to the occupancy_detector functionality due to
its corresponding cluster replication constraint, 10 different component instances related to the image_capture
functionality due to its corresponding per-node replication constraint associated with camera nodes (we have
10 camera nodes), a component instance related to the client functionality due to its corresponding per-node
replication constraint associated with terminal nodes (we have 1 terminal node), and a component instance
each related to the load_balancer, and parking_manager functionalities.

2 Failure of a camera node. No reconfiguration is required for this failure as a camera node hosts only a
node-specific component that provides the image_capture functionality.

3 Failure of the processing node that hosts a component instance each related to the load_balancer and
parking_manager functionalities. This results in reconfiguration of the aforementioned two component
instances. Furthermore, since the processing node hosts an instance of the occupancy_detection functionality,
the number of component instances related to this functionality decreases from 10 to 9. Since 9 is still
within the provided redundancy range (min = 7, max = 10), however, this component instance does not get
reconfigured.

4 Failure of the processing node on which the component instance related to the parking_manager functionality
was reconfigured to as the result of the previous event. This event results in the parking_manager functionality
related component instance to again be reconfigured to a different node. Moreover, the number of component
instances related to the occupancy_detector functionality decreases to 8, which is still within the provided
redundancy range; as such, reconfiguration of that component instance is not required.

5 Failure of the processing node on which the component instance related to the load_balancer functionality
was reconfigured to as result of event 3. This event results in the component instance being reconfigured again
to a different node. Also, the number of component instances related to the occupancy_detector functionality
decreases to 7, which is still within the provided redundancy range so no reconfiguration is required.

6 Failure of another processing node. This node only hosts a component instance related to the occu-
pancy_detector functionality. As a result of this failure event, therefore, the provided redundancy range
associated with the occupancy_detector functionality is violated since the number of corresponding compo-
nent instances decreases to 6. This component instance is then reconfigured to a different node to maintain at
least 7 instances of the occupancy_detector functionality.

7 Failure of the single available terminal node onwhich the component instance related to the client functionality
was deployed as part of the initial deployment (event 1). This event results in an invalid system state since
there are no other terminal nodes and thus no instances of client functionality are available.

8-31 Hardware updates associated with addition of 2 terminal nodes, 11 processing nodes, and 11 camera nodes.
Due to associated per-node replication constraints, addition of a terminal node results in deployment of
a component instance associated with the client functionality. Similarly, adding a camera node results in
deployment of a component instance associated with the image_capture functionality. Adding processing
node does not result in any new deployment, however, since it is not associated with a per-node replication
constraint.

32 Failure of a processing node that hosts a component instance related to the occupancy_detector functionality.
This results in reconfiguration of the component instance to a different node.

33 Failure of another processing node, which hosts no applications. Therefore, no reconfiguration is required.
34 Failure of a camera node. Again, no reconfiguration is required (see event 2 above).

as embedded compute nodes. In addition to these 45 VMs, 3 additional VMs with 2 VCPUs, 4 GB
memory, and 40GB disk is used as server nodes to host Monitoring Server, Database Server, and
Management Engine (see Figure 14). All these VMs ran Ubuntu 14.04 and were placed in the same
virtual LAN.

4.4.2 Application and Event Sequence. To evaluate CHARIOT, we use the smart parking system
described in Section 2.1. We divide the 45 compute nodes into 21 processing nodes (corresponding
to the edison node template in Figure 7), 21 camera nodes (corresponding to the wifi_cam node
template in Figure 7), and 3 terminal nodes (corresponding to the entry_terminal node template

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:29

Fig. 15. Default CPC Algorithm Performance. (Please refer to Table 1 for details about each event shown in
this graph.)

in Figure 7). The goal description we used is the same shown in Figure 9, except we increase the
replication range of the occupancy_detector functionality to minimum 7 and maximum 10.

To evaluate the default CPC algorithm we use 34 different events presented in Table 1. As shown
in the table, the first event is the initial deployment of the smart parking system over 21 nodes (10
processing nodes, 10 camera nodes, and 1 terminal node). This initial deployment results in a total
of 23 component instances. After initial deployment, we introduce 6 different node failure events,
one at a time. We then update the system by adding 2 terminal nodes, 11 processing nodes, and 11
camera nodes. These nodes are added one at a time, resulting in a total of 45 nodes (including the 6
failed nodes). These updates are examples of intended updates and show CHARIOT’s operations
management capabilities. After updating the system, we introduce three more node failures.

4.4.3 Evaluation of the Default CPC Algorithm. Figure 15 presents evaluation of the default
CPC algorithm using application and event sequence described above. To evaluate the default CPC
algorithm we use the total solution computation time, which is measured in seconds. The total
solution computation time can be decomposed into two parts: (1) problem setup time and (2) Z3
solver time. The problem setup time corresponds to the first two phases of the CPC algorithm (see
Section 3.3.3 and Section 3.3.4), whereas the Z3 solver time corresponds to the third phase of the
CPC algorithm (see Section 3.3.5).
Figure 15 shows that for initial deployment and the first 5 failure events, the total solution

computation time is similar (average = 48 seconds) because the size of the C2Nmatrix and associated
constraints created during the problem setup time are roughly the same. The 6th failure (7th event
in Figure 15), is associated with the one and only terminal node in the system. The Z3 solver
therefore quickly determines there is no solution, so the Z3 solver time for the 7th event is the
minimal 1.74 seconds.
Events 8 through 31 are associated with a system update via the addition of a single node per

event. These events show that for most cases the total solution computation time increases with
each addition of node. The problem setup time increases consistently with increase in the number
of nodes because the size of the C2N matrix, as well as the number of constraints, increases with
an increase in the number of nodes. The Z3 solver time also increases with increase in number

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:30
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

of nodes in the system, however, it does not increase as consistently as the problem setup time
due to the least distance configuration computation presented in Section 3.3.5. The number of
iterations, and therefore the total time, taken by the Z3 solver to find a solution with least distance
is non-deterministic. If a good solution (with respect to distance) is found in the first iteration, it
takes less number of iterations to find the optimal solution. We demonstrate this non-deterministic
behavior using experimental results in Section 4.4.6.

Finally, events 32 through 34 are associated with more node failures. The total solution computa-
tion time therefore decreases due to the decrease in number of nodes and component instances,
which results in a smaller C2N matrix and a fewer number of constraints.

4.4.4 Evaluation of the CPC algorithm with LaRC. For the purpose of this evaluation we use the
first 5 events since this is enough to showcase the trade-off between the default CPC algorithm
and the CPC algorithm with LaRC. In this approach, the total solution computation time (apart
from the initial deployment) is the time taken to query the database for pre-computed solution.
This time is significantly lower (average = 0.0085 seconds) than that for the default CPC algorithm
(average = 48 seconds).

Fig. 16. Solution Pre-computation Time for CPC with LaRC.

To demonstrate the trade-off between the two versions of the CPC algorithm, Figure 16 presents
the time taken for solution pre-computation and the space required to store pre-computed solution
in (the solution for failure event i+1 is computed when the reconfiguration action for the failure
event i is being applied). As shown in this figure, the time taken to pre-compute solution after
initial deployment is 1,400 seconds, which is the time needed to pre-compute solution for 21 node
failures (initial configuration). To store this pre-computed solution 1,715 bytes of storage space
is used. Events 2 through 5 represent node failures and the solution pre-computation time and
storage used to store the pre-computed solution decreases with each failure because failures result
in less number of scenarios for which we need to pre-compute a solution.

4.4.5 Resource Consumption. To demonstrate the usability of CHARIOT in IoT systems, we
present various resource consumption of CHARIOT entities (Deployment Manager and Node
Monitor, as shown in Figure 14) that run on each compute node. The resource consumption
numbers only consider the CHARIOT management entities and not the actual application being
managed. Moreover, for the purpose of this evaluation we categorize the compute nodes based on
their lifetime (short, medium, long) and randomly pick 4-5 nodes form each category. Nodes A, B,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:31

Fig. 17. Average Memory Consumption. Fig. 18. Average Network Bandwidth Consumption.

C, D, and E are nodes with short lifetime (less than 15 minutes); nodes F, G, H, and I are nodes with
medium lifetime (between 110 and 154 minutes); nodes J, K, L, and M are nodes with long lifetime
(between 200 and 235 minutes).

Figure 17 presents the average memory consumed by CHARIOT entities running on 13 nodes
mentioned above throughout their lifetime. This figure shows that the averagememory consumption
is close to slightly above or below 25 MB in each node. Similarly, Figure 18 presents the average
network bandwidth consumed by CHARIOT entities running on the aforementioned 13 nodes
throughout their lifetime. This figure shows that the network bandwidth used to send and receive
information is minimal and predictable. We do not show the CPU utilization since it was between
0 - 0.5%.
The results presented above show that the CHARIOT infrastructure is not resource intensive

and thus can be used for resource-constrained IoT devices. CHARIOT is currently written using
Python,8 though we intend to convert our code to C++/Golang to further improve performance.

Fig. 19. Default CPC Algorithm Performance in Simulated Environment. (Table 1 presents details about each
event shown in this graph.)

4.4.6 Analyzing the Performance of the CPC algorithm. To further analyze the CPC algorithm’s
performance, the experiment presented in Section 4.4.3 was replicated in a singlemachine simulation
environment. This new analysis was run on a 64 bit Windows 7 machine with 8 GB memory and 8
8github.com/visor-vu/chariot

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

github.com/visor-vu/chariot

1:32
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

cores resulting in 4 GB of additional memory and 6 additional cores compared to the distributed
testbed used for experiment presented in Section 4.4.3. Figure 19 presents the overall performance
of the CPC algorithm using application and event sequence described in Section 4.4.2. Figure 20
compares the performance of CPC algorithms in simulated and non-simulated environment. The
results in this figure show the performance improvement facilitated by the more resourceful
hardware used in the simulated environment.

Fig. 20. Default CPC Algorithm Performance Comparison between Non-simulated and Simulated Environ-
ments. (Please refer to Table 1 for details about each event shown in this graph.)

Fig. 21. The Z3 Solver Time Jitter versus the corresponding Problem Complexity. (Please refer to Table 1 for
details about each event shown in this graph.)

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:33

Fig. 22. Solution Computation Time for Different
Initial Deployment Scenarios.

Fig. 23. Breakdown of Total Constraint Encoding
Time into Different Constraints.

Figure 21 analyzes the Z3 solver time jitter by comparing the Z3 solver time with the correspond-
ing Z3 problem complexity. Here, the Z3 problem complexity is a metric defined as the product of
(1) total number of solver assertions, which indicates the size of the problem being solved by the
Z3 solver, and (2) total number of least-distance iterations, which indicates the number of times a
problem is solved by the Z3 solver. As shown in the figure, barring few anomalies, the Z3 solver
time depends on the Z3 problem complexity.
Finally, to determine possible performance bottlenecks, the default CPC algorithm was further

analyzed using different initial deployment scenarios (based on varying scale) of the application
presented in Section 4.4.2. Figure 22 presents the total solution computation time, divided into
three different phases of the CPC algorithm, for six different initial deployment scenarios. The first
deployment scenario comprises 11 nodes and 10 components; the second deployment scenario
comprises 22 nodes and 18 components; the third deployment scenario comprises 33 nodes and
26 components; the fourth deployment scenario comprises 44 nodes and 34 components; the fifth
deployment scenario comprises 55 nodes and 42 components; and the sixth deployment scenario
comprises 66 nodes and 50 components.

Figure 22 shows that the second phase of the CPC algorithm, which corresponds to the constraint
encoding phase, contributes to majority of the total solution computation time. Further analysis of
the constraint encoding phase of the CPC algorithm (shown in Figure 23) shows that the dependency
constraint encoding (see Equation 6) is the main bottleneck as it accounts for more than 90% of the
constraint encoding time. This result occurs because for every dependency, the current encoding
mechanism incurs O(n2) time complexity. Any improvement to the way in which this constraint is
encoded will result in significant reduction of the total solution computation time.

5 RELATEDWORK
This section summarizes related work and distinguishes it from our research on CHARIOT presented
in this paper.

5.1 Redundancy-based Strategies
Fault tolerance in computing has a long history, but resilience [Laprie 2008] is beyond the capabilities
of conventional fault-tolerant approaches since resilience means providing the services even if
any part of the system fails, which requires adaptation. Conventional fault tolerance techniques
are based on redundancy together with comparison (e.g., a voter) or acceptance checking schemes

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:34
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

to decide if a component is functioning correctly. Redundancy-based techniques mask certain
classes of persistent and transient faults that may develop in one or more (but not in all) redundant
components at the same time, thereby ensuring that faults do not lead to eventual system or
subsystem failures. These techniques rely on the assumption that failure of a component is an
independent event. Hence, the failure probability of the overall system or subsystem is lower
since it is a product of the failure probabilities of the individual components. Other well-known
redundancy techniques include recovery blocks and self-check programming [Torres-Pomales
2000]. None of these methods are sufficient, however, for IoT systems where both software and
hardware topologies can change dynamically.

5.2 Reconfiguration-based Strategies
Reconfiguration-based techniques provide an alternative to the redundancy-based strategies de-
scribed above. The goal of reconfiguration is to detect anomalous behavior, perform diagnosis to
identify the fault cause(s) responsible for the detected anomalies, and apply remedies to restore the
functionalities affected by anomalies. These techniques can be configured to account for anomalous
behavior and their cascading effects due to faults identified at design time, as well as latent bugs,
common mode failures, or other unforeseen events or attacks that disrupt the nominal operation.
Moreover, these approaches can be applied to augment system resilience when redundancy-based
fault tolerance strategies are already in place.
Anomaly detectors can be based on observing different system aspects, such as heartbeats of

nodes and applications, resource utilization of the hosted applications, or unexpected perturbations
of application data. These observations are periodically compared against preset values or thresholds,
model outputs, or expected behaviors. Diagnosis schemes can use the status of these anomaly
monitors to localize and isolate the fault source(s). Anomaly detectors can also employ a hierarchical
approach, as well as consensus-based schemes between multiple independent observers. Our prior
work [Mahadevan et al. 2011a; Mehrotra et al. 2012] on anomaly detection and diagnosis forms the
basis for the diagnosis system we use. However, we should point out that diagnosis is not the focus
of this paper and therefore is not discussed further.
There are two types of reconfiguration-based techniques: offline strategies using pre-specified

reconfiguration rules and online strategies using dynamic reconfiguration where solutions are
computed/searched for at runtime.

5.2.1 Offline Reconfiguration Strategies. In [Hang et al. 2011; Manolios et al. 2007] the authors
present two solutions for synthesizing an optimal assembly for component-based systems, given
a set of constraints. Both solutions perform automatic static assembly at design-time. The key
difference between these solutions is that [Manolios et al. 2007] does not consider timing constraints,
whereas the solution in [Hang et al. 2011] targets scheduling constraints in cyber-physical systems.
Neither of these solutions meet the needs of IoT systems, however, since they do not consider
dynamic reconfiguration and focus solely on automatically synthesizing optimal system assemblies
at design-time.

The work appearing in [Andrade and de Araújo Macêdo 2009; Asmare et al. 2012; Schaeffer-Filho
et al. 2014] presents different policy-based approaches. In [Asmare et al. 2012], the authors present
a policy-based framework that requires mission specification, which describes how specific roles
are assigned to different nodes based on their credentials and capabilities, as well as how these roles
should be reassigned in response to changes or failures. This mission specification explicitly encodes
reconfiguration actions, e.g., role reassignments, at design-time. In [Schaeffer-Filho et al. 2014], the
authors apply a similar approach using declarative policies to specify adaptation. In [Andrade and
de Araújo Macêdo 2009], the authors present a policy-based approach where each adaptation policy

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:35

comprises rules, actions, and the rate at which each rule should be evaluated. These approaches
differ from our work because they are based on static reconfiguration, whereas CHARIOT is based
on dynamic reconfiguration.

Our prior work based on static reconfiguration [Mahadevan et al. 2011b] shows how system-wide
mitigation can be performed based on reactive, timed-state machines specified at design-time, using
the results of a two-level fault-diagnoser [Dubey et al. 2011]. Statically specified reconfiguration
techniques typically result in faster performance since reconfiguration actions are pre-determined
so no additional computations are required at runtime. These techniques are generally untenable
for IoT systems since these systems are dynamic and thus all possible runtime scenarios cannot be
pre-determined a priori at design-time.

5.2.2 Online Reconfiguration Strategies. CHARIOT uses an online, dynamically computed strat-
egy for reconfiguration. It requires runtime computation to search for a solution. Reducing this
search time and ensuring its predictability is essential for IoT systems that host mission-critical,
cyber-physical applications. Our prior work [Mahadevan et al. 2013] on dynamic reconfiguration
was based on boolean encoding of a system. This work has some limitations, however, since it was
(1) based on a SAT solver and therefore could not accommodate complex constraints over integer
variables, (2) not flexible enough to consider runtime modification of a system’s encoding, and (3)
unable to take timing requirements into account.
In [Valls et al. 2013], the authors present middleware that supports timely reconfiguration in

distributed real-time and embedded systems based on services. At design-time, the schedulability
and complexity of a system is analyzed and fine-tuned to bound sources of unpredictability. The
resulting Scheduled Expanded Graph is used at runtime to determine the Execution Graph, which
represents the application in execution. Although this approach is flexible and relies on runtime
search of the execution graph for viable reconfiguration solutions, the predictability and schedula-
bility analysis is conducted at design-time, so system resources cannot be modified at runtime. In
contrast, CHARIOT supports runtime modification required for systems with dynamic resources.

Dynamic Software Product Lines (DSPLs) have also been suggested for dynamic reconfiguration.
In [Capilla et al. 2014], the authors present a survey of the state-of-the-art techniques that attempt
to address many challenges of runtime variability mechanisms in the context of DSPLs. The authors
also provide a potential solution for runtime checking of feature models for variability management,
which motivates the concept of configuration models. A configuration model acts as a database that
stores a feature model along with all possible valid states of the feature model. Although this work
is conceptually similar to our CHARIOT middleware, it does not take timing requirements into
account.

Ontology-based reconfiguration work has been presented in [Höftberger and Obermaisser 2014;
Shaukat et al. 2015], where the analytical redundancy of computational components is made explicit.
On the basis of this ontology, the system can be reconfigured by identifying suitable substitutes for
the failed services. Unlike CHARIOT, however, these ontology-based reconfiguration solely rely on
redundancy.

6 CONCLUDING REMARKS
This paper described the structure and functionality of CHARIOT, which is orchestration middle-
ware we developed to meet key resilience requirements of IoT systems. The following is a summary
of our lessons learned from developing and applying CHARIOT in practice:

Lesson 1: Design-time system description should be generic. If the objectives of an appli-
cation and the functionalities that it requires can be specified in a generic manner, CHARIOT
can create an online mechanism that maps the system objectives to required resources based on

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:36
Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Aniruddha Gokhale,

Sankaran Mahadevan, Douglas C Schmidt, and Martin Lehofer

functionality decomposition and functionality-component association. It is important, however, to
extend this concept to support the idea of graceful degradation. In future work, we are modeling
quality of service (QoS) functions that provide mechanisms for evaluating the performance of a
component’s functionality based on available resources. These QoS mechanisms can be helpful
when CHARIOT needs to arbitrate between different system objectives.

Lesson 2: Design-time and runtime system information can be used to encode constraints
at runtime. Using design-time system description and runtime system representation, constraints
can be dynamically encoded to represent various system requirements. These constraints can aid
online reconfiguration via the use of state-of-the-art solvers such as Z3, which is a SMT solver.
To minimize downtime, however, efficient pre-computation of reconfiguration steps is necessary.
CHARIOT’s look-ahead approach described in this paper is a step in this direction.

Lesson 3: Dynamic online reconfiguration is time consuming.Online reconfiguration is time
consuming and is thus not suitable for low latency IoT systems with stringent real-time constraints.
For those types of systems, therefore, it is important to include redundancy in the deployment logic.
The CHARIOT modeling language and reconfiguration logic supports these redundancy concepts.

Lesson 4: Failure reconfiguration approach can be extended to support system updates
as well. CHARIOT’s reconfiguration framework can be extended to address IoT system evolution,
which corresponds to the addition of computational capabilities or new software applications. By
generalizing and automating reconfiguration steps CHARIOT can be adopted by IoT apps in many
domains.

Our future work on CHARIOT will analyze the time complexity of the reconfiguration analysis
and develop strategies to minimize downtime to facilitate its use in safety- and time-critical IoT
application domains.

ACKNOWLEDGMENTS
This work is sponsored in part by Siemens Corporate Technology and in part by a NSF grant
1528799. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of Siemens Corporate Technology
or NSF.

REFERENCES
Sandro Santos Andrade and Raimundo José de Araújo Macêdo. 2009. A non-intrusive component-based approach for

deploying unanticipated self-management behaviour. In Software Engineering for Adaptive and Self-Managing Systems,
2009. SEAMS’09. ICSE Workshop on. IEEE, 152–161.

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, and Emil Lupu. 2012. Self-management framework
for mobile autonomous systems. Journal of Network and Systems Management 20, 2 (2012), 244–275.

Kyle Benson, Charles Fracchia, Guoxi Wang, Qiuxi Zhu, Serene Almomen, John Cohn, Luke D’arcy, Daniel Hoffman,
Matthew Makai, Julien Stamatakis, et al. 2015. SCALE: Safe community awareness and alerting leveraging the internet
of things. IEEE Communications Magazine 53, 12 (2015), 27–34.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things.
In Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM, 13–16.

Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike Hinchey. 2014. An overview of Dynamic Software
Product Line architectures and techniques: Observations from research and industry. Journal of Systems and Software 91
(2014), 3–23.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS. 337–340.
A. Dubey, G. Karsai, and N. Mahadevan. 2011. Model-based software health management for real-time systems. In Aerospace

Conference, 2011 IEEE. IEEE, 1–18.
Christine Hang, Panagiotis Manolios, and Vasilis Papavasileiou. 2011. Synthesizing cyber-physical architectural models

with real-time constraints. In Computer Aided Verification. Springer, 441–456.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems 1:37

George T. Heineman and William T. Councill (Eds.). 2001. Component-based Software Engineering: Putting the Pieces Together.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Pieter Hintjens. 2013. ZeroMQ: Messaging for Many Applications. " O’Reilly Media, Inc.".
Oliver Höftberger and Roman Obermaisser. 2014. Runtime evaluation of ontology-based reconfiguration of distributed

embedded real-time systems. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on. IEEE, 538–544.
Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-free Coordination for

Internet-scale Systems.. In USENIX Annual Technical Conference, Vol. 8. 9.
Tolga Kurtoglu, Irem Y Tumer, and David C Jensen. 2010. A functional failure reasoning methodology for evaluation of

conceptual system architectures. Research in Engineering Design 21, 4 (2010), 209–234.
Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
Jean-claude Laprie. 2008. From dependability to resilience. In In 38th IEEE/IFIP Int. Conf. On Dependable Systems and Networks.

Citeseer.
Nagabhushan Mahadevan, Abhishek Dubey, Daniel Balasubramanian, and Gabor Karsai. 2013. Deliberative, search-based

mitigation strategies for model-based software health management. Innovations in Systems and Software Engineering 9, 4
(2013), 293–318.

NagabhushanMahadevan, Abhishek Dubey, and Gabor Karsai. 2011a. Application of software healthmanagement techniques.
In Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
’11). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/1988008.1988010

NagabhushanMahadevan, Abhishek Dubey, and Gabor Karsai. 2011b. Application of software healthmanagement techniques.
In SEAMS. 1–10.

Panagiotis Manolios, Daron Vroon, and Gayatri Subramanian. 2007. Automating component-based system assembly. In
Proceedings of the 2007 international symposium on Software testing and analysis. ACM, 61–72.

Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Rowland Krisa. 2012. RFDMon: A Real-time and Fault-tolerant
Distributed System Monitoring Approach. In The Eighth International Conference on Autonomic and Autonomous Systems.
57–63. http://www.thinkmind.org/download.php?articleid=icas_2012_3_10_20052

MongoDB Incorporated. 2009. MongoDB. http://www.mongodb.org. (2009).
Saideep Nannapaneni, Abhishek Dubey, Sherif Abdelwahed, Sankaran Mahadevan, Sandeep Neema, and Ted Bapty. 2016.

Mission-based reliability prediction in component-based systems. International Journal of Prognostics and Health
Management 7, 001 (2016). https://www.phmsociety.org/node/1832

Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In Proc. USENIX Annual
Technical Conference. 305–320.

Subhav Pradhan, Abhishek Dubey, Aniruddha Gokhale, and Martin Lehofer. 2016a. Platform for designing and managing
resilient and extensible CPS: WiP abstract. In Proceedings of the 7th International Conference on Cyber-Physical Systems.
IEEE Press, 39.

Subhav Pradhan, Abhishek Dubey, Tihamer Levendovszky, Pranav Srinivas Kumar, William A Emfinger, Daniel Balasubrama-
nian, William Otte, and Gabor Karsai. 2016b. Achieving resilience in distributed software systems via self-reconfiguration.
Journal of Systems and Software (2016).

Subhav M Pradhan, Abhishek Dubey, Aniruddha Gokhale, and Martin Lehofer. 2015. CHARIOT: a domain specific language
for extensible cyber-physical systems. In Proceedings of the Workshop on Domain-Specific Modeling. ACM, 9–16.

Alberto Schaeffer-Filho, Emil Lupu, and Morris Sloman. 2014. Federating Policy-Driven Autonomous Systems: Interaction
Specification and Management Patterns. Journal of Network and Systems Management (2014), 1–41.

A. Shaukat, G. Burroughes, and Y. Gao. 2015. Self-reconfigurable robotics architecture utilising fuzzy and deliberative
reasoning. In SAI Intelligent Systems Conference (IntelliSys), 2015.

The Apache Software Foundation. [n. d.]. Apache Zookeeper. https://zookeeper.apache.org/. ([n. d.]).
The Eclipse Foundation. [n. d.]. Xtext. https://eclipse.org/Xtext/. ([n. d.]).
Wilfredo Torres-Pomales. 2000. Software fault tolerance: A tutorial. (2000).
Marisol García Valls, Iago Rodríguez López, and Laura Fernández Villar. 2013. iLAND: An enhanced middleware for real-time

reconfiguration of service oriented distributed real-time systems. Industrial Informatics, IEEE Transactions on 9, 1 (2013),
228–236.

Luis M. Vaquero and Luis Rodero-Merino. 2014. Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog
Computing. SIGCOMM Comput. Commun. Rev. 44, 5 (Oct. 2014), 27–32. https://doi.org/10.1145/2677046.2677052

Dale Willis, Arkodeb Dasgupta, and Suman Banerjee. 2014. ParaDrop: a multi-tenant platform to dynamically install
third party services on wireless gateways. In Proceedings of the 9th ACM workshop on Mobility in the evolving internet
architecture. ACM, 43–48.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/1988008.1988010
http://www.thinkmind.org/download.php?articleid=icas_2012_3_10_20052
http://www.mongodb.org
https://www.phmsociety.org/node/1832
https://zookeeper.apache.org/
https://eclipse.org/Xtext/
https://doi.org/10.1145/2677046.2677052

	Abstract
	1 Introduction
	2 Problem Description
	2.1 A Representative IoT System Case Study
	2.2 Problem Statement

	3 CHARIOT: Orchestration Middleware for IoT Systems
	3.1 Design Layer
	3.2 Data Description Layer
	3.3 Runtime Management Layer

	4 Implementation and Evaluation of CHARIOT
	4.1 Application Deployment Mechanism
	4.2 Failure and Update Detection Mechanism
	4.3 Reconfiguration Mechanism
	4.4 Experimental Evaluation

	5 Related Work
	5.1 Redundancy-based Strategies
	5.2 Reconfiguration-based Strategies

	6 Concluding Remarks
	References

