An Integrated Planning and Adaptive Resource Management
Architecture for Distributed Real-time Embedded Systems

Nishanth Shankaran, John S. Kinnebrew, Xenofon D. Koutsoukos
Chenyang Lu, Douglas C. Schmidt, and Gautam Biswas

Abstract—Real-time and embedded systems have traditionally been designed for closed environments where operating conditions,
input workloads, and resource availability are known a priori and are subject to little or no change at runtime. There is increasing
demand, however, for autonomous capabilities in open distributed real-time and embedded (DRE) systems that execute in environments
where input workload and resource availability cannot be accurately characterized a priori. These systems can benefit from autonomic
computing capabilities, such as self-(re)configuration and self-optimization, that enable autonomous adaptation under varying—even
unpredictable—operational conditions.

A challenging problem faced by researchers and developers in enabling autonomic computing capabilities to open DRE systems
involves devising adaptive planning and resource management strategies that can meet mission objectives and end-to-end quality of
service (QoS) requirements of applications. To address this challenge, this paper presents the Integrated Planning, Allocation, and
Control (IPAC) framework, which provides decision-theoretic planning, dynamic resource allocation, and runtime system control to
provide coordinated system adaptation and enable the autonomous operation of open DRE systems.

This paper presents two contributions to research on autonomic computing for open DRE systems. First, we describe the design of
IPAC and show how IPAC resolves the challenges associated with the autonomous operation of a representative open DRE system
case study. Second, we empirically evaluate the planning and adaptive resource management capabilities of IPAC in the context of our
case study. Our experimental results demonstrate that IPAC enables the autonomous operation of open DRE systems by performing
adaptive planning and management of system resources.

<+

INTRODUCTION

local conditions change unexpectedly, or failure and/or loss of

ANY mission-critical distributed real-time and embed-

ded (DRE) systems must operate in open environments
where operating conditions, input workload, and resource
availability cannot be accurately characterized a priori. Exam-
ples include multi-satellite systems [1] and fractionated space
systems [2].

Autonomous operation of complex systems, including open
DRE systems, require them to adapt system operation and/-
or functionality in response to changing mission goals and
environmental conditions [3]. To autonomously adapt system
functionality in this manner requires that applications be
specifically tailored to current goals and conditions. Such dy-
namic application assembly/modification presents significant
planning/re-planning challenges in DRE systems. For example,
uncertainty in the outcome of actions and the limited and
changing resource availability must be considered in an ef-
ficient (re)planning system, which adapts system functionality
to current objectives and local conditions.

For effective autonomous operation of open DRE systems,
functional adaptation alone, however, is insufficient. Achieving
end-to-end quality of service (QoS) in these systems also
requires the resolution of resource management challenges
governed by various factors. For example, these systems often
have multiple interdependent resource constraints (e.g., limited
computing power, storage, battery power, and network band-
width) and highly fluctuating resource availability and input
workload. They must also support simultaneous execution
of multiple end-to-end applications of varying degrees of
importance. In addition, application components may be added
and/or removed at runtime as the result of system adaptation
through planning, e.g., when mission goals are added/changed,

resources occurs.

Conventional resource management approaches, such as
real-time task allocation and scheduling mechanisms [4], are
poorly suited to open DRE systems due to the dynamic and
uncertain environments and requirements of these systems. A
promising solution is feedback control scheduling (FCS) [5],
[6], [7], which employs software feedback loops that dynam-
ically control resource allocation to applications in response
to changes in input workload and resource availability. FCS
algorithms, however, have limited applicability to open DRE
system that operate autonomously. Autonomous operations re-
quire systems to adapt to a combination of changes in mission
requirements and goals, changes in operating/environmental
conditions, loss of resources, and drifts or fluctuations in
system resource utilization and application QoS at runtime.

Adaptation in open DRE systems can be performed at
multiple levels, including (1) the system level, e.g., where
applications can be deployed/removed end-to-end to/from the
system, (2) the application structure level, e.g., where com-
ponents (or assemblies of components) associated with one
or more applications executing in the system can be added,
modified, and/or removed, (3) the resource level, e.g., where
resources can be made available to application components
to ensure their timely completion, and (4) the application
parameter level, e.g., where configurable parameters (if any)
of application components can be tuned. These adaptation
levels are interrelated since they directly or indirectly impact
system resource utilization and end-to-end QoS, which affects
mission success. Adaptations at various levels must, therefore,
be performed in a stable and coordinated fashion.

To address the unresolved autonomy and adaptive resource

management needs of open DRE systems, we have devel-
oped the Integrated Planning, Allocation, and Control (IPAC)
framework. IPAC integrates decision-theoretic planners, allo-
cators that perform dynamic resource allocation using bin-
packing techniques, and controllers that perform runtime sys-
tem adaptations using control-theoretic techniques.

In our prior work, we developed the Spreading Activation
Partial Order Planner (SA-POP) [8] and the Resource Al-
location and Control Engine (RACE) [9]. SA-POP performs
decision-theoretic task planning [10], in which uncertainty
in task outcomes and utilities assigned to goals are used
to determine appropriate sequences of tasks, while respect-
ing resource constraints in DRE systems. RACE provides a
customizable and configurable adaptive resource management
framework for DRE systems. It allows the system to adapt
efficiently and robustly to fluctuations in utilization of system
resources, while maintaining QoS requirements. This resource
management adaptation is performed through control at the
resource level and application parameter level.

SA-POP enables an open DRE system to adapt dynamically
to changes in mission goals, as well as changes and losses
in system resources. However, by itself it cannot efficiently
handle short-term fluctuations in application resource utiliza-
tion and resource availability because 1) the computational
overhead involved in frequent replanning can be very high,
and 2) the repeated changes in generated plans may result
in system instability where QoS constraints are not satisfied.
On the other hand, although RACE’s resource management
capabilities provide robustness to small variations, it is not
suited to handle instabilities when major changes in en-
vironmental conditions, mission goals, or resources occur.
Neither SA-POP nor RACE used in isolation, therefore, have
sufficient capabilities to manage and ensure efficient and stable
functioning of open DRE systems. The potential benefits of
integrating the adaptation capabilities of SA-POP and RACE
were introduced in [8], and the IPAC framework builds up
and explicitly demonstrates the advantages of those integration
efforts.

This paper provides several contributions to design and
experimental research on autonomic computing. It describes
and empirically evaluates how the IPAC framework integrates
previous work on planning and adaptive resource manage-
ment for DRE systems to (1) efficiently handle uncertainties,
resource constraints, and multiple interacting goals in dy-
namic assembly of applications, (2) efficiently allocate system
resources to application components, and (3) avoid over-
utilizing system resources, thereby ensuring system stability
and application QoS requirements are met, even under high
load conditions. Our results show that IPAC enables the
effective and autonomous operation of open DRE systems by
performing adaptations at the various levels in a coordinated
fashion and ensures overall system stability and QoS.

The remainder of the paper is organized as follows: Sec-
tion 2 presents an overview of a representative DRE system—
the configurable space mission (CSM) system—and describes
the system adaptation challenges associated with the au-
tonomous operation of such open DRE systems; Section 3
describes the architecture of IPAC and qualitatively evaluates

how it addresses the challenges identified in Section 2; Sec-
tion 4 quantitatively evaluates how IPAC can address these
system adaptation challenges; Section 5 compares our work
on IPAC with related work; and Section 6 presents concluding
remarks and lessons learned.

2 CONFIGURABLE SPACE MISSION SYSTEMS
This section presents an overview of configurable space mis-

sion (CSM) systems, such as NASA’s Magnetospheric Multi-
scale mission system [11] and the proposed Fractionated Space
Mission [2], and uses CSMs as a case study to showcase
the challenges of open DRE systems and motivate the need
for TPAC to provide coordinated system adaptation in the
autonomous operation of such systems.

2.1

A CSM system consists of several interacting subsystems
(both in-flight and stationary) executing in an open envi-
ronment. Such systems consist of a spacecraft constellation
that maintains a specific formation while orbiting in/over a
region of scientific interest. In contrast to conventional space
missions that involve a monolithic satellite, CSMs distribute
the functional and computational capabilities of a conventional
monolithic spacecraft across multiple modules, which interact
via high-bandwidth, low-latency, wireless links.

A CSM system must operate with a high degree of au-
tonomy, adapting to (1) dynamic addition and modifications
of user-specified mission goals/objectives; (2) fluctuations in
input workload, application resource utilization, and resource
availability due to variations in environmental conditions; and
(3) complete or partial loss of resources such as computational
power and wireless network bandwidth.

Applications executing in a CSM system, also referred to
as science applications, are responsible for collecting science
data, processing and analyzing data, storing or discarding the
data, and transmitting the stored data to ground stations for
further processing. These applications tend to span the entire
spacecraft constellation because the fractionated nature of the
spacecraft requires a high degree of coordination to achieve
mission goals.

QoS requirements of science applications can occasionally
be unsatisfied without compromising mission success. More-
over, science applications in a CSM system are often periodic,
allowing the dynamic modification of their execution rates
at runtime. Resource consumption by—and QoS of—these
science applications are directly proportional to their execution
rates, i.e., a science application executing at a higher rate
contributes a higher value to the overall system QoS, but also
consumes resources at a higher rate.

CSM System Overview

2.2 Challenges Associated with the Autonomous
Operation of a CSM System

Challenge 1: Dynamic addition and modifications of mis-
sion goals. An operational CSM system can be initialized
with a set of goals related to the primary, on-going science
objectives. These goals affect the configuration of applications
deployed on the system resources, e.g., computational power,
memory, and network bandwidth. During normal operation,
science objectives may change dynamically and mission goals

can be dynamically added and/or modified as new information
is obtained. In response to dynamic additions/modifications of
science goals, a CSM system must (re)plan its operation to
assemble/modify one or more end-to-end applications (i.e., a
set of interacting, appropriately configured application com-
ponents) to achieve the modified set of goals under current
environmental conditions and resource availability. After one
or more applications have been assembled, they will first be
allocated system resources and then deployed/initialized atop
system resources. Section 3.4.1 describes how IPAC resolves
this challenge.

Challenge 2: Adapting to fluctuations in input workload,
application resource utilization, and resource availability.

To ensure the stability of open DRE systems, system
resource utilization must be kept below specified limits,
while accommodating fluctuations in resource availability and
demand. On the other hand, significant under-utilization of
system resources is also unacceptable, since this can decrease
system QoS and increase operational cost. A CSM system
must therefore reconfigure application parameters appropri-
ately for these fluctuations (e.g., variations in operational
conditions, input workload, and resource availability) to en-
sure that the utilization of system resources converge to
the specified utilization bounds (“‘set-points”). Autonomous
operation of the CSM system requires (1) monitoring of
current utilization of system resources, (2) (re)planning for
mission goals, considering current environmental conditions
and limited resource availability, and (3) timely allocation of
system resources to applications that are produced as a result
of planning. Section 3.4.2 describes how IPAC resolves this
challenge.

Challenge 3: Adapting to complete or partial loss of sys-
tem resources. In open and uncertain environments, complete
or partial loss of system resources—nodes (computational
power), network bandwidth, and power—may occur during
the mission. The autonomous operation of a CSM system
requires adaptation to such failures at runtime, with minimal
disruption of the overall mission. Achieving this adaptation
requires the ability to optimize overall system expected utility
(i.e., the sum of expected utilities of all science applications
operating in the system) through prioritizing existing science
goals, as well as modifying, removing, and/or redeploying
science applications. Consequently, autonomous operation of
a CSM system requires (1) monitoring resource liveness, (2)
prioritizing mission goals, (3) (re)planning for goals under
reduced resource availability, and (4) (re)allocating resources
to resulting applications. Section 3.4.3 describes how IPAC
resolves this challenge.

3 INTEGRATED PLANNING, ALLOCATION, AND
CoNTRoOL (IPAC) FRAMEWORK

Our integrated planning and adaptive resource manage-
ment architecture, IPAC, enables self-optimization, self-
(re)configuration, and self-organization in open DRE systems
by providing decision-theoretic planning, dynamic resource
allocation, and runtime system control services. IPAC inte-
grates a planner, resource allocator, a controller, and system
monitoring framework, as shown in Figure 1.

As shown in Figure 1, IPAC uses a set of resource monitors
to track system resource utilization and periodically update the
planner, allocator, and controller with current resource utiliza-
tion (e.g., processor/memory utilization and battery power).
A set of QoS monitors tracks system QoS and periodically
updates the planner and the controller with QoS values,
such as applications’ end-to-end latency and throughput. The
planner uses its knowledge of the available components’
functional characteristics to dynamically assemble applications
(i.e., choose and configure appropriate sets of interacting
application components) suitable to current conditions and
goals/objectives. During this application assembly, the planner
also respects resource constraints and optimizes for overall
system expected utility.

IPAC’s allocators implement resource allocation algorithms,
such as multi-dimensional bin-packing algorithms [4], which
allocate various domain resources (such as CPU, memory, and
network bandwidth) to application components by determining
the mapping of components onto nodes in the system domain.
After applications have been deployed, IPAC’s controller,
which implement control-theoretic adaptive resource manage-
ment algorithms such as EUCON [12], periodically monitors
and fine-tunes application/system parameters/properties, such
as execution rate, to achieve efficient use of system resources.

The remainder of this section describes IPAC’s key services:
decision-theoretic planning, dynamic resource allocation, and
runtime system control. We also show how IPAC can be ap-
plied to open DRE system, such as the CSM system described
in Section 2.1, to address the challenges associated with the
autonomic operation of CSM systems identified in Section 2.2.
3.1 Online Planning using IPAC

Context. Autonomous DRE systems, such as CSMs, operate
in dynamic and uncertain environments where local conditions
may change rapidly. These changes in local conditions may
significantly influence the efficacy of deployed applications in
achieving mission goals. Further, communication with mission
control systems may involve significant lag times and/or be
intermittent.

Problem. To operate efficiently and effectively in such
domains requires incorporating some degree of autonomy
that allows the system to self-adapt, self-optimize, and self-
configure to dynamic changes in local environmental condi-
tions. Moreover, changing mission goals can most effectively
be achieved with self-configuration, i.e., when applications are
tailored to achieve specified goals in light of local environ-
mental conditions and probabilistic domain information. In
addition to these considerations, effective autonomy for open
DRE systems also requires the system to self-optimize its
operation for achieving mission goals in the face of significant
resource constraints.

Solution: A decision-theoretic planner with resource
constraints. The IPAC planner performs dynamic assembly
of component-based applications that operate with limited
resources in uncertain environments. This planning for appli-
cation assembly is performed by IPAC in terms of abstract
tasks, which capture the functionality of one or more actual
components. The architecture of IPAC’s planner is shown in
Figure 2.

QoS

N |
Application QoS Monitors

Il

Mission
— > Allocator
Goals

User Planne

e

—Applications»

System

“ Controller

— Application Parameters;,-» S
Resource Allocation

| Resource

System Resource Utilization Monitors

Fig. 1: An Integrated Planning, Resource Allocation, and Control (IPAC) Framework for Open DRE Systems

Mission Goals

Task |/ Expected Utility
Network Calculation
e , ~(Scheduling Applications

Task Map

Fig. 2: IPAC Planner Architecture

For the IPAC planner to choose appropriate tasks to achieve
a goal, it requires knowledge of preconditions that must
be satisfied for each task, its input/output data streams (if
any), and the pertinent effects that result from its operation.
Uncertainty as to whether tasks will produce the desired output
or effects is captured via conditional probabilities associated
with the preconditions and effects of a task. Together, these
input/output definitions, preconditions/effects, and related con-
ditional probabilities define the functional signature of a task.
The functional signatures of every task—and consequently
all task dependencies—are captured in a fask network as
illustrated in Figure 2. The task network is constructed by
domain experts using a domain-specific modeling language in
the Generic Modeling Environment (GME) [13].

In addition to knowledge of the functionality provided
by the abstract tasks, IPAC’s planner translate tasks into
appropriately configured application components. Moreover,
to ensure applications and their scheduled executions do not
violate resource and time constraints, the planner also requires
knowledge of a component’s resource signature, which de-
scribes the expected resource consumption and execution time
for applicable configurations of the component. To associate
each abstract task with a set of concrete components and their
individual resource signatures, IPAC uses a task map tailored
to a specific domain. The task map contains the resource
signatures of all components available in the system and is
generated by system designers using component profiling.

Given one or more goals specified by a software agent or
system user, the IPAC planner uses current conditions and
functional knowledge of tasks (from the task network) to
generate plans that include data connections and ordering con-
straints between tasks [8]. The planner uses the probabilistic
information from the task network and current conditions to
ensure that these plans have a high expected utility (i.e., their
probability of successfully achieving provided goals, combined

with the utility of those goals, is high compared to other
possible plans). During planning, the tasks are also associated
with configured components that can implement them and
the plan is checked to ensure that overall system resource
constraints are not violated [8], [14]. The planner directly
translates these plans into assemblies of components, with a
schedule of acceptable time windows for their execution. The
end product of IPAC’s planning process is thus one or more
applications assembled from configured components that are
likely to achieve the provided goals, given the current local
conditions and resource constraints.

3.2 Online Resource Allocation using IPAC

Context. Applications executing in open DRE systems are
resource-sensitive (i.e., end-to-end QoS is reduced signifi-
cantly if the required type and quantity of resources are not
provided to the applications at the right time) and require
multiple resources, such as memory, CPU, power, and network
bandwidth. In these systems resource allocation cannot be per-
formed solely at design-time since system resource availability
may vary during run-time. Moreover, input workload affects
the utilization of system resources by applications that are
already running.

Problem. A key challenge lies in allocating system re-
sources to application components in a timely manner. While
many allocation algorithms and heuristics exist, most are appli-
cable only to allocation problems with a single resource. Even
among multiple-resource allocation algorithms/heuristics, no
single one outperforms all others for finding solutions [15].
Further, the resulting allocations differ depending on the
algorithm used, and some allocations may be more desirable
than others (e.g., in terms of load-balancing).

Solution: A suite of multi-dimensional bin-packers. IPAC
provides an allocator that uses application metadata to allocate
domain resources (e.g., CPU and memory) to application com-
ponents, as shown in Figure 3. The IPAC allocator determines
the component-to-node mapping at runtime based on estimated
resource requirements of the components, provided in the
application metadata, and current node resource availability,
provided by resource monitors.

The IPAC allocator uses a suite of allocation heuristics,
each a multi-dimensional bin-packing heuristic (e.g., multi-
dimensional extensions of best-fit-decreasing and worst-fit-
decreasing) with a small running time, to increase the like-
lihood of finding a valid allocation in a timely manner [15].
These heuristics perform resource allocation by considering

| Application Components to i J . Q@b
Metadata Alleregiiar Resource Mapping 9 Satellite System
SUER S

- Resource
-System Resource Ut\hzauon%

Fig. 3: IPAC’s Online Resource Allocation Architecture

Planner

each node to be a “bin” with multiple dimensions correspond-
ing to its resources (e.g., CPU and memory) and choosing
a bin for each component, into which it is “packed.” By
executing multiple allocation heuristics, IPAC increases the
chances of finding a valid allocation and allows preferential
selection among solutions (e.g., choosing the most load-
balanced solution).

3.3 Effective System Adaptation using IPAC

Context. In open DRE systems, applications can be added
and/or removed at runtime due to dynamically changing
mission goals. Moreover, utilization of system resource by
applications may be significantly different than their estimated
values and availability of system resources may be time-
variant. In addition, for applications executing in these sys-
tems, the relation between input workload, resource utilization,
and QoS cannot be characterized a priori. In these systems,
failure and/or loss of resources (such as node failure) is not
uncommon. To ensure that QoS requirements of applications
are met, therefore, open DRE system must be able to adapt
to dynamically changing events and/or conditions.

Problem. Autonomous operation of open DRE systems
require them to adapt, including self-optimize and self-
(re)configure, to variations in operational conditions, mission
goals, and/or fluctuations in resource availability and demand.
As described in Section 1, adaptation in open DRE systems
can be performed at various levels, including the system level,
application structure level, resource level, and application
parameter level. As these adaptation decisions are tightly
coupled, the key problem lies in ensuring that adaptations at
various levels of the system are performed in a stable and
coordinated fashion.

Solution: Top-down adaptation architecture. IPAC’s
adaptation architecture is structured in a top-down fashion
as shown in Figure 4. IPAC’s planner receives feedback on
system resource utilization and application QoS from the
resource and QoS monitors, respectively, as shown in Fig-
ure 4. The planner uses this information to determine when
specified goals are not being achieved. In these cases, IPAC’s
planner performs coarse-grained adaptations, such as modify-
ing existing applications (adding, removing, or reconfiguring
components) based on current conditions and resource usage.

As shown in Figure 4, after the coarse-grained adaptation
decisions have been computed, the planner employs the alloca-
tor to compute the allocation of system resources to the newly
generated and/or modified application(s). After the allocation
is complete, application components are (re)deployed onto the
system. The planner updates the controller with the metadata
of the newly generated and/or modified application(s).

Planner

Application

r/ Metadata \7
Allocator |—> Controller (=
M

1
H Adaptation Decisions

A

(0]

© Component to {} »

3 5 Resource S

8% Mapping Effectors g

N

5 % N ©

‘i Application Parameters "

%)
Resource . QoS
Monitors | Monitors

Fig. 4: IPAC’s Layered Control Architecture

IPAC’s controller implements control-theoretic adaptive re-
source management algorithms (such as EUCON [12]). It
periodically monitors system behavior (resource utilization and
QoS) with the aid of the resource and QoS monitors and
computes fine-grained system adaptation decisions, such as
fine-tuning application parameters (e.g., execution rates) and
system parameters (operating system and/or middleware QoS
parameters). These fine-grained adaptations ensure that system
performance and resource utilization requirements are met
despite drifts/fluctuations in utilization of system resources
and/or application QoS.

Figure 4 also shows how these decisions serve as inputs
to IPAC’s effectors, which modify system parameters (such
as execution rates of applications) to achieve controller-
recommended adaptation. IPAC’s controller and effectors work
with its resource monitors and QoS monitors to compensate
for drifts/fluctuations in utilization of system resources and/or
application QoS. In the current version, IPAC’s controller
implements the EUCON control algorithm.

The coarse-grained adaptations computed by the planner
require longer to implement because they require redeploy-
ment of application components. It is therefore preferable
to use IPAC’s controller to handle fine-grained fluctuations
in resource usage and application QoS whenever possible.
Although the inputs to both IPAC’s planner and the controller
include system behavior and performance metrics, the planner
uses this information to monitor the evolution of the system
with respect to its long-term plan/schedule for achieving
mission goals and to re-plan/re-schedule when necessary; the
controller uses this information to fine-tfune application/system
parameters in response to drifts/fluctuations in utilization of
system resources and/or application QoS.

3.4 Addressing CSM System Challenges Using IPAC
We now describe how the capabilities offered by IPAC address

the system management challenges for open DRE systems

identified in Section 2.2.

3.4.1 Addressing Challenge 1: Dynamic Addition and
Modification of Mission Goals

When IPAC’s planner receives a mission goal from a user it
assembles an application capable of achieving the provided
goal, given current local conditions and resource availability.
After the planner assembles an appropriate application, the
allocator allocates resources to application components and
employs the underlying middleware to deploy and configure
the application.

After the application is deployed successfully, the planner
updates the controller with the application’s metadata includ-
ing application structure, mapping of allocation components
to system resources, and minimum and maximum execution
rates. The controller uses this information to dynamically
modify system/application parameters (such as execution rates
of applications) to accommodate the new application in the
system and ensure resources are not over-utilized as a result
of this addition. Section 4.4 empirically evaluates the extent
to which IPAC’s planning, resource allocation, and runtime
system adaptation services can improve system performance
in when mission goals are dynamically added to the system
or modifications to goals deployed earlier are performed.

3.4.2 Addressing Challenge 2: Adapting to Fluctuations
in Input Workload and Application Resource Ultilization

IPAC tracks system performance and resource utilization via
its resource and QoS monitors. IPAC’s controller and effectors
periodically compute system adaptation decisions and modify
system parameters, respectively, to handle minor variations in
system resource utilization and performance due to fluctua-
tions in resource availability, input workload, and operational
conditions. Section 4.5 empirically validates how IPAC’s con-
troller enables the DRE system to adapt to fluctuations in input
workload and application resource utilization.

3.4.3 Addressing Challenge 3: Adapting to Complete or
Partial Loss of System Resources

When IPAC’s controller and effectors cannot compensate for
changes in resource availability, input workload, and oper-
ational conditions (e.g., due to drastic changes in system
operating conditions like complete loss of a node), re-planning
in the planner is triggered. The planner performs iterative plan
repair to modify existing applications to achieve mission goals.
Although this re-planning may result in lower expected utility
of some applications, it allows the system to optimize overall
system expected utility, even in cases of significant resource
loss. Section 4.6 empirically evaluates the extent to which
IPAC enables open DRE systems to adapt to loss of system
resources.

4 PERFORMANCE RESULTS AND ANALYSIS

This section describes experiments and analyzes results that
empirically evaluate the performance of our prototype of the
configurable space mission (CSM) case study described in
Section 2. These experiments evaluate the extent to which

IPAC performs effective end-to-end adaptation, thereby en-
abling the autonomous operation of open DRE systems. To
evaluate how individual services, planning and resource man-
agement services, offered by IPAC impact the performance of
the system, we ran the experiments in several configurations,
e.g., (1) using TPAC with the full set of services (decision-
theoretic planning, dynamic resource allocation, and runtime
system control services) enabled and (2) with limited sets of
IPAC services enabled.

41

Our experiments were performed on the ISISLab testbed
at Vanderbilt University (www.dre.vanderbilt.edu/ISISlab),
which is a cluster consisting of 56 IBM blades powered by
Emulab software (www.emulab.net). Each blade node contains
two 2.8 GHz Intel Xeon processors, 1 GB physical memory,
1GHz Ethernet network interface, and 40 GB hard drive. The
Redhat Fedora Core release 4 OS with real-time preemption
patches [16] was used on all nodes.

We used five blade nodes for the experiments, each acting
as a spacecraft in our prototype CSM system. Our middleware
platform was CIAO 0.5.10, which is an open-source QoS-
enabled component middleware that implements the OMG
Lightweight CORBA Component Model (CCM) [17] and De-
ployment and Configuration [18] specifications. IPAC and the
test applications implementing in our CSM system prototype
were written in C++ using the CIAO APIs.

Hardware and Software Testbed

4.2 Prototype CSM System Implementation

Mission goals of our prototype CSM system included (1)
weather monitoring, (2) monitoring earth’s plasma activity, (3)
tracking a specific star pattern, and (4) high-fidelity imaging
of start constellations. The relative importance of these goals
are summarized in Table 1.

Goal Importance
1 Weather Monitoring 100
2 | Sunspot Activity Monitoring 80
3 Star Tracking 20
4 Hi-fi Terrestrial Imaging 40

TABLE 1: Utility of Mission Goals

Applications that achieved these goals were periodic (i.e.,
applications contained a timer component that periodically
triggered the collection, filtration, and analysis of science
data) and the execution rate of these applications could be
modified at runtime. Table 2 summarizes the number of lines
of C++ code of various entities in our CIAO middleware, IPAC
framework, and prototype implementation of the CSM DRE
system case study, which were measured using SLOCCount
(www.dwheeler.com/sloccount).

Entity Total Lines of Source Code
CSM DRE system prototype 18,574
IPAC framework 80,253
CIAO middleware 511,378

TABLE 2: Lines of Source Code for Various System Elements

4.3 Experiment Design

As described in Section 2, a CSM system is subjected to
(1) dynamic addition of goals and end-to-end applications,
(2) fluctuations in application workload, and (3) significant
changes in resource availability. To validate our claim that
IPAC enables the autonomous operation of open DRE systems,
such as the CSM system, by performing effective end-to-end
adaptation, we evaluated performance of our prototype CSM
system performance when (1) goals were added at runtime,
(2) application workloads were varied at runtime, and (3) a
significant drop in available resources occurred due to node
failure.

To evaluate the improvement in system performance due to
IPAC, we initially indented to compare the system behavior
(system resource utilization and QoS) with and without IPAC.
However, without IPAC, a planner, a resource allocator, and
a controller were not available to the system. Therefore,
dynamic assembly of applications that satisfy goals, runtime
resource allocation to application components, and online
system adaptation to variations in operating conditions, input
workload, and resource availability were not possible. In other
words, without IPAC our CSM system would reduce to a
“static-system” that cannot operate autonomously in open
environments.

To evaluate the performance IPAC empirically, we struc-
tured our experiments as follows:

o Experiment 1 presented in Section 4.4 compares the
performance of the system that is subjected to dynamic
addition of user goals at runtime when the full set of
services (i.e., planning, resource allocation, and runtime
control) offered by IPAC are employed to manage the
system versus when only the planning and resource

allocation services are available to the system.
o Experiment 2 presented in Section 4.5 compares the

performance of the system that is subjected to fluctuations
input workload when the full set of services offered
by IPAC are employed to manage the system versus
when only planning and resource allocation services are

available to the system.)
o Experiment 3 presented in Section 4.6 compares the

performance of the system that is subjected to node
failures when the full set of services offered by IPAC
are employed to manage the system versus when only
resource allocation and control services are available to
the system.

For all the experiments, IPAC’s planner was configured to
use overall system expected utility optimization and respect
total system CPU usage constraints. Likewise, the allocator
was configured to use a suite of bin-packing algorithms with
worst-fit-decreasing and best-fit-decreasing heuristics. Finally,
the controller was configured to employ the EUCON control
algorithm to compute system adaptation decisions.

4.4 Experiment 1: Addition of Goals at Runtime
4.4.1 Experiment Design

This experiment compares the performance of the system
when the full set of services (i.e. planning, resource allo-
cation, and runtime control) offered by IPAC are employed

to manage the system versus when only the planning and
resource allocation services are available to the system. This
experiment also adds user goals dynamically at runtime. The
objective is to demonstrate the need for—and empirically
evaluate the advantages of—a specialized controller in the
IPAC architecture. We use the following metrics to compare
the performance of the system under the different service
configurations:

1) System downtime, which is defined as the duration
for which applications in the system are unable to
execute due to resource reallocation and/or application
redeployment.

2) Average application throughput, which is defined as
the throughput of applications executing in the system
averaged over the entire duration of the experiment.

3) System resource utilization, which is measure of the
processor utilization on each node in the system domain.

We demonstrate that a specialized controller, such as EU-
CON, enables the system to adapt more efficiently to fluctua-
tions in system configuration, such as addition of applications
to the system. In particular, we empirically show how the
service provided by a controller is complementary to the
services of both the allocator and the planner.

4.4.2 Experiment Configuration

During system initialization, time 7' = 0, the first goal
(weather monitoring) was provided to the planner by the user,
for which the planner assembled five applications (each with
between two and five components). Later, at time T = 200sec,
the second goal (monitoring earth’s plasma activity) goal was
provided to the planner, which assembled two applications
(with three to four components each) to achieve this goal.
Next, at time T' = 400sec, the third goal (start tracking) was
provided to the planner, which assembled one application (with
two components) to achieve this goal. Finally, at time 7' =
600sec, the fourth goal (hi-fi imaging) was provided to the
planner, which assembled an application with four components
to achieve this goal. Table 3 summarizes the provided goals—
and the applications deployed corresponding to these goals—
as a function of time. Table 4 summarizes the application

Time (sec) Goal Application #
0 - 200 Weather Monitoring 1-5

200 - 400 | Sunspot Activity Monitoring 6-7

400 - 600 Star Tracking 8

600 - 800 Hi-fi Terrestrial Imaging 9

TABLE 3: Set of Goals and Corresponding Applications as a
Function of Time

configuration, i.e., minimum and maximum execution rates,
estimated average resource utilization of components that
make up each application, and the ratio of estimated resource
utilization between the worst case workload and the average
case workload.

For this experiment, the sampling period of the controller
was set to 2 seconds. The processor utilization set-point of
the controller, as well as the bin-size, of each node was
selected to be 0.7, which is slightly lower than RMS [19]

Application Exec. Rate (Hz) Net Estimated | Component Average Resource Util. Util. Ratio
Min | Max | Init. | Resource Util. 1 2 3 4 5 Average Case : Worst Case

1 15 155 60 0.3 0.15 | 0.1 | 0.05 0 0 1:1.86
2 35 165 85 0.1 0.05 | 0.05 0 0 0 1:3.00
3 10 140 50 0.5 0.2 0.1 0.1 0.05 | 0.05 1:1.22
4 30 170 80 0.3 0.25 | 0.05 0 0 0 1:3.00
5 35 180 90 0.45 0.2 0.1 0.1 | 0.05 0 1:1.22
6 10 140 65 0.35 0.15 | 0.1 0.05 | 0.05 0 1:3.00
7 35 170 95 0.35 0.25 | 0.05 | 0.05 0 0 1:1.86
8 60 95 80 0.35 03 | 0.05 0 0 0 1:1.86
9 40 85 60 0.40 0.15 | 0.10 | 0.10 | 05 0 1:1.20

TABLE 4: Application Configuration

utilization bound of 0.77. IPAC allocator was configured to
use the standard best-fit-decreasing and worst-fit-decreasing
bin-packing heuristics.

4.4.3 Analysis of Experiment Results

When IPAC featured the planner, the allocator, and the con-
troller, allocation was performed by the allocator using the
average case utilization values due to the availability of the
controller to handle workload increases that would result in
greater than average resource utilization. When IPAC featured
only the planner and the allocator, however, all allocations
were computed using the worst case resource utilization values
(use of average case utilizations can not be justified because
workload increases would overload the system without a
controller to perform runtime adaptation). Tables 5 and 6
summarize the initial allocation of components to nodes (for
applications 1 - 5 at time 7" = 0 corresponding to the weather
monitoring goal), as well as the estimated resource utilization,
using average case and worst case utilization values, respec-
tively.

Node | Estimated Utilization | Items (Application, Component)
1 0.35 “41n 21 @5
2 0.35 3,) (52 42
3 0.35 G 53 64
4 0.30 (1, 33 22
5 0.30 (1,2) (32 (13 (3.4)

TABLE 5: Allocation of Applications 1 - 5 using Average
Case Utilization

Node | Estimated Utilization | Items (Application, Component)
1 0.43 4,1 (35
2 0.40 @3, 53 (1,3)
3 0.39 6.y (52 (34
4 0.44 (L, 33 22 (5.4)
5 0.40 (1,2) (32 @2 (4,2

TABLE 6: Allocation of Applications 1 - 5 using Wost Case
Utilization

At time T' = 200sec, when the applications for the plasma
activity monitoring goal were deployed (applications 6 and
7 as specified in Table 4), the system reacted differently
when operated with the controller than without it. With the
controller, enough available resources were expected (using
average case utilization values), so the allocator could in-
crementally allocate applications 6 and 7 in the system thus
required no reallocation or redeployment.

In contrast, when the system operated without the controller,
a reallocation was necessary as an incremental addition of
applications 6 and 7 to the system was not possible (allo-
cations were based on worst case utilization values). The
reallocation of resources requires redeployment of applica-
tion components and, therefore, increases system/application
downtime. Tables 7 and 8 summarize the revised allocation of
components to nodes (for applications 1 - 7), as well as the
estimated resource utilization, using average case and worst
case utilization values, respectively.

Node | Estimated Utilization Items (Application, Component)
1 0.45 4,1 21 @S5 (6,2
2 0.45 3, 52 42 63 (72
3 0.45 S, 653 64 64 (73
4 0.55 1,1 33 22 (@1
5 0.45 1,2 (3,2 (1,3 @4 (6,1

TABLE 7: Allocation of Applications 1 - 7 using Average
Case Utilization

Node | Estimated Utilization Items (Application, Component)

1 0.615 41 63 64 64

2 0.575 (7,1) (32 22 (12

3 0.605 61 (12 G3) @2 (13
4 0.610 @3.n @G @2 13 G4
5 0.610 G, 62) (52 (63) (35

TABLE 8: Allocation of Applications 1 - 7 using Wost Case
Utilization

At time T' = 400sec, when the application corresponding to
the star tracking goal was provided (application 8), resources
were insufficient to incrementally allocate it to the system,
both with and without the controller, so reallocation was
necessary.

When the IPAC was configured without the controller, the
allocator was unable to find a feasible allocation using the best-
fit decreasing heuristic. However, IPAC’s allocator was able to
find a feasible allocation using the best-fit decreasing heuristic.
Tables 10 and 11 summarize the allocation of components
to nodes, as well as the estimated resource utilization, using
average case and worst case utilization values, respectively.

At time T = 600sec, application corresponding to the hi-
fi imaging goal (application 9) had to be deployed. When
operating without the controller, it was not possible to find
any allocation of all nine applications, and the system con-
tinued to operate with only the previous eight applications.
In contrast, when the system included the controller, average
case utilization values were used during resource allocation,

and application 9 was incrementally allocated and deployed in
the system.

When the system was operated with the full set of services
offered by IPAC the overall system downtime' due to resource
reallocation and application redeployment was 8534.375 ms
compared to 15613.162 ms when the system was operated
without the system adaptation service of IPAC. It is clear that
the system downtime is significantly (50%) lower when the
system was operating with the full set of services offered
by IPAC than when the system was operating without the
controller.

From Figure 5, it is clear that system resources are signifi-
cantly underutilized when operating without the controller but
are near the set-point when the controller is used. Underuti-
lization of system resources results in reduced QoS, which is
evident from Table 9, showing the overall system QoS.>

Application Average Throughput (Hz)
With the Controller | Without the Controller
1 149.973 59.871
2 159.236 84.802
3 100.700 49.624
4 116.453 79.814
5 175.156 89.653
6 25.076 63.212
7 37.370 94.876
8 89.620 79.894
9 40.514 N/A
Entire System 99.344 66.860

TABLE 9: Experiment 1: Comparison of System QoS

4.4.4 Summary

This experiment compared system performance under dynamic
addition of mission goals when the full set of IPAC services
(i.e., planning, resource allocation, and runtime control) were
employed to manage the system versus when only the planning
and resource allocation services were available. Significant dif-
ference in system evolution were observed due to the fact that
when the system was operated without the controller, resources
were reallocated more often than when the controller was
available. Higher system downtime resulted, further lowering
average throughput and resource utilization. Moreover, when
the system was operated with the controller, additional mission
goals could be achieved by the system, thereby improving the
overall system utility and QoS.

From these results, it is clear that without the controller,
even dynamic resource allocation is inefficient due to the nec-
essary pessimism in component utilization values (worst case
values from profiling). Lack of a controller thus results in (1)
under-utilization of system resources, (2) low system QoS, and
(3) high system downtime. In contrast, when IPAC featured the
planner, the allocator, and the controller, resource allocation
was significantly more efficient. This efficiency stemmed from
the presence of the controller, which ensures system resources
are not over-utilized despite workload increases. These results

1. To measure the system downtime, we repeated the experiment over 100
iterations and computed the average system downtime.

2. In this system, overall QoS is defined as the total throughput for all
active applications.

also demonstrate that when IPAC operated with a full set of
services it enables the efficient and autonomous operation of
the system despite runtime addition of goals.

4.5 Experiment 2: Varying Input Workload
4.5.1

This experiment executes an application corresponding to the
weather monitoring, monitoring earth’s plasma activity, and
star tracking goals (applications 1 - 8 described in Table 4),
where the input workload is varied at runtime. This experiment
demonstrates the adaptive resource management capabilities of
IPAC under varying input workload. We compare the perfor-
mance of the system when the full set of services offered by
IPAC (i.e., planning, resource allocation, and runtime control)
are employed to manage the system versus when only planning
and resource allocation services are available to the system.
We use deadline miss ratio, average application throughput
and system resource utilization as metrics to empirically
compare the performance of the system under each service
configuration.

Experiment Design

4.5.2 Experiment Configuration

At time T = 0, the system was initialized with applications
1 - 8 as specified in Table 4. Upon initialization, applications
execute at their initialization rate specified in Table 4. When
IPAC featured the planner, the allocator, and the controller,
allocation was performed by the allocator using the average
case utilization values due to the availability of the controller
to handle workload increases that would result in greater
than average resource utilization. When IPAC featured only
the planner and the allocator, however, all allocations were
computed using the worst case resource utilization values.
Tables 10 and 11 summarize the allocation of components
to nodes, as well as the estimated resource utilization, using
average case and worst case utilization values, respectively.

Node | Estimated Items (Application, Component)
Utilization
1 0.55 @81n @33 @) G4 (64
2 0.55 4D (12 G2 G5 (12
3 0.55 7,1 32 63 ‘G2 13
4 0.55 @3 (1D 62 64 82
5 0.50 G, 6D (1,3 (22 (63)

TABLE 10: Allocation of Applications 1 - 8 using Average
Case Utilization

Each applicationss end-to-end deadline is defined as d; =
n;/ri(k), where n; is the number of components in application
T; and r;(k) is the execution rate of application T} in the k*"
sampling period. Each end-to-end deadline is evenly divided
into sub-deadlines for its components. The resultant sub-
deadline of each component equals its period, 1/r(k). All
application/components meet their deadlines/sub-deadlines if
the schedulable utilization bound of RMS [19] is used as the
utilization set-point and is enforced on all the nodes.

The sampling period of the controller was set at 2 seconds
and the utilization set-point for each node was selected to
be 0.7, which is slightly lower than RMS utilization bound.

c 4
L ‘
8 —
e
7 i
Q
o
o i
0 1 1 1 ! 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (Sampling period = 2 seconds)
Set-point Node2 Node4 - ‘
Nodel - Node 3 Node5 -------

(a) Utilization with the Controller

1
5 08 | 1
g
= 0.6 - 1
4 04
s
£ 02
0 1 il 1 b1 1 1 1
0 50 100 150 200 250 300 350 400
Time (Sampling period = 2 seconds)
‘ Set-point Node 2 -~ Node4 ------
Nodel - Node 3 Node5 -------

(b) Utilization without the Controller

Fig. 5: Experiment 1: Comparison of Processor Utilization

Node | Estimated Utilization Items (Application, Component)

1 0.69 &1 (6,1) (@21

2 0.70 “5n (11

3 0.70 3.H G (1) (1.3

4 0.685 62 (12 (G2 33 62 22

5 0.695 53 42 (63 64 (12 (13 &2 G4 (35 G4

TABLE 11: Allocation of Applications 1 - 8 using Wost Case Utilization

Table 12 summarizes the variation of input workload as a
function of time. When the input workload was low, medium,
and high, the corresponding resource utilization by application
components were their corresponding best case, average case,
and worst case values, respectively.

Time (sec) | Input Workload
0- 150 Low
150 - 450 Medium
450 - 600 High
600 - 900 Medium
900 - 1,000 Low

TABLE 12: Input Workload as a Function of Time

4.5.3 Analysis of Experiment Results

When the IPAC controller is available to the system it dy-
namically modifies the execution rates of applications within
the bounds [min, max] specified in Table 4 to ensure that the
resource utilization on each node converges to the specified
set-point of 0.7, despite fluctuations in input workload. When
IPAC is not configured with the controller (i.e., only the
planner and the allocator are available), however, applications
execute at their initialization rate specified in Table 4.

Figure 6a, Figure 7a, and Table 12 show the execution
of the system when it contains the IPAC controller. During
0 < T < 150, when the input workload is low, the controller
increases the execution rates of applications such that the
processor utilization on each node converges to the desired
set-point of 0.7. This behavior ensures effective utilization of
system resources. When IPAC does not provide the controller
service,however, Figures 6b and 7b show that the applications

execute at a constant rate (initialization rate) and system
resources are severely underutilized.

When input workload is increased from low to medium, at
T = 150s, the corresponding increase in the processor utiliza-
tion can be seen in Figure 6. Figures 6a and 7a show that when
IPAC included the controller, although the processor utilization
increased above the set-point, within a few sampling periods
the controller restored the processor utilization to the desired
set-point of 0.7 by dynamically reducing the execution rates
of applications. Under both service configuration of IPAC,
with the controller and without the controller, the deadline
miss ratio was 0 throughout the duration of the experiment.
Figure 6a shows that the application deadline miss ratio
was unaffected by the short duration during which processor
utilization was above the set-point. Finally, Figure 6b shows
that without the controller, the system resources remained
under-utilized even after the workload increase.

At T' = 450s, the input workload was further increased
from medium to high. As a result, the processor utilization on
all the nodes increased, which is shown in Figure 6. Figures 6a
and 7b show that the controller was again able to dynamically
modify the application execution rates to ensure that the
utilization converged to the desired set-point. Figure 6b shows
that when TPAC did not feature the controller, the processor
utilization was at the set-point under high workload conditions
(corresponding to the worst case resource utilization used to
determine the allocation of components to processors in that
case).

At T = 600s, when the input workload was reduced from
high to medium, from Figure 6 it can be seen that the processor
utilization on all the nodes decreased. When IPAC included
the controller, however, the controller restored the processor

10

1 1
5] 5 08¢]
ki B
2] = 06]
5 2 s
@ 04] 04 |]
g
o
& 02 | & o2 |
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (Sampling period = 2 seconds) Time (Sampling period = 2 seconds)
Set-point Node2 ——- Noded -~ ‘ Set-point Node2 - Node4 ------
Node1 - Node 3 Node5 ------- ‘ Nodel -~ Node 3 NodeS -
(a) With the Controller (b) Without the Controller
Fig. 6: Experiment 2: Comparison of Processor Utilization
o 20| 1 sy]
z T
g 220] < 00l]
/ ko]
@
; @
5 150 f s 150]
3 100 ‘ "g 100]
3 0 F] N]
0 0
0 100 200 300 400 500 0 100 200 300 400 500 600
Time (Sampling period = 2 seconds) Time (Sampling period = 2 seconds)
Takl —— Task3 Task5 Task7 -~ ‘ Takl —— Task3 — — Taskb Task7 -
Task2 Task4 Task6 Task8 ————- Task2 Taskd Taské Tasks

(a) With the Controller

(b) Without the Controller

Fig. 7: Experiment 2: Comparison of Application Execution Rates

utilization to the desired set-point of 0.7 within a few sampling
periods. Without the controller, processor utilization remained
significantly lower than the set-point. Similarly, at 7" = 900s,
the input workload was further reduced from medium to low,
and Figure 6 shows another decrease in processor utilization
across all nodes. When IPAC featured the controller, processor
utilization again returned to the desired set-point within a few
sampling periods. Without the controller, processor utilization
remained even further below the set-point.

Figure 6 shows that system resources are significantly
underutilized when operating without the controller, but are
near the set-point when the controller is used. Underutilization
of system resources results in reduced QoS, which is evident
from Table 13, showing the overall system QOS.3 In contrast,
when IPAC featured the controller, the application execution
rates were dynamically modified to ensure utilization on all the
nodes converged to the set-point, resulting in more effective

3. In this system, overall QoS is defined as the total throughput for all
active applications.

11

utilization of system resources and higher QoS.

Application Average Throughput (Hz)
With the Controller | Without the Controller
1 113.17 59.930
2 162.817 84.903
3 101.240 45.964
4 54.507 76.909
5 166.959 89.905
6 13.460 62.088
7 35.219 94.896
8 80.019 79.702
Entire System 90.923 74.287

TABLE 13: Experiment 2: Comparison of System QoS

4.5.4 Summary

This experiment compared system performance during input
workload fluctuations when the system was operated with the
full set of IPAC services (i.e. planning, resource allocation, and
runtime control) versus when only the planning and resource
allocation services were available to the system. The results

show how IPAC and its controller (1) ensures system resources
are not over-utilized, (2) improves overall system QoS, and (3)
enables the system to adapt to drifts/fluctuations in utilization
of system resources by fine-tuning application parameters.

4.6 Experiment 3: Varying Resource Availability
4.6.1

This experiment demonstrate the need for—and advantages
of—a planner in our IPAC architecture. It also demonstrates
that although a specialized controller can efficiently handle
minor fluctuations in the system, it is unable to handle major
fluctuations in the system, such as loss of one or more nodes
in the system.

We compare the performance of the system when the full set
of services offered by IPAC (i.e., planning, resource allocation,
and runtime control) are employed to manage the system
versus when only resource allocation and control services
are available to the system. We use system expected utility
and system resource utilization as metrics to empirically
compare the performance of the system under each service
configuration.

Experiment Design

4.6.2 Experiment Configuration

For this experiment, the goals provided to the system were (1)
weather monitoring, (2) sunspot monitoring, (3) star-tracking,
and (4) hi-fi imaging goals. The sampling period of the
controller was set to be 2 seconds. The processor utilization
set-point of the controller, as well as the bin-size, of each
node was selected to be 0.7. Under both configurations of
IPAC (i.e., (1) when IPAC featured the planner, allocator, and
controller and (2) when IPAC featured only the allocator and
the controller), allocation was performed by the allocator using
the average case utilization values due to the availability of
the controller to handle workload increases that would result
in greater than average resource utilization.

When IPAC featured only the allocator and the controller,
the allocator is augmented such that if it is unable to allocate
all applications given the reduced system resources, the alloca-
tor incrementally removes applications from consideration by
lowest utility density until a valid allocation can be found. We
define utility density as the expected utility of the application
divided by its expected resource usage.

4.6.3 Analysis of Experiment Results

When IPAC featured only the allocator and the controller, the
complete loss of a node triggered reallocation by the allocator.
With the reduced system resource, however, the allocator was
able to allocate applications corresponding to the weather
monitoring, plasma monitoring, and hi-fi imaging goals only.
In contrast, when IPAC featured the planner, the allocator,
and the controller, the complete loss of a node triggers re-
planning in the planner. The planner then assembled a new set
of applications, taking into account the significant reduction
in system resources. Although some applications had a lower
expected utility than the original ones, all four goals were still
achieved with the resources of the four remaining nodes.

12

Figure 8 shows that both with and without the planner, the
controller ensures that the resource utilization on all the nodes
are maintained within the specified bounds. Table 14 compares
the utility of the system when IPAC did/did-not feature the
planner. This figure shows how system adaptations performed
by the planner in response to failure of a node result in higher
system utility compared to the system adaptation performed
by just the allocator and the controller. The results Table 14

Application Expected Utility
With Planner | Without Planner
1 18 18
2 6 6
3 30 30
4 20 20
5 26 26
6 38 40
7 36 40
8 16 -
9 40 40
Entire System 230 220

TABLE 14: Experiment 3: Comparison of System Utility

occur because IPAC’s planner was able to assemble modified
applications for some mission goals (corresponding to applica-
tions 6, 7, and 8), albeit with somewhat lower expected utility,
whereas the allocator had to completely remove an application
to meet the reduced resource availability.

4.6.4 Summary

This experiment shows that although a specialized controller
can efficiently handle minor fluctuations in resource avail-
ability, it may be incapable of effective system adaptation in
the case of major fluctuations, such as loss of one or more
nodes in the system. Even with the addition of an intelligent
resource allocation scheme, system performance and utility
may suffer unnecessarily during major fluctuations in resource
availability. In contrast, IPAC’s planner has knowledge of
system component functionality and desired mission goals. As
a result, it can perform more effective system adaptation in the
face of major fluctuations, such as the loss of a system node.

5 RELATED WORK

The overview of autonomic computing presented in [3] iden-
tifies various aspects a self-managed autonomic computing
system, which includes self-organization, self-reconfiguration,
self-optimization, and self-protection. Of these aspects,
our research on IPAC focuses on self-organization, self-
reconfiguration, and self-optimization of open DRE systems.

The work in [20] describes a utility-driven self-adaptive
middleware that processes numerous data-streams simultane-
ously. This research presents a self-adaptation algorithm that
scales efficiently as the number of data-screams increases.
The objective of this research is to maximize the utility of
the system, despite changing in (1) network and resource
conditions and (2) business/user policies.

The work in [21] employs utility functions to efficiently
manage, as well as continually optimize, the use of system

1
c 4
=]
@ y
E
7 i
Q
o
I i
O 1 1 1 1 1
0 50 100 150 200 250 300
Time (Sampling period = 2 seconds)
Set-point Node2 - Node4 ------ ‘
Nodel - Node 3

(a) With the Planner

.5 0.8 r 1
i
£
{
(o)
£ 02 |
0 1 1 1 1 1
0 50 100 150 200 250 300
Time (Sampling period = 2 seconds)
‘ Set-point Node2 Node4 ———
Nodel - Node 3

(b) Without the Planner

Fig. 8: Experiment 3: Comparison of Processor Utilization

resources in data-centers. In this research, resources are dy-
namically (re)allocated to applications such that the system
objective, which is specified using utility functions, is maxi-
mized throughout the lifespan of the system.

AGILE [22] is as a policy expression language and an
integration framework for various autonomic computing tech-
niques and technologies. AGILE facilitates the configuration of
run-time adaptation of autonomic systems using policy based
mechanisms. AGILE, as an integration framework, enables
the seamless integration and interoperability of the different
system adaptation and management technologies, such as sig-
nal processing, automated trend analysis and utility functions,
within a single system.

Our approach to system optimization, adaptation, and man-
agement using IPAC is similar to the utility based system
management and optimization research presented in [20]
and [21]. IPAC employs a combination of decision-theoretic
planning and control-theoretic resource management, however,
to efficiently manage and adapt the system to variations
in operational conditions, mission goals, and fluctuations in
resource availability and/or demand. Moreover, IPAC performs
system adaptation as various levels in a coordinated fashion
to effectively adapt the system to these chances. In sum-
mary, IPAC’s novelty stems from its integration of (1) online
decision-theoretic planning, (2) online resource allocation, and
(3) runtime system adaptations.

There has been significant work in recent years on planning
in dynamic and uncertain environments, such as spacecraft
missions. The Remote Agent used on NASA’s Deep Space One
mission includes autonomous, goal-directed planning under
resource constraints [23]. [PAC’s planner goes beyond that of
the Remote Agent by composing and configuring component-
based applications and explicitly modeling uncertainty in the
environment to optimize expected utility of plans. Like IPAC,
many other planners extend classical notions of planning
to include uncertainty. In particular, some planners allow
uncertainty about both environment and action outcome (e.g.,
C-SHOP [24] using hierarchical planning and Drips [25],

13

which produce contingent plans), as in [PAC. While these
planners generate a series of actions to be executed, IPAC’s
planner also provides the capability to select and configure
software components, dynamically composing applications for
deployment.

The composition/configuration of application components
is related to work on service composition in service oriented
architectures and web services, such as Synthy [26], which
produces contingent plans for combining and deploying web
services. Synthy performs a similar function to that of IPAC’s
planner in that it composes web services from components
and represents their functional and non-functional (e.g., QoS)
properties separately. However, Synthy requires user input
during the composition process to efficiently minimize relevant
contingencies, while IPAC’s planner is designed to perform
autonomously, making choices based on expected utility, rather
than producing contingency plans. Further, IPAC’s planner is
distinguished from service composition planners like Synthy
by its focus on resource-constrained environments through
incorporation of resource constraints in the planning process.

IPAC integrates three forms of system adaptation and
management, namely decision-theoretic planning, runtime re-
source allocation, and control-theoretic resource management
techniques. IPAC can benefit from integration frameworks,
such as AGILE [22], with the integration of other autonomic
computing techniques and technologies and thereby provide
the system with self-protection and self-healing capabilities,
in addition to the self-organization, self-reconfiguration, and
self-optimization capabilities it currently provides.

6 CONCLUDING REMARKS

Autonomous operation of open DRE systems requires robust
adaptation of system functionality to current goals and con-
ditions, as well as the enforcement of end-to-end application
resources and QoS requirements. Open DRE systems run in
environments where operational conditions, input workload,
and resource availability are subject to dynamic changes. To
meet end-to-end QoS in these dynamic environments, open

DRE systems can benefit from an integrated planning resource
allocation, and control frameworks that monitors system re-
sources, performs efficient planning, application workload
management, and enables efficient resource provisioning for
executing applications.

This paper described the Integrated Planning, Allocation,
and Control (IPAC) framework, which is our integrated
planning and adaptive resource management framework that
provides planning, end-to-end adaptation and resource man-
agement for open DRE systems. IPAC enables open DRE
systems to operate autonomously by (1) dynamic assembly
of high expected utility applications, (2) monitoring of sys-
tem resource utilization and application QoS, (3) performing
fine-grained adaptations in response to drifts/fluctuations in
utilization of system resources and/or application QoS, and
(4) performing functional system adaptation in response to
changing environmental conditions or significant variation in
system resource availability.

As described in Section 1, adaptations in open DRE systems
can be performed at various levels and adaptation decisions
must be performed in a coordinated fashion. To ensure adap-
tations performed by IPAC do not jeopardize system stability,
IPAC’s control architecture has a top-down structure, i.e., the
system adaptation layer, implemented by the planner, reacts
to events and the application adaptation layer, implemented
by the controller, reacts to minor drifts/fluctuations in system
behavior. This design is relatively conservative, e.g., in certain
cases the adaptations performed by the application adaptation
layer might be suboptimal compared to the adaptations that
could potentially be performed by the system adaptation layer.
The benefits of IPAC’s design, however, is that it ensures sys-
tem stability, reduces system down-time, and ensures system
adaptations at various levels are coordinated.

The experimental results presented in this paper demon-
strate the following benefits of using the full set of services
offered by IPAC to manage open DRE systems: (1) system
resources are efficiently utilized, (2) more goals/applications
can be accommodated by the system, (3) system downtime
is reduced, (4) utilization of system resources is maintained
within a specified set-point, and (5) system QoS is improved
significantly.

IPAC is an open-source software that can be obtained along
with our middleware distribution from http://download.dre.
vanderbilt.edu/.

REFERENCES

[1] D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte, D. C. Schmidt,
and G. Biswas, “Onboard Processing using the Adaptive Network
Architecture,” in Proceedings of the Sixth Annual NASA Earth Science
Technology Conference, College Park, MD, June 2006.

O. Brown and P. Eremenko, “Fractionated Space Architectures: A Vision
for Responsive Space,” in Proceedings of the 4th Responsive Space
Conference. Los Angeles, CA: American Institute of Aeronautics &
Astronautics, Apr. 2006.

J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

J. W. S. Liu, Real-time Systems. New Jersey: Prentice Hall, 2000.

T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni,
“Adaptive Reservations in a Linux Environment,” in IEEE Real-Time
and Embedded Technology and Applications Symposium, 2004, pp. 238—
245.

(2]

(3]

(4]
(5]

14

(6]

(7]

(8]

(91

[10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

T. F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
Performance Control in Software Services,” IEEE: Control Systems,
vol. 23, no. 3, pp. 74-90, June 2003.

C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback Control Real-
Time Scheduling: Framework, Modeling, and Algorithms,” Real-Time
Syst., vol. 23, no. 1-2, pp. 85-126, 2002.

J. S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and D. C. Schmidt,
“Decision-Theoretic Planner with Dynamic Component Reconfiguration
for Distributed Real-time Applications,” in The 8th International Sym-
posium on Autonomous Decentralized Systems (ISADS 2007), Sedona,
Arizona, Mar. 2007.

N. Shankaran, D. C. Schmidt, X. D. Koutsoukos, Y. Chen, and C. Lu,
“Design and Performance Evaluation of Resource-Management Frame-
work for End-to-End Adaptation of Distributed Real-time Embedded
Systems,” Journal on Embedded Systems: Special issue on Operating
System Support for Embedded Real-Time Applications, 2008.

S. Bagchi, G. Biswas, and K. Kawamura, “Task Planning under Un-
certainty using a Spreading Activation Network,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 639-650, Nov. 2000.
S. Curtis, “The Magnetospheric Multiscale Mission...Resolving Funda-
mental Processes in Space Plasmas,” NASA STI/Recon Technical Report
N, pp. 48257—+, Dec. 1999.

C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control in
Distributed Real-time Systems with End-to-End Tasks,” IEEE Trans. on
Par. and Dist. Sys., vol. 16, no. 6, pp. 550-561, 2005.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 145-164, Jan. 2003.

P. Laborie, “Algorithms for Propagating Resource Constraints in Al
Planning and Scheduling: Existing Approaches and New Results.” Artif.
Intell., vol. 143, no. 2, pp. 151-188, 2003.

N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and D. C. Schmidt,
“Toward Effective Multi-capacity Resource Allocation in Distributed
Real-time and Embedded Systems,” in Proceedings of the 11th Inter-
national Symposium on Object/Component/Service-oriented Real-time
Distributed Computing). Orlando, Florida: IEEE, May 2008.

I. Molnar, “Linux with Real-time Pre-emption Patches,” http://www.
kernel.org/pub/linux/kernel/projects/rt/, Sep 2006.

Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 ed., Object Management Group, May
2003.

Deployment and Configuration Adopted Submission, OMG Document
mars/03-05-08 ed., Object Management Group, July 2003.

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior,” in R7SS '89:
Proceedings of the IEEE Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 1989, pp. 166-171.

V. Kumar, B. F. Cooper, and K. Schwan, “Distributed Stream Manage-
ment using Utility-Driven Self-Adaptive Middleware,” icac, vol. 0, pp.
3-14, 2005.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility Functions
in Autonomic Systems,” icac, vol. 00, pp. 70-77, 2004.

R. J. Anthony, “Policy-Centric Integration and Dynamic Composition of
Autonomic Computing Techniques,” in ICAC ’07: Proceedings of the
Fourth International Conference on Autonomic Computing. Washing-
ton, DC, USA: IEEE Computer Society, 2007, p. 2.

N. Muscettola, P. Nayak, B. Pell, and B. Williams, “Remote Agent: to
boldly go where no Al system has gone before,” Artificial Intelligence,
vol. 103, no. 1-2, pp. 547, 1998.

A. Bouguerra and L. Karlsson, “Hierarchical Task Planning Under
Uncertainty,” 3rd Italian Workshop on Planning and Scheduling (AI*
IA 2004). Perugia, Italy, 2004.

P. Haddawy, A. Doan, and R. Goodwin, “Efficient Decision-Theoretic
Planning: Techniques and Empirical Analysis,” Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, 1995.

V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal,
and B. Srivastava, “Synthy: A system for end to end composition of web
services,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 3, no. 4, pp. 311-339, 2005.

