
Predictable Deployment in Component-based Enterprise
Distributed Real-time and Embedded Systems∗

William R. Otte, Aniruddha Gokhale, and Douglas C. Schmidt
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235
{wotte, gokhale, schmidt}@dre.vanderbilt.edu

ABSTRACT
Component-based middleware, such as the Lightweight COR-
BA Component Model, are increasingly used to implement
large-scale distributed real-time and embedded (DRE) sys-
tems. In addition to supporting the quality of service (QoS)
requirements of individual DRE systems, component tech-
nologies must also support bounded latencies when effecting
deployment changes to DRE systems in response to chang-
ing environmental conditions and operational requirements.
This paper makes three contributions to the study of pre-

dictable deployment latencies in DRE systems. First, we de-
scribe OMG’s Deployment and Configuration (D&C) speci-
fication for component-based systems and discuss how con-
ventional implementations of this standard can significantly
degrade deployment latencies. Second, we describe architec-
tural changes and performance optimizations implemented
within the Locality-Enhanced Deployment and Configura-
tion Engine (LE-DAnCE) implementation of the D&C speci-
fication. Finally, we analyze the performance of LE-DAnCE
in the context of component deployments on 10 nodes for
a representative DRE system consisting of 1,000 compo-
nents. Our results show LE-DAnCE’s optimizations provide
a bounded deployment latency of less than 2 seconds with 4
percent jitter.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—components,deployment ; D.2.8 [Software Engi-
neering]: Metrics—Performance measures

General Terms
Design, Experimentation, Algorithms

∗This work was supported in part by NSF CAREER
0845789 and CNS 0915976, and a contract from Northrop
Grumman and AFRL GUTS. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, AFRL, or NGC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

Keywords
component-based real-time systems, predictable deployment

1. INTRODUCTION
Component-based software engineering techniques are in-

creasingly applied to develop large-scale distributed real-time
and embedded (DRE) systems, such as air-traffic manage-
ment [6], shipboard computing environments [12], and dis-
tributed sensor webs [25]. These domains are often charac-
terized as “open” since applications in these domains must
contend not only with changing environmental conditions
(such as changing power levels, operational nodes, or net-
work status), but also evolving operational requirements and
mission objectives [9].

To adapt to changing environments and operational re-
quirements, it may be necessary to change the deployment
and configuration characteristics of these DRE systems at
runtime. Examples of potential adaptations include deploy-
ment or tear down of individual component instances, chang-
ing connection configuration, or altering QoS properties in
the target component runtime. As a result of stringent qual-
ity of service (QoS) requirements in these domains, it is im-
portant that any changes to DRE system deployment and
configuration occur as quickly and predictably as possible,
i.e., DRE systems expect short and bounded deployment
latencies.

Not only are timely and dependable runtime deployment
and configuration changes essential in DRE systems; even
initial application startup time can be an important met-
ric. For example, in extremely energy-constrained systems,
such as distributed sensor networks, a common power saving
strategy may involve completely deactivating field hardware
and periodically restarting it to take new measurements or
activate actuators [18]. In such environments, deployments
must be fast and time-bounded.

To support these requirements, the efficiency and QoS
provided by the deployment infrastructure should be consid-
ered alongside the component middleware used to develop
DRE systems. Standards, such as the OMG Deployment
and Configuration (D&C) specification [17] for component-
based applications, have emerged in recent years.1 The
OMG D&C specification provides comprehensive develop-
ment, packaging, and deployment frameworks for a wide
range of component middleware.

1Although originally developed for the CORBA Component
Model (CCM) [14], the OMG D&C specification is defined
via a UML metamodel that is applicable to many other com-
ponent models.

In the OMG D&C specification, deployment instructions
are delivered to the deployment infrastructure via a compo-
nent deployment plan (CDP), which contains the complete
set of deployment and configuration information for compo-
nent instances and their associated connection information.
During DRE system initialization, such information must be
parsed, components deployed on the nodes, and the system
activated in a timely and predictable manner. In this paper,
we refer to the timeliness of the deployment infrastructure
to execute the deployment plan as the“deployment latency,”
which includes the time starting when a CDP is provided to
the deployment infrastructure to the time at which all de-
ployment instructions have been executed and the system
activated.
This paper motivates and describes architectural enhance-

ments we made to the OMG D&C specification to achieve
predictable deployment latencies for large-scale DRE sys-
tems. Our solution is called the Locality-Enhanced Dep-
loyment and Configuration Engine (LE-DAnCE), which ex-
tends our earlierDeployment and Configuration Engine (DA-
nCE) [4]. We developed DAnCE with the sole aim of cleanly
separating concerns defined by the OMG D&C specification
and demonstrating its feasibility. After applying DAnCE
to a range of representative DRE systems [12, 18], however,
we found the lack of appropriate optimizations and archi-
tectural limitations of the OMG D&C specification yielded
performance bottlenecks that adversely impacted deploy-
ment latencies. Moreover, these performance bottlenecks
stemmed from more than just limitations with the original
DAnCE implementation, but involve inherent architectural
limitations with the OMG D&C specification itself. This pa-
per explains how LE-DAnCE overcomes these limitations.
The remainder of this paper is organized as follows: Sec-

tion 2 summarizes the OMG D&C specification and ana-
lyzes key sources of overhead stemming from architectural
limitations with the OMG D&C specification and näıve im-
plementation techniques adopted in DAnCE; Section 3 de-
scribes how we addressed these sources of overhead, focus-
ing on deployment latency; Section 4 analyzes the results
of experiments we conducted to compare LE-DAnCE with
DAnCE; Section 5 compares our research with related work
on deploying and configuring large-scale distributed applica-
tions; and Section 6 presents concluding remarks and lessons
learned.

2. IMPEDIMENTS TO PREDICTABLE DE-
PLOYMENT LATENCY

This section presents an overview of the OMG Deployment
and Configuration (D&C) specification for component-based
applications and then describes how an implementation of
this specification called the Deployment and Configuration
Engine (DAnCE) [4] supports the separation of concerns es-
poused in the D&C specification. We expose key sources
of overhead that impact deployment latencies in DRE sys-
tems and pinpoint the architectural limitations in the D&C
specification that exacerbate these overheads.

2.1 Overview of the OMG D&C Standard
The OMGD&C specification provides standard interchange

formats for metadata used throughout the component ap-
plication development lifecycle, as well as runtime interfaces
used for packaging and planning. Below we focus on the

interfaces, metadata, and architecture used for runtime de-
ployment and configuration.

2.1.1 Runtime D&C Architecture
The runtime interfaces defined by the OMG D&C spec-

ification for deployment and configuration consists of the
two-tier architecture shown in Figure 1. This architecture
consists of a set of global entities used to coordinate de-
ployment and a set of node-level entities used to instantiate
component instances and configure their connections and
QoS properties. Each entity in these global and local tiers
correspond to one of the following three major roles:

Execution Manager

Domain Application Manager

Domain Application

Node Manager

Node Application Manager

Node Application

Figure 1: OMG D&C Architectural Overview and
Separation of Concerns

• Manager. The Manager role, found at the global level
as the ExecutionManager and at the node-level as the
NodeManager, corresponds to a singleton daemon that
manages all deployment entities in a single context.
The Manager serves as the entry point for all deploy-
ment activity and serves as a factory for implementa-
tions of the ApplicationManager role.

• ApplicationManager. The ApplicationManager ser-
ves as a lifecycle manager for running instances of a
component application. The global entity is known
as the DomainApplicationManager and the node-level
entity is known as the NodeApplicationManager. Each
ApplicationManager represents exactly one component
application and is used to initiate deployment and tear-
down of the application. This role serves as a factory
for implementations of the Application role.

• Application. This role represents a deployed instance
of a component application, and is used to finalize the
configuration of the associated component instances
and to begin execution of the deployed component
application. At the global level, this entity is called
the DomainApplication, while the node-level entity is
called the NodeApplication.

2.1.2 D&C Deployment Data Model
In addition to the runtime entities described above, the

D&C specification also contains an extensive data model
that is used to describe component applications throughout

their deployment lifecycle. The metadata created by the
specification is intended for use as (1) an interchange for-
mat between various tools (e.g., development tools, applica-
tion modeling and packaging applications, and deployment
planning tools) applied to create the applications and (2)
directives that describe the configuration and deployment
used by the runtime infrastructure. Most entities in the
D&C metadata contains a section where arbitrary configu-
ration information may be included in the form of a sequence
of name/value pairs, where the value may be an arbitrary
data type. This configuration information is used to de-
scribe everything from basic configuration information (such
as shared library entrypoints and component/container as-
sociations) to more complex configuration information (such
as QoS properties or initialization of component attributes
with user-defined data types).
This metadata is broadly grouped into three categories:

packaging, domain, and deployment. Packaging descrip-
tors are used from the beginning of application develop-
ment to specify component interfaces, capabilities, and re-
quirements. After implementations have been created, this
metadata is further used to group individual components
into assemblies, describe pairings with implementation arti-
facts (i.e., shared libraries), and create packages that con-
tain both metadata and implementations that may be in-
stalled into the target environment. Domain descriptors are
used by hardware administrators to describe the capabilities
(e.g., CPU, memory, disk space, and special hardware such
as GPS receivers) present in the domain.
Both the domain and packaging metadata are then used

by a planning agent (either a human or automated software
tool) to map the described component instances into phys-
ical reality through the creation of the third type of meta-
data supported by the OMG D&C standard: the component
deployment plan (CDP), which contains the following infor-
mation:

• Implementation Artifact Descriptions (IAD).
The IAD section of the deployment plan describes the
various artifacts that must be present on a node for
successful component deployment. Artifacts include—
but are not limited to—executable files and shared li-
braries that provide binary implementations of com-
ponents.

• Monolithic Deployment Descriptions (MDD).
The MDD section references all IAD entries necessary
for one particular component type. It also contains
additional configuration information that is necessary
for all instances of that type, e.g. entrypoints and fac-
tory functions used to load the implementation from
shared libraries.

• Instance Deployment Descriptions (IDD). IDD
entries represent concrete instances deployed into the
domain. This section of the metadata describes the
node in which a particular component should be in-
stantiated and contains additional configuration prop-
erties that should be applied to that instance, e.g., QoS
configuration information.

• Plan Connection Descriptions (PCD). The PCD
section describes all connections that must be estab-
lished as part of the deployment. These entries ref-

erence application IDD entries that are part of a par-
ticular connection and contains additional information
(such as port names and QoS configuration) that may
be necessary for the connection to be successfully es-
tablished.

The OMG D&C standard suggests that all metadata be
serialized to an XML format for on-disk storage and for use
as an interchange format between the various tools used for
application development and planning. This XML format
must be converted into the native binary format used in
the interfaces of the runtime infrastructure, however, so the
deployment infrastructure can use it.

2.1.3 OMG D&C Deployment Process
Component application deployments are performed in a

four phase process that is codified in the OMG D&C stan-
dard. The Manager and ApplicationManager are responsi-
ble for the first two phases and the Application is responsible
for the final two phases, all of which are described below:

1. Plan preparation. In this phase, a CDP is pro-
vided to the ExecutionManager, which (1) analyzes
the plan to determine which nodes are involved in
the deployment and (2) splits the plans into “locality-
constrained” plans, one for each node containing only
information for each node. These locality-constrained
plans have only instance and connection information
for a single node. Each NodeManager is then con-
tacted and provided with its locality-constrained plan,
which causes the creation of NodeApplicationManagers
whose reference is returned. Finally, the Execution-
Manager creates a DomainApplicationManager with
these references.

2. Start launch. When the DomainApplicationManager
receives the start launch instruction, it delegates work
to the NodeApplicationManagers on each node. Each
NodeApplicationManager creates aNodeApplication th-
at loads all component instances into memory, per-
forms preliminary configuration, and collects references
for all endpoints described in the CDP. These refer-
ences are then cached by aDomainApplication instance
created by the DomainApplicationManager.

3. Finish launch. This phase is started by an operation
on the DomainApplication instance, which apportions
its collected object references from the previous phase
to each NodeApplication and causes them to initiate
this phase. All component instances receive final con-
figurations and all connections are then created.

4. Start. This phase is again initiated on the Domain-
Application, which delegates to the NodeApplication
instances and causes them to instruct all installed com-
ponent instances to begin execution.

2.2 Sources of Deployment Latency Overheads
The remainder of this section discusses the sources of over-

heads that impact deployment latencies in the context of the
architecture defined by the OMG D&C specification. We use
our existing DAnCE [4] OMG D&C implementation as a ve-
hicle to demonstrate these sources of overhead. The major
sources of latency overhead stem from multiple complexi-
ties in the OMG D&C standard, including the processing

of deployment metadata from disk in XML format and an
architectural ambiguity in the runtime infrastructure that
encourages sub-optimal implementations.

2.2.1 Challenge 1: Parsing Deployment Plans
Component application deployments for OMG D&C are

described by a data structure that contains all the relevant
configuration metadata for the component instances, their
mappings to individual nodes, and any connection informa-
tion required. This CDP is serialized on disk in a XML
file whose structure is described by an XML Schema defined
by the OMG D&C standard. This XML document format
for CDP files presents significant advantages by providing
a simple interchange format between modeling tools [10],
is easy to generate and manipulate using widely available
XML modules for popular programming languages, and en-
ables simple modification and data mining by text process-
ing tools, such as perl, grep, sed, and awk.
Processing these CDP files during deployment and even

runtime, however, can lead to substantial deployment la-
tency costs, as shown in Section 4.2. This increased latency
stems from the following sources:

• XML CDP file sizes grow substantially as the num-
ber of component instances and connections in the de-
ployment increases, which causes significant I/O over-
head to load the plan into memory and to validate
the structure against the schema to ensure that it is
well-formed.

• The XML document format cannot be directly used
by the deployment infrastructure, so it must first be
converted into the native OMG Interface Definition
Language (IDL) format used by the runtime interfaces
of the deployment framework.

In many enterprise DRE systems, component deployments
that number in the thousands are not uncommon, and com-
ponent instances in these domains will exhibit a high degree
of connectivity. Given the structure of CDPs outlined in
Section 2.1.2, both these factors contribute to large plans.
While the above latency source is most immediately appli-
cable to initial application deployment, it can also present
a significant problem during potential re-deployment activ-
ities at application runtime that involve significant changes
to the application configuration. While CDP files that rep-
resent re-deployment or re-configuration instructions may
not be as large as for the initial deployment, the responsive-
ness of the deployment infrastructure during these activities
is even more important to ensure that the application con-
tinues to meet its stringent QoS and end-to-end deadlines
during online modifications.
Section 3.1 describes how LE-DAnCE resolves Challenge

1 by pre-processing large deployment plans offline into a
portable binary representation.

2.2.2 Challenge 2: Serialized Execution of Deploy-
ment Actions

The complexities presented in this section involve the se-
rial (non-parallel) execution of deployment tasks. The re-
lated sources of latency in DAnCE exist at both the global
and node level. At the global level, this lack of parallelism re-
sults from the underlying CORBA transport used by DAnCE.
The lack of parallelism at the local level, however, results

from the lack of specificity in terms of the interface of the
D&C implementation with the target component model that
is contained in the D&C specification.

The D&C deployment process presented in Section 2.1.3
enables global entities to divide the deployment process into
a number of node-specific subtasks. Each subtask is dis-
patched to individual nodes using a single remote invocation,
with any data produced by the nodes passed back to the
global entities via “out” parameters that are part of the op-
eration signature described in IDL. Due to the synchronous
nature of the CORBAmessaging protocol used to implement
DAnCE, the conventional approach is to dispatch these sub-
tasks serially to each node. This approach is simple to im-
plement, in contrast to the complexity of using the CORBA
asynchronous method invocation (AMI) mechanism [2].

To minimize initial implementation complexity, we used
synchronous invocation in an (admittedly shortsighted) de-
sign choice in an earlier implementation of DAnCE. This
global synchronicity did not cause problems for relatively
small deployments (less than 100 components). As the num-
ber of both nodes and instances assigned to those nodes
begin to scale up, however, this global/local serialization
imposes a substantial cost in deployment latency.

This serialization problem, however, is not limited only
to the global/local task dispatching and exists in the node-
specific portion of the infrastructure as well. The D&C
specification provides no guidance in terms of how the Node-
Application should interface with the target component mod-
el (in this case, CCM), instead leaving such an interface as
an implementation detail. Early versions of DAnCE directly
instantiated the CCM container and components directly in
the address space of the NodeApplication. To alleviate the
resulting tedious and error-prone deployment logic, we later
separated the CCM container into a separate process. In
DAnCE, the D&C architecture was implemented using three
processes, as shown in Figure 2.

Execution

Manager

Node

Manager

Node

Manager

Component

Server

Process

Component

Server

Process

Component

Server

Process

Component

Server

Process

Figure 2: Simplified DAnCE Architecture

The ExecutionManager and NodeManager processes in-
stantiate their associated ApplicationManager and Appli-
cation instances in their address space. When the Node-
Application installs concrete component instances it spawns
one (or more) separate component server processes as needed.
The component server processes use an interface derived
from an older version of the CCM specification that allows
the NodeApplication to individually instantiate containers
and component instances. This approach is similar to that
taken by CARDAMOM [16], which is another CCM imple-

mentation tailored for enterprise DRE systems, such as air-
traffic management systems.
While the DAnCE architecture shown in Figure 2 im-

proved upon the original implementation that collocated all
CCM entities in NodeApplication address space, it was still
problematic with respect to parallelization. Rather than
performing only some processing and delegating the remain-
der of the concrete deployment logic to the component server
process, the DAnCE NodeApplication implementation in-
stead integrates all logic necessary for installing, configur-
ing, and connecting instances directly, as shown in Figure 3.

Locality processing logic

Component Server Launching Logic

CCM Home Installation Logic

CCM Component Installation Logic

CCM Component Connection Logic

CIAO Local Facet Connection Logic

CIAO Teardown Logic

NodeApplication Implementation

Figure 3: DAnCE NodeApplication Implementation

This tight integration made it hard to optimize the node-
level installation process for the following reasons:

• The amount of data shared by the generic deployment
logic (the portion of the NodeApplication implementa-
tion that interprets the plan) and the specific deploy-
ment logic (the portion which has specific knowledge
of how to manipulate components) made it hard to
parallelize their installation in the context of a single
component server since that data must be modified
during installation.

• Since groups of components installed to separate com-
ponent servers can be considered separate deployment
sub-tasks, these groupings could be also parallelized.

3. OVERCOMING DEPLOYMENT LATEN-
CY BOTTLENECKS IN LE-DANCE

This section describes the enhancements we developed for
Locality Enhanced DAnCE (LE-DAnCE), which is a new
implementation of the OMG D&C standard that addresses
the challenges outlined in Section 2.2. Section 3.1 describes
how we reduced deployment latency arising from the chal-
lenge of processing the XML-based deployment descriptors
outlined in Section 2.2.1. Section 3.2 then introduces tech-
niques LE-DAnCE uses to increase deployment and config-
uration parallelism to overcome the challenge of deployment
latency bottlenecks in DAnCE outlined in Section 2.2.2.

3.1 Improving Runtime Plan Processing
There are two approaches to resolving the challenge of

XML parsing outlined in Section 2.2.1.

1. Optimize the XML to IDL processing capa-
bility. DAnCE uses a vocabulary-specific XML data bind-
ing [28] tool called the XML Schema Compiler (XSC). XSC
reads D&C XML schemas and generates a C++-based in-
terface to XML documents built atop the Document Object
Model (DOM) XML programming API. In general, DOM is
a time/space-intensive approach since the entire document
must first be processed to fully construct a tree-like represen-
tation of the document before the XML-to-IDL translation
process can occur.

An alternative is to use the Simple API for XML (SAX),
which uses an event-based processing model to process XML
files as they are read from disk. While a SAX-based parser
would reduce the time/space spent building the in-memory
representation of the XML document, the performance gains
may be too small to invest the substantial development time
required to re-factor the DAnCE configuration handlers, which
serve as a bridge between the XSC generated code and IDL.
In particular, a SAX-based approach would still require a
substantial amount of runtime text-based processing. More-
over, CDP files have substantial amounts of internal cross-
referencing, which would require the entire document be
processed before any actual XML-to-IDL conversion could
occur.

2. Pre-process the XML files for latency-critical
deployments. This optimization approach (used by LE-
DAnCE) is accomplished via a tool we developed that lever-
ages the existing DOM-based XML-to-IDL conversion han-
dlers in DAnCE to (1) convert the CDP into its runtime
IDL representation and (2) serialize the result to disk us-
ing the Common Data Representation (CDR) [15] binary
format defined by the CORBA specification. This platform-
independent binary format used to store the CDP on disk is
the same format used to transmit the plan over the network
at runtime. The advantage of this approach is that it lever-
ages the heavily optimized de-serialization handlers provided
by the underlying CORBA implementation (TAO) to cre-
ate an in-memory representation of the CDP data structure
from the on-disk binary stream.

3.2 Parallelizing Deployment Activity
To support parallelized dispatch of deployment activity

at the node level, we enhanced the OMG D&C standard
by adding a LocalityManager to LE-DAnCE. The Locality-
Manager unifies all three deployment roles outlined in Sec-
tion 2.1.1, and functions as a replacement for the component
server in Figure 2. An overview of LE-DAnCE’s Locality-
Manager appears in [19].

The LE-DAnCE node-level architecture (e.g., NodeManager,
NodeApplicationManager, and NodeApplication) now func-
tions as a node-constrained version of the global portion
of the OMG D&C architecture. Rather than having the
NodeApplication directly causing the installation of concrete
component instances, this responsibility is now entirely del-
egated to LocalityManager instances. The node-level infras-
tructure performs a second“split”of the plan it receives from
the global level by grouping component instances into one or
more component servers. The NodeApplication then spawns
a number of LocalityManager processes and delegates these
“process-constrained” (i.e., containing only components and
connections apropos to a single process) plans to each pro-
cess in parallel.

Unlike the previous DAnCE NodeApplication implemen-

tation, the LE-DAnCE LocalityManager functions as a gen-
eric application server that maintains a strict separation of
concerns between the general deployment logic required to
analyze the plan and the specific deployment logic required
to actually install and manage the lifecycle of concrete com-
ponent middleware instances. This separation is achieved
using entities called Instance Installation Handlers, which
provide a well-defined interface for managing the lifecycle
of a component instance, including installation, removal,
connection, disconnection, and activation. Installation Han-
dlers are also used in the context of the NodeApplication to
manage the life-cycle of LocalityManager processes.
Figure 4 shows the startup process for a LocalityManager

instance. During the start launch phase of deployment, an
Installation Handler hosted in the NodeApplication spawns
a LocalityManager process and handles the initial handshake
to provide configuration information. The NodeApplication
then instructs the LocalityManager to begin deployment by
invoking preparePlan() and startLaunch(). During this
process, the LocalityManager will examine the plan to deter-
mine what instance types must be installed (e.g., container,
component, or home). After loading the appropriate Instal-
lation Handlers, the LocalityManager will delegate the ac-
tual installation process for these instances via the install-
_instance() method on the Installation Handler.

NodeApplication

Process Localities

<<spawn>>

LocalityManager

Configuration Plugins

callback

configuration_complete

preparePlan

startLaunch

pre_process_plan

pre_install_instance

install_instance

post_install_instance
Connection Information

Figure 4: LocalityManager Startup Sequence

The new LE-DAnCE LocalityManager and Installation
Handlers make it substantially easier to parallelize than in
DAnCE. Parallelism in both the LocalityManager and Node-
Application is achieved using an entity called the Deploy-
ment Scheduler, which is shown in Figure 5. The Deploy-
ment Scheduler combines the Command pattern [8] and the
Active Object pattern [22]. Individual deployment actions
(e.g., instance installation, instance connection, etc.) are en-
cased inside an Action object, along with any required meta-
data. Each individual deployment action is an invocation of
a method on an Installation Handler, so these actions need
not be re-written for each potential deployment target. Er-
ror handling and logging logic is also fully contained within
individual actions, further simplifying the LocalityManager.
Individual actions, e.g., install a component or create a

connection, are scheduled for execution by a configurable
thread pool, which can provide user-selected single-threaded

Deployment

Scheduler

Action

Error Handling

Logging

Deployment Logic

Action Queue

Configurable Thread Pool

Dispatch Logic

Figure 5: DAnCE Deployment Scheduler

or multi-threaded behavior, depending on the requirements
of the application. This thread pool could also be used to
implement more sophisticated scheduling behavior. For ex-
ample, it might be desirable to implement a priority-based
scheduling algorithm that dynamically reorders the installa-
tion of component instances based on metadata present in
the plan.

During deployment, the LocalityManager determines which
actions to perform during each particular phase and creates
one Action object for each instruction. These actions are
then passed to the deployment scheduler for execution while
the main thread of control waits on a completion signal from
the Deployment Scheduler. Upon completion, the Locality-
Manager reaps either return values or error codes from the
completed actions and completes the deployment phase.

To provide parallelism between LocalityManager instances
on the same node, the LE-DAnCE Deployment Scheduler
is also used in the implementation of the NodeApplication,
along with an Installation Handler for LocalityManager pro-
cesses. Using the Deployment Scheduler at this level also
helps to overcome a significant source of latency whilst con-
ducting node-level deployments. Spawning LocalityManager
instances can take a significant amount of time compared
to the deployment time required for component instances,
so parallelizing this process can achieve significant latency
savings when application deployments have many Locality-
Manager processes per node.

4. EXPERIMENTAL RESULTS
This section analyzes the results of experiments we con-

ducted to empirically evaluate LE-DAnCE’s ability to over-
come the deployment latency bottlenecks we encountered in
DAnCE, as described in Section 3.

4.1 Overview of Hardware and Software
Testbed

These experiments were conducted in ISISLab (www.isislab.
vanderbilt.edu), which consists of 4 IBM Blade centers
consisting of 14 blades each. Individual blades are equipped
with dual 2.8 GHz Intel Xeon CPUs, 1GB of RAM, and 4 Gi-
gabit network interface cards. Connectivity is provided by 6
Cisco 3750G-24TS switches and a single 3750G-48TS switch.
ISISLab leverages the Emulab [27] configuration software to
provide customized system configurations and virtual net-
work topologies.

For the following experiments, a deployment of 11 nodes
was created with Fedora Core 8 with G++ 4.1.2 used to
compile the 1.0 release of DAnCE and CIAO middleware
frameworks. The default Linux kernel included with Fe-
dora Core 8 was replaced with a vanilla Linux kernel ver-
sion 2.6.23 patched with the latest Real-Time Pre-Emption
patchset [13]. The component application deployed as part
of these tests included a single component type with one
provided port (’facet’) and one required port (’receptacle’).
The component application itself is intentionally simple, i.e.
the component implementations contain minimal applica-
tion logic to emphasize sources of latency in the deployment
framework due to the, rather than latencies due to imple-
mentation details of the application components.
All results reported below are the average of 15 repetitions

of the experiment.

4.2 Experiment 1: Measuring XML Process-
ing Overhead

Experiment design. A python script was used to gener-
ate XML deployment descriptors for applications containing
500, 1,000, 5,000, 10,000, 50,000, and 100,000 component in-
stances equally distributed over 10 nodes. Each component
has a single connection to one other component. Each of
these XML-based deployment plans was then converted to
an in-memory IDL representation using the same methods
used during a normal LE-DAnCE deployment.
Experiment results. Table 1 contains the results for

the plans described at the beginning of this section, and the
timing results for the pre-processing described in Section 3.1.
This table shows that the time taken to parse an XML

deployment plan and convert it to IDL can be significant.
It is worth noting that the plans generated as part of this
experiment contain the absolute minimum metadata neces-
sary to successfully deploy the components. If additional
configuration information is included — such as attribute
initialization (especially involving user-defined complex data
types), QoS configurations, or densely connected plans —
the amount of XML that must be converted for a given
component count can increase quickly. In this case, we are
attempting to showcase the lower bound on the bottleneck
— any additional meta-data included in a plan will always
be larger than the test case exercised here.
While the on-disk sizes of the various CDP files are some-

what interesting, of particular interest are the conversion
times from the on-disk format to the in-memory IDL for-
mat used by the deployment tools. The results in Table 1
demonstrate that the CDR encoding is an improvement of
several orders of magnitude over runtime XML processing.
Moreover, the approach described in Section 3.1 exhibits a
linear increase in the plan processing time as a function of
the number of instances, rather than the exponential behav-
ior shown by runtime XML conversion.

4.3 Experiment 2: Measuring Application De-
ployment Latency

Experiment design. To gauge the deployment latency
incurred by LE-DAnCE across a wide range of deployment
plan sizes, the component application deployments gener-
ated for the experiment in Section 4.2 were executed. Each
plan was executed a total of 25 times, and the reported mea-
surements represent the arithmetic mean of all executions.
Experiment results. Table 2 shows the results from

this experiment. These results demonstrate the substan-
tial deployment latency savings of parallel deployment com-
pared to serialized deployments. If we disregard the plan
preparation timings, the remaining phases of the deployment
would require ten times the amount taken by the remaining
phases (e.g., the 1,000 component deployment would require
at least 1.622 seconds additional time).

The timing results for the plan preparation phase reveal
yet another source of deployment latency. The plan prepa-
ration phase includes two important steps, as discussed in
Section 2.1.3. The first is a split plan operation to divide
the global plan into locality-constrained plans for each node.
Next, each node in the deployment performs its own local
split to determine how many LocalityManager instances to
start, as discussed in Section 3.2. The nonlinear growth of
the time required for this phase shown in Table 2 makes
extremely large deployments infeasible, which is the reason
why results for 50,000 and 100,000 components are not in-
cluded.

4.4 Experiment 3: Measuring the Predictabil-
ity of Deployment Latency

Experiment design. This experiment characterizes the
predictability of the deployment latency performance of LE-
DAnCE. To accomplish this, we repeatedly deployed the
test application with 1,000 components and analyzed the
performance metrics over 500 iterations. After each deploy-
ment, the testbed was reset and the LE-DAnCE daemons
restarted on each node. For this experiment, all DAnCE
executable were executed as root and placed in the round
robin SCHEDRR scheduling class with the highest possible
priority.

Experiment results. The results for this experiment
are shown in Figure 6.

0 100 200 300 400 500

Test Iteration

0

500000

1x10
6

1.5x10
6

2x10
6

T
im

e
 i
n
 M

ic
ro

s
e
c
o
n
d
s

Figure 6: Latency Jitter for 1000 Component De-
ployment

This figure represents the deployment latencies over the
course of 500 iterations for the total deployment latency and
the two most time consuming phases: plan preparation and
start launch. The top line of the figure represents the total
latency, the middle line represents plan preparation, and
the bottom represents the start launch phase (the remaining
two phases of deployment took too little time to graph).
This figure shows that the LE-DAnCE latency results are
relatively stable.

Table 1: CDP Sizes and Conversion Times
Components XML Size CDR Size Conversion CDR Read

500 112 KB 48 KB 0.196 Sec .001982 Sec
1000 304 KB 120 KB 0.323 Sec .003602 Sec
5000 1.4 MB 608 KB 3.974 Sec .015747 Sec
10000 2.7 MB 1.2 MB 9.543 Sec .030199 Sec
50000 13.1 MB 5.8 MB 540.003 Sec .147542 Sec
100000 27 MB 12 MB 1038.288 Sec .285286 Sec

Table 2: Deployment Times (Seconds) for Plans with No Delay
Components Total Time Prepare Plan Start Launch Finish Launch Start

1000 1.925 1.761 0.1426 0.0135 0.0061
5000 41.163 40.130 0.2870 0.0255 0.0179
10000 165.623 165.092 0.4576 0.0409 0.0316

Of particular interest in Figure 6 is identifying the source
of most jitter in these results. Most spikes in the total de-
ployment latency are also accompanied by spikes in the plan
preparation deployment phase. This is likely due to jitter
due to network access, as control messages to individual
nodes in this phase contain portions of a large deployment
plan and are substantially larger than the messages for other
phases.

5. RELATED WORK
This section compares our research on LE-DAnCE with

related work in the area of deploying and configuring large-
scale distributed applications.
GoDIET [26] is a deployment framework intended for

grid-based distributed applications. GoDIET uses XMLmeta-
data defined by a UML model to (1) describe applications
and their requirements and (2) wrap applications they wish
to deploy inside components based on the Fractal [3] com-
ponent model. They propose a hierarchical approach to de-
ployment that addresses deployment latency challenges in
grid-based distributed systems. Their approach first parti-
tions nodes present in the domain into two or more segments
and then spawns separate deployment processes for those do-
mains. GoDIET is optimized for deployment of applications
to grid domains with hundreds of nodes but an extremely
limited number of components per node, and performs best
when nodes have a mapped NFS mount point in the local
file system.
In contrast, LE-DAnCE focuses on applications with high

component density, e.g., such deployments will often have
hundreds or thousands of components per node, often de-
ployed across tens or hundreds of processes within that node.
In addition, applications in DRE domains often cannot use a
shared file system to distribute component implementations
due to inherent complexities in the network topology, secu-
rity concerns, or heterogeneity of the target domain. More-
over, LE-DAnCE automatically coordinates connections be-
tween components, whereas the connections must be per-
formed programmatically via GoDIET.
DeployWare [7] is another framework for managing de-

ployments in grid environments based on the Fractal [3] com-
ponent model. It supports heterogeneous deployments and
currently supports middleware intended for the grid environ-

ment, such as MPI [1] and GridCCM [20]. Like LE-DAnCE,
DeployWare captures deployment metadata in a manner
that is relatively agnostic to the eventual deployment target.
Unlike LE-DAnCE, however, DeployWare does not capture
more complex deployment metadata (such as connection in-
formation and QoS metadata) required for DRE systems.
Like GoDIET, DeployWare is optimized for delivering rela-
tively few instances/components to a large number of nodes,
and thus uses a similar approach to optimizing deployment
latency by partitioning the node into subgroups. In con-
trast, LE-DAnCE provides a more generic D&C solution by
supporting low deployment latencies across a large number
of possible hardware and component application sizes and
configurations.

The work that comes close to the goals of LE-DAnCE is
described in [21], which uses hierarchical separation of con-
cerns to provide concurrent—and hence faster—deployments.
This work differs from LE-DAnCE since it does not focus on
a standard (e.g., the OMG D&C specification), but rather
some general concepts of deployment and configuration. In
contrast, LE-DAnCE is aimed at providing a standardized
solution to enhance applicability while also optimizing per-
formance and minimizing/bounding latency.

The work presented in [11] seeks to find deployment solu-
tions in dynamic environments. The focus is on deploying a
hierarchical component (which is an assembly of components
treated as a single unit), while ensuring the deployment of
individual monolithic units do not violate architectural con-
straints of the platform and the network before deploying
that component. While the goal of their deployment solu-
tion is similar to that of LE-DAnCE, their approach differs
in its focus on the deployment of hierarchical components
(i.e. amalgamations of primitive components with other
hierarchical components), which they represent at runtime
via “membrane” components that act as proxies for internal
primitive components. In contrast, the metadata present in
the D&C specification supports such hierarchies at design
time, but is flattened by LE-DAnCE for runtime deployment
to avoid the overhead of additional component instances im-
plemented as membranes at a per-process level.

CaDAnCE [5] was an earlier effort we conducted to re-
duce latency and increase predictability of DRE system D&C
operations. It focused on simultaneous deployment of multi-

Table 3: Deployment Latency Results for 600 iterations of a 1000 component deployment.
Total Time Prepare Plan Start Launch Finish Launch Start

Mean 1.9551 1.7569 0.18175 0.01145 0.00451
Maximum 2.0891 1.8871 0.25953 0.01791 0.00575
Minimum 1.8861 1.7261 0.13897 0.01058 0.00417
Std. Deviation 0.0248 0.0216 0.01061 0.00121 0.00017

ple applications from a single deployment plan in which cer-
tain components are shared among multiple sub-applications.
CaDAnCE demonstrated that dependencies among these
sub-applications can yield deployment-order priority inver-
sions where low-priority applications may complete their de-
ployments ahead of a mission-critical sub-application. Ca-
DAnCE solved this problem using priority-inheritance to en-
sure predictable deployment for high-priority sub-applications
that are deployed simultaneously with other low-priority
sub-applications and with which they share components.
The goals and approach of CaDAnCE are orthogonal to the
goals of LE-DAnCE since CaDAnCE focuses on re-ordering
component deployment and installation of particular com-
ponents within the context of a single application, whereas
LE-DAnCE focuses on reducing overall deployment latency
for an entire application.

6. CONCLUDING REMARKS AND LESSONS
LEARNED

This paper described the OMG Deployment and Config-
uration (D&C) specification for component-based applica-
tions and explored sources of deployment latency overhead
that degraded the responsiveness of the Deployment And
Configuration Engine (DAnCE), which is an open-source im-
plementation of the D&C specification. We then explained
how our Locality-Enhanced Deployment and Configuration
Engine (LE-DAnCE) improved DAnCE to alleviate key sources
of deployment latency overhead associated with XML pre-
processing and LocalityManager architecture. The effective-
ness of the LE-DAnCE LocalityManager architecture was
then empirically evaluated by (1) deploying a number of high
component-density applications to demonstrate the perfor-
mance of the toolchain as the number of components grows
and (2) measuring the predictability of these performance
results by repeatedly deploying the same setup on a 1,000
component deployment.
The following lessons were learned conducting this re-

search:
Split Plan process incurs significant deployment la-
tency. The results presented in Section 4 showed that the
plan preparation phase of deployment is a large source of
deployment latency, due in large part to inefficiency in the
LE-DAnCE “split plan” algorithm. To alleviate this ineffi-
ciency our future work will determine if this algorithm can
further be optimized or investigate ways that the plan can
be split before deployment to reduce runtime deployment
latency.
The startLaunch operation is a significant source of
jitter. The start launch phase of deployment produces the
largest amount of jitter in the LE-DAnCE deployment pro-
cess. Prior experiments [23] conducted on DAnCE showed
this jitter stemmed from the dynamic loading of component

implementations at runtime and can be alleviated by di-
rectly compiling component implementations and plan meta-
data into the deployment infrastructure [24]. While this ap-
proach reduces jitter and latency, it is also invasive to the
D&C implementation, hard to maintain, and removes much
of the flexibility from the D&C toolchain. Our future work
is exploring more flexible ways to reduce this jitter via work
that builds on these previous efforts at static configuration
of not only the component middleware (CIAO), but also the
plug-in architecture of LE-DAnCE.

CIAO and LE-DAnCE are open-source software and all
work described in this paper is available in the latest version
which can be obtained from download.dre.vanderbilt.edu.

7. REFERENCES
[1] Argonne National Laboratory. The Message Passing

Interface (MPI) standard.
www-unix.mcs.anl.gov/mpi/.

[2] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt,
M. Kircher, and J. Parsons. The Design and
Performance of a Scalable ORB Architecture for
CORBA Asynchronous Messaging. In Proceedings of
the Middleware 2000 Conference. ACM/IFIP, Apr.
2000.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. An open component model and its
support in Java. In Component-Based Software
Engineering, pages 7–22, 2004.

[4] G. Deng, J. Balasubramanian, W. Otte, D. C.
Schmidt, and A. Gokhale. DAnCE: A QoS-enabled
Component Deployment and Configuration Engine. In
Proceedings of the 3rd Working Conference on
Component Deployment (CD 2005), pages 67–82,
Grenoble, France, Nov. 2005.

[5] G. Deng, D. C. Schmidt, and A. Gokhale. CaDANCE:
A Criticality-Aware Deployment And Configuration
Engine. In Proceedings of the 11th International
Symposium on Object/Component/Service-oriented
Real-time Distributed Computing), pages 317–321,
Orlando, Florida, May 2008. IEEE.

[6] C. Esposito and D. Cotroneo. Resilient and timely
event dissemination in publish/subscribe middleware.
International Journal of Adaptive, Resilient and
Autonomic Systems, 1:1 – 20, 2010.

[7] A. Flissi, J. Dubus, N. Dolet, and P. Merle. Deploying
on the grid with deployware. In CCGRID ’08:
Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid, pages
177–184, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[9] C. Gill, J. Gossett, J. Loyall, D. Schmidt, D. Corman,
R. Schantz, and M. Atighetchi. Integrated Adaptive
QoS Management in Middleware: A Case Study. In
Proceedings of the 10th IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS),
Toronto, Canada, May 2004. IEEE.

[10] A. Gokhale, B. Natarajan, D. C. Schmidt,
A. Nechypurenko, J. Gray, N. Wang, S. Neema,
T. Bapty, and J. Parsons. CoSMIC: An MDA
Generative Tool for Distributed Real-time and
Embdedded Component Middleware and Applications.
In Proceedings of the OOPSLA 2002 Workshop on
Generative Techniques in the Context of Model Driven
Architecture, Seattle, WA, Nov. 2002. ACM.

[11] D. Hoareau and Y. Mahéo. Middleware support for
the deployment of ubiquitous software components.
Personal and Ubiquitous Computing, 12(2):167–178,
2008.

[12] P. Lardieri, J. Balasubramanian, D. C. Schmidt,
G. Thaker, A. Gokhale, and T. Damiano. A
Multi-layered Resource Management Framework for
Dynamic Resource Management in Enterprise DRE
Systems. Journal of Systems and Software: Special
Issue on Dynamic Resource Management in
Distributed Real-time Systems, 80(7):984–996, July
2007.

[13] I. Molnar. Linux with Real-time Pre-emption Patches.
http:

//www.kernel.org/pub/linux/kernel/projects/rt/,
Sep 2006.

[14] Object Management Group. The Common Object
Request Broker: Architecture and Specification Version
3.1, Part 3: CORBA Component Model, OMG
Document formal/2008-01-08 edition, Jan. 2008.

[15] Object Management Group. The Common Object
Request Broker: Architecture and Specification Version
3.1, Part 2: CORBA Interoperability, OMG
Document formal/2008-01-07 edition, Jan. 2008.

[16] ObjectWeb Consortium. CARDAMOM - An
Enterprise Middleware for Building Mission and Safety
Critical Applications. cardamom.objectweb.org, 2006.

[17] OMG. Deployment and Configuration of
Component-based Distributed Applications, v4.0,
Document formal/2006-04-02 edition, Apr. 2006.

[18] W. R. Otte, J. S. Kinnebrew, D. C. Schmidt,
G. Biswas, and D. Suri. Application of Middleware
and Agent Technologies to a Representative Sensor
Network. In Proceedings of the Eighth Annual NASA
Earth Science Technology Conference, University of
Maryland, June 2008.

[19] W. R. Otte, D. C. Schmidt, and A. Gokhale. Towards
an Adaptive Deployment and Configuration
Framework for Component-based Distributed
Systems. In Proceedings of the 9th Workshop on

Adaptive and Reflective Middleware (ARM ’10),
Bengarulu, India, Nov. 2010.

[20] C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA
Component Model for Numerical Code Coupling. In
M. Parashar, editor, Grid Computing-GRID 2002,
pages 88–99. Springer Berlin / Heidelberg, PARIS
research group IRISA/INRIA Campus de Beaulieu
35042 Rennes Cedex France, 2002.
10.1007/3-540-36133-2 9.

[21] V. Quéma, R. Balter, L. Bellissard, D. Féliot,
A. Freyssinet, and S. Lacourte. Asynchronous,
hierarchical, and scalable deployment of
component-based applications. In Proceedings of
Second International Working Conference on
Component Deployment, pages 50–64, Edinburgh, UK,
May 2004.

[22] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[23] V. Subramonian, G. Deng, C. Gill,
J. Balasubramanian, L.-J. Shen, W. Otte, D. C.
Schmidt, A. Gokhale, and N. Wang. The Design and
Performance of Component Middleware for
QoS-enabled Deployment and Conguration of DRE
Systems. Elsevier Journal of Systems and Software,
Special Issue Component-Based Software Engineering
of Trustworthy Embedded Systems, 80(5):668–677,
Mar. 2007.

[24] V. Subramonian, L.-J. Shen, C. Gill, and N. Wang.
The Design and Performance of Configurable
Component Middleware for Distributed Real-Time
and Embedded Systems. In RTSS ’04: Proceedings of
the 25th IEEE International Real-Time Systems
Symposium (RTSS’04), pages 252–261, Lisbon,
Portugal, 2004. IEEE Computer Society.

[25] D. Suri, A. Howell, D. C. Schmidt, G. Biswas,
J. Kinnebrew, W. Otte, and N. Shankaran. A
Multi-agent Architecture for Smart Sensing in the
NASA Sensor Web. In Proceedings of the 2007 IEEE
Aerospace Conference, Big Sky, Montana, Mar. 2007.

[26] M. Toure, P. Stolf, D. Hagimont, and L. Broto. Large
scale deployment. In Autonomic and Autonomous
Systems (ICAS), 2010 Sixth International Conference
on, pages 78 –83, Mar. 2010.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, Dec.
2002. USENIX Association.

[28] J. White, B. Kolpackov, B. Natarajan, and D. C.
Schmidt. Reducing Application Code Complexity with
Vocabulary-specific XML language Bindings. In
ACM-SE 43: Proceedings of the 43rd annual Southeast
regional conference, 2005.

